On' periodic orbits of stable flows

Dedicated to Professor Yoshie Katsurada on her 60th birthday

By Akihiko Morimoto

Introduction. Let M be a compact C^{∞} Riemannian manifold of dimension $n \geq 2$ without boundary and X a C^{1} vector field on M. Let $\left\{f^{t}\right\}$ be the one-parameter group of C^{1}-diffeomorphisms f^{t} of M generated by X. $\left\{f^{t}\right\}$ is called a differentiable flow (or dynamical system) on M. More generally, a one-parameter group of homeomorphisms $\left\{g^{t}\right\}$ is called a continuous flow on M if the map $g: M \times \mathrm{R} \rightarrow M$ defined by $g(x, t)=g^{t}(x)$ ($x \in M, t \in \mathrm{R}$) is continuous.

A point $x \in M$ is called a periodic point of $\left\{f^{t}\right\}$ if there is a $t_{0}>0$ such that $f^{t_{0}}(x)=x$ holds. We denote by $\operatorname{Per}\left(\left\{f^{t}\right\}\right)$ the set of all periodic points of $\left\{f^{t}\right\}$. The orbit $\left\{f^{t}(x) \mid t \in \mathrm{R}\right\}$. is called a periodic orbit if $x \in \operatorname{Per}\left(\left\{f^{t}\right\}\right)$.

A point $x \in M$ is called a non-wandering point of $\left\{f^{t}\right\}$ if for any neighborhood U of x and any $k>0$ we can find a $t_{0} \geq k$ such that $f^{t_{0}}(U) \cap U \neq \phi$ holds. We denote by $\Omega\left(\left\{f^{t}\right\}\right)$ the set of all non-wandering points of $\left\{f^{t}\right\}$. Clearly $\Omega\left(\left\{f^{t}\right\}\right)$ is closed in M and we have

$$
\operatorname{Per}\left(\left\{f^{t}\right\}\right) \subset \Omega\left(\left\{f^{t}\right\}\right)
$$

Let $\operatorname{Map}(M)$ be the set of all continuous maps f of M into M. For $f, g \in \operatorname{Map}(M)$ we define the metric $d(f, g)$ by

$$
d(f, g)=\sup _{x \in \mathscr{M}} d(f(x), g(x)),
$$

where d denotes the metric on M induced by the Riemannian metric on M. For any continuous function μ on M we define the norm $\|\mu\|$ by

$$
\|\mu\|=\operatorname{Max}_{x \in M}|\mu(x)| .
$$

Definition 1. $\left\{f^{t}\right\}$ is called to be topologically stable, if there exists a positive number ε_{0} having the following property: For any positive $\varepsilon<\varepsilon_{0}$, there exists a positive $\delta=\delta(\varepsilon)$ such that for any continuous flow $\left\{g^{t}\right\}$ with $d\left(f^{t}, g^{t}\right)<\delta$ for $t \in\left[\frac{1}{4}, 1\right]$, there exist a continuous function p on $M \times \mathrm{R}$ and a surjective map $u \in \operatorname{Map}(M)$ such that

$$
u\left(g^{t}(x)\right)=f^{p(x, t)}(u(x))
$$

holds for every $x \in M$ and $t \in \mathrm{R}$ and that the following conditions are satisfied:
(i) $\quad d\left(u, 1_{M}\right)+\left\|(1 / t) p_{t}-1\right\|<\varepsilon$
for $t \in\left[\frac{1}{4}, 1\right]$, where $p_{t}(x)=p(x, t)(x \in M, t \in \mathbf{R})$,
(ii) $\quad p(x, t+1)=p\left(g^{t}(x), 1\right)+p(x, t) \quad(x \in M, t \in \mathrm{R})$,
(iii) $\left\|p_{t}\right\| \leq 2$ for $t \in[0,1]$.

In this note we shall prove the following
Theorem 1. If $\left\{f^{t}\right\}$ is topologically stable, then $\operatorname{Per}\left(\left\{f^{t}\right\}\right)$ is dense in $\Omega\left(\left\{f^{t}\right\}\right)$.

We have proved in [2] the following
Theorem A. Any Anosov flow $\left\{f^{t}\right\}$ is topologically stable.
For Anosov flows, see [1], [3], [5].
In fact, we have proved the uniqueness of u and p in Definition 1 under certain conditions on u, which we shall not use in what follows.

Combining Theorem 1 and Theorem A we obtain the following
Corollary. If $\left\{f^{t}\right\}$ is an Anosov flow, then $\operatorname{Per}\left(\left\{f^{t}\right\}\right)$ is dense in $\Omega\left(\left\{f^{t}\right\}\right)$.

Anosov [1] proved the above corollary by making use of stable manifold theory.

It is conjectured that $\Omega\left(\left\{f^{t}\right\}\right)=M$ holds for Anosov flow $\left\{f^{t}\right\}$ (cf. [5]]).
The idea of the proof of Theorem 1] was inspired by that of Theorem 4 [6].
§ 1. Preliminary Lemmas. We shall first prove the following.lemma which is intuitively clear.

Lemma 1. Let $\delta_{i}, \varepsilon_{i}(i=1,2)$ and a, b be real numbers with $\delta_{1}<\delta_{2}$, $\varepsilon_{1}<a<\varepsilon_{2}$, and $\varepsilon_{1}<b<\varepsilon_{2}$. Then for each $y \in \mathbf{R}$ we can find a continuous curve $c_{y}(t)(t \in \mathbf{R})$ in \mathbf{R}^{2} satisfying the following conditions $(\mathbf{a}) \sim(\mathrm{e})$
(a) $\quad c_{y}(t)=\left(t, g_{y}(t)\right),(y, t) \in \mathrm{R}^{2}$
where g_{y} is a differentiable function on R and

$$
g_{y}(t)= \begin{cases}y & \text { for } t \leq \delta_{1} \text { or } y \notin\left[\varepsilon_{1}, \varepsilon_{2}\right], \\ g_{y}\left(\delta_{2}\right), & \text { for } t \geq \delta_{2} \text { and } y \in\left[\varepsilon_{1}, \varepsilon_{2}\right] .\end{cases}
$$

(b) $\quad \varepsilon_{1} \leq g_{y}(t) \leq \varepsilon_{2} \quad$ for $t \in \mathbf{R}$ and $y \in\left[\varepsilon_{1}, \varepsilon_{2}\right]$.
(c) $g_{a}\left(\partial_{2}\right)=b$.
(d) For each $x \in \mathbf{R}^{2}$, we can find one and only one $(t, y) \in \mathbf{R}^{2}$ such that $x=c_{y}(t)$.
(e) For each $s \in \mathbf{R}$ we can define the map $\psi^{s}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $\psi^{s}\left(c_{y}(t)\right)=$ $c_{y}(t+s) . \quad\left\{\psi^{s}\right\}$ is a continuous flow on \mathbf{R}^{2}.

Proof. Let $g \in C^{\infty}(\mathbf{R})$ be a differentiable function on R such that

$$
g(t)= \begin{cases}0 & t \leq \delta_{1} \\ 1 & t \geq \delta_{2}\end{cases}
$$

and that $g(t)<g(s)$ for $\delta_{1} \leq t<s \leq \delta_{2}$.
Next, we can find a differentiable monotone increasing function h on \mathbf{R} satisfying the following conditions (i) $\sim(i v)$.

$$
\begin{equation*}
h\left(\left[\varepsilon_{1}, \varepsilon_{2}\right]\right)=\left[\varepsilon_{1}, \varepsilon_{2}\right] . \tag{i}
\end{equation*}
$$

(ii) $h(a)=b$.
(iii) $\left.\quad h\right|_{s}=1_{s}$,
where $S=\mathrm{R}-\left[\varepsilon_{1}, \varepsilon_{2}\right]$.
(iv) $\quad h(t) \leq t$ (resp. $h(t) \geq t)$ for $t \in\left[\varepsilon_{1}, \varepsilon_{2}\right]$ if $a \geq b$ (resp. $a \leq b$).

Put $g_{y}(t)=y+(h(y)-y) g(t)$ for $(t, y) \in \mathrm{R}^{2}$. It is easily seen that $g_{y}(t)$ is an increasing function of y for fixed $t \in \mathrm{R}$, from which we can verify (d). It is also readily seen that (a) $\sim(\mathrm{c})$ hold.

By the property (d) the map ψ^{s} is well defined. The $\operatorname{map} \varphi, \varphi_{s}$ of R^{2} onto R^{2} defined by $\varphi(t, y)=\left(t, g_{y}(t)\right)$ and $\varphi_{s}(t, y)=\left(t+s, g_{y}(t+s)\right.$ for $(t, y) \in \mathrm{R}^{2}$ are both homeomorphisms of R^{2} onto R^{2}. Since $\psi^{s}=\varphi_{s} \circ \varphi^{-1}$, we see that $\left\{\psi^{s}\right\}$ is a continuous flow on \mathbf{R}^{2}. Q.E. D.

We can now prove the following lemma which is a generalization of Lemma 1.

Lemma 2. (Detour Lemma). Let $\varepsilon_{i}, \delta_{i}(i=1,2)$ be real numbers with $\delta_{1}<\delta_{2}$ and $\varepsilon_{1}<\varepsilon_{2}$. Let $Q=\left(\varepsilon_{1}, \varepsilon_{2}\right)^{n-1}$ be the cube in R^{n-1}, where $\left(\varepsilon_{1}, \varepsilon_{2}\right)=$ $\left\{t \in \mathrm{R} \mid \varepsilon_{1}<t<\varepsilon_{2}\right\}$. Let $\mathrm{A}, \mathrm{B} \in \mathrm{Q}$.

Then, for each $y \in \mathrm{R}^{n-1}$ we can find a continuous curve $C_{y}(t)(t \in \mathrm{R})$ in \mathbf{R}^{n} satisfying the following conditions $(\mathrm{a}) \sim(\mathrm{e})$.
(a)

$$
C_{y}(t)=\left(t, G_{y}(t)\right) \quad t \in \mathbf{R},
$$

where $G_{y}: \mathrm{R} \rightarrow \mathrm{R}^{n-1}$ is differentiable and

$$
G_{y}(t)= \begin{cases}y & t \leq \delta_{1} \text { or } y \notin \bar{Q} \\ G_{y}\left(\delta_{2}\right) & t \geq \delta_{2} \text { and } y \in \bar{Q}\end{cases}
$$

(b) $\quad G_{y}(t) \in \bar{Q} \quad t \in \mathrm{R}, y \in \bar{Q}$.
(c) $\quad G_{A}\left(\delta_{2}\right)=B$.
(d):For each $x \in \mathrm{R}^{n}$ we can find one and only one $(t, y) \in \mathrm{R} \times \mathrm{R}^{n-1}$ such that $x=C_{y}(t)$.
(e) For each $s \in \mathbf{R}$ we can define the map $\Psi^{s}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ by $\Psi^{s}\left(C_{y}(t)\right)=$ $C_{y}(t+s) .\left\{\Psi^{s}\right\}$ is a continuous flow on R^{n}.

Proof. We denote $g_{y}(t)$ in Lemma 1 by $g_{y}(t)=g_{a, b, y}(t)$, since g_{y} depends on a, b. Put $A=\left(a_{2}, \cdots, a_{n}\right), B=\left(b_{2}, \cdots, b_{n}\right)$ and $y=\left(y_{2}, \cdots, y_{n}\right)$ with $a_{i}, b_{i}, y_{i} \in \mathbf{R}$ ($\mathrm{i}=2, \cdots, n$).

We define $G_{y}(t)$ in the following manner:

$$
G_{y}(t)=\left(g_{y}^{2}(t), \cdots, g_{y}^{n}(t)\right),
$$

where $g_{y}^{i}(t)=g_{a_{i}, b_{i}, y_{i}}(t)$ for $i=2, \cdots, n$.
We can see as in Lemma 1 that the family of curves $C_{y}(t)=\left(t, G_{y}(t)\right)$ satisfies the conditions (a) $\sim(\mathrm{e})$.
Q.E.D.

Remark. We see that the flows $\left\{\psi^{t}\right\}$ and $\left\{\Psi^{t}\right\}$ above are differentiable flows on R^{2} and R^{n} respectively.

Lemma 3. Take $\varepsilon_{0} \leq \frac{1}{2}$ in Definition 1. Then the function $p(x, t)$ in Def. 1 takes positive values for $t \geq 4$ and $x \in M$.

Proof. Using the property (ii) in Def. 1. we can prove by induction on k that for $t \in[k, k+1]$ we have

$$
p(x, t)=\dot{p}(x, t-k)+\sum_{i=0}^{k-1} p\left(g^{t-i}(x), 1\right)
$$

for $x \in M$. Since $1-\varepsilon<p(x, 1)<1+\varepsilon$ and $|p(x, t)| \leq 2$ for every $(x, t) \in M \times$ [0,1] we get

$$
p(x, t)>k(1-\varepsilon)-2,
$$

from which the lemma follows.
Q. E. D.

§ 2. Proof of Theorem 1.

Take a point $x_{0} \in \Omega\left(\left\{f^{t}\right\}\right)-\operatorname{Per}\left(\left\{f^{t}\right\}\right)$ and fix a positive $\varepsilon<\varepsilon_{0}$ and $\delta_{0}=\delta(\varepsilon)$, where ε_{0} is as in Definition 1. We can assume $\delta_{0} \leq \varepsilon$. Since $x_{0} \notin \operatorname{Per}\left(\left\{f^{t}\right\}\right)$ we have $X\left(x_{0}\right) \neq 0$.

Assume first that X is of class C^{2}. Then, we can find a coordinate neighborhood U of x_{0} with C^{2}-coordinate system $\left\{x^{1}, \cdots, x^{n}\right\}$ such that $x^{i}\left(x_{0}\right)=0,\left|x^{i}\right|<\delta_{1} \leq \frac{1}{2}$ for $i=1,2, \cdots, n$ and that

$$
\begin{equation*}
\left.X\right|_{V}=\partial /\left.\partial x^{1}\right|_{V} \tag{1}
\end{equation*}
$$

(cf. [4] p. 115). For $\delta_{1}>\delta>0$, we put $U_{\dot{\delta}}=\left\{x \in U| | x^{i}(x) \mid \leq \delta(i=1, \cdots, n)\right\}$. We take a positive $\delta_{2}<\delta_{1}$ such that

$$
\begin{equation*}
\operatorname{diam}\left(U_{\hat{\partial}_{2}}\right)<\delta_{0} . \tag{2}
\end{equation*}
$$

We assert that there is a positive $\delta<\frac{\delta_{2}}{3}$ such that

$$
\begin{equation*}
f^{t}\left(U_{\partial}\right) \cap U_{\dot{\delta}}=\phi \quad \text { for } \quad \frac{2 \delta_{2}}{3} \leq t \leq 6 . \tag{3}
\end{equation*}
$$

If not, there would be sequences $\left\{t_{v}\right\}$ and $\left\{p_{v}\right\} \subset U_{\delta_{2}}$ such that $p_{v} \rightarrow x_{0}$ $(\nu \rightarrow \infty), 2 \delta_{2} / 3 \leq t_{\nu} \leq 6$ and that $f^{t_{\nu}}\left(p_{\nu}\right) \rightarrow x_{0}(\nu \rightarrow \infty)$. Then, we can assume that $t_{0} \rightarrow t_{0}(\nu \rightarrow \infty)$ with some $t_{0} \in\left[2 \delta_{2} / 3,6\right]$. Hence $f^{t_{0}}\left(x_{0}\right)=x_{0}$, whence $x_{0} \in \operatorname{Per}(\{f\})$. Thus our assertion is verified.

We can also assume that δ satisfies the following condition:

$$
\begin{align*}
& d_{0}(x, y)<\delta ; x, y \in U \quad \text { imply } \tag{4}\\
& d\left(f^{t}(x), f^{t}(y)\right)<\delta_{0}
\end{align*}
$$

for $0 \leq t \leq 1$, where $d_{0}(x, y)=\underset{i}{\operatorname{Max}}\left|x^{i}(x)-x^{i}(y)\right|$.
If not, there would be sequences $\left\{t_{\nu}\right\}$ and $x_{\nu}, y_{\nu} \in U(\nu=1,2, \cdots)$ such that

$$
d_{0}\left(x_{\nu}, y_{\nu}\right) \rightarrow 0, \quad d\left(f^{t_{\nu}}\left(x_{\nu}\right), f^{t_{\nu}}\left(y_{\nu}\right)\right) \geq \delta_{0} .
$$

We can assume that $t_{\nu} \rightarrow t_{0}, x_{v} \rightarrow x^{0}, y_{\nu} \rightarrow y^{0}(\nu \rightarrow \infty)$ with $t_{0} \in[0,1], x^{0}, y^{0} \in M$. Then we have $x^{0}=y^{0}$ and $d\left(f^{t_{0}}\left(x^{0}\right), f^{t_{0}}\left(y^{0}\right)\right) \geq \delta_{0}$, which is a contradiction.

Now, since $x_{0} \in \Omega\left(\left\{f^{t}\right\}\right)$, there is a $t_{1} \geq 6$ such that $f^{t_{1}}\left(U_{0}^{0}\right) \cap U_{i}^{0} \neq \phi$, where $U_{\dot{c}}^{0}$ denotes the interior of U_{j}. Hence there are two points $v, w \in U_{\dot{s}}^{0}$ such that $f^{t_{1}}(v)=w$ holds. Put $t_{0}^{*}=\inf \left\{t \geq 6 \mid f^{t}(v)=w\right\}$. Then we have $f^{t_{0}^{*}}(v)=w$. Consider two points $A^{\prime}, B^{\prime} \in U_{\dot{\delta}}$ defined by

$$
\begin{equation*}
A^{\prime}=f^{-x^{1}(w)-\hat{s}}(w), \quad B^{\prime}=f^{0-x^{\prime}(v)}(v) . \tag{5}
\end{equation*}
$$

Clearly we have

$$
\begin{equation*}
x^{1}\left(A^{\prime}\right)=-\delta, \quad x^{1}\left(B^{\prime}\right)=\delta . \tag{6}
\end{equation*}
$$

Hence in the coordinate system $\left\{x^{1}, \cdots, x^{n}\right\}$, we have $A^{\prime}=(-\delta, A), B^{\prime}=(\delta, B)$ with $A, B \in(-\delta, \delta)^{n-1}$.

By making use of the Detour Lemma for $\varepsilon_{1}=\delta_{1}=-\delta, \varepsilon_{2}=\delta_{2}=\delta$, and $Q=(-\delta, \delta)^{n-1}$, we can construct a continuous flow $\left\{g^{t}\right\}$ on M by patching up the restriction of the flows $\left\{\left.f^{t}\right|_{M-U_{b}}\right\}$ and $\left\{\left.\Psi^{t}\right|_{\sigma_{j}}\right\}$. The flow $\left\{g^{t}\right\}$ has the following properties:
(α) $g^{20}\left(A^{\prime}\right)=B^{\prime}$.
(β) $x \in M, f^{t}(x) \notin U_{\delta}$ for $t \in[0,1]$ imply $g^{t}(x)=f^{t}(x)$ for $t \in[0,1]$.
(γ) If $f^{t_{0}}(x) \in U_{\mathrm{o}}$ and $f^{t}(x) \notin U_{\mathrm{o}}$ for $0<t<t_{0}$, then $g^{t}(x)=f^{t}(x)$ for
$0 \leq t \leq t_{0}$ and $g^{t}(x)=\Psi^{t-t_{0}}\left(f^{t_{0}}(x)\right)$ for $t_{0}+2 \delta \geq t \geq t_{0}$.
Next, we assert that

$$
\begin{equation*}
d\left(f^{t}, g^{t}\right)<\delta_{0} \quad \text { for } \quad t \in[0,1] . \tag{7}
\end{equation*}
$$

Take a point $x \in M$ and fix it. If $f^{t}(x) \notin U_{\delta}$ for all $t \in[0,1]$, then we have $f^{t}(x)=g^{t}(x)$ and so $d\left(f^{t}(x), g^{t}(x)\right)=0$.

Assume that there is a $t_{1} \in[0,1]$ such that $f^{t_{1}}(x) \in U_{b}$. Put $t_{1}=\inf \{t \in$ $\left.[0,1] \mid f^{t}(x) \in U_{\partial}\right\}$ and $t_{2}=t_{1}+2 \delta$.

In case $t_{2} \in[0,1]$, we have $f^{t}(x)=g^{t}(x)$ for $0 \leq t \leq t_{1}, f^{t}(x) \in U_{\mathrm{d}}$ for $t_{1} \leq t \leq t_{2}$ and $f^{t}(x) \notin U_{0}$ for $t_{2}<t \leq 1$ by virtue of (3) and (1). Hence we get $f^{\prime}(x)$, $g^{t}(x) \in U_{0}$ for $t_{1} \leq t \leq t_{2}$, which implies $d\left(f^{t}(x), g^{t}(x)\right)<\delta_{0}$ by (2). For $t_{2}<t \leq 1$ we have $g^{t}(x)=f^{t-t_{2}}\left(x^{\prime}\right)$, where $x^{\prime}=C_{f^{t_{1}}(x)}(2 \hat{0})$ by (γ). Put $x^{\prime \prime}=f^{t_{2}}(x)$. Then $x^{\prime}, x^{\prime \prime} \in U_{\delta}$ and $d_{0}\left(x^{\prime}, x^{\prime \prime}\right) \leq \delta$. Hence we get $d\left(f^{t}(x), g^{t}(x)\right)=d\left(f^{t-t_{0}}\left(x^{\prime \prime}\right)\right.$, $\left.f^{t-t_{2}}\left(x^{\prime}\right)\right)<\delta_{0}$ by (4).

In case $t_{2}>1$, we have $f^{t}(x) \in U_{0}$ for $t_{1} \leq t \leq 1$. We get $d\left(f^{t}(x), \tilde{g}^{t}(x)\right)=0$ for $0 \leq t \leq t_{1}$ and $f^{t}(x), g^{t}(x) \in U_{\delta}$ for $t_{1} \leq t \leq 1$, which implies $d\left(f^{t}(x), g_{t}^{t}(x)\right) \leq \delta_{0}$ by (2).

Thus (7) is proved.
By our assumption and Def. 1 there exist a map $u: M \rightarrow M$ and a function p on $M \times \mathrm{R}$ satisfying the following condition:

$$
u\left(g^{t}(x)\right)=f^{p(x, t)}(u(x))
$$

for $(x, t) \in M \times \mathrm{R}$ and $d\left(u, 1_{M}\right)<\varepsilon$.
Put $t_{0}^{\prime}=t_{0}^{*}+x^{1}(v)-x^{1}(w)-2 \delta$. Then, since $f^{t_{0}^{*}}(v)=w$ we have

$$
\begin{equation*}
f^{t_{0}}\left(B^{\prime}\right)=A^{\prime} \tag{9}
\end{equation*}
$$

by virtue of (5).
Clearly we have $t_{0}^{*} \geq t_{0}^{\prime} \geq 4$ since $t_{0}^{*} \geq 6$. Using (3) and (1) we see that

$$
f^{t}\left(B^{\prime}\right) \notin U_{\delta} \quad \text { for } \quad 0<t<t_{0}^{\prime} .
$$

 $g^{t_{0}{ }^{\prime}+2 s}\left(B^{\prime}\right)=g^{t_{0}^{\prime \prime}}\left(B^{\prime}\right)$, where we put $t_{0}^{\prime \prime}=t_{0}{ }^{\prime}+2 \delta$. By (8) we obtain

$$
u\left(B^{\prime}\right)=u\left(g^{t_{0}^{\prime \prime}}\left(B^{\prime}\right)\right)=f^{p\left(B^{\prime}, t_{0}^{\prime \prime}\right)}\left(u\left(B^{\prime}\right)\right) .
$$

Now, by virtue of Lemma 3 we have $p\left(B^{\prime}, t_{0}^{\prime \prime}\right)>0$, since $t_{0}{ }^{\prime \prime} \geq t_{0}{ }^{\prime} \geq 4$. Hence the point $u\left(B^{\prime}\right)$ is a periodic point of $\left\{f^{\prime}\right\}$. Since $d\left(u, 1_{M}\right)<\varepsilon$, we have $d\left(x_{0}, u\left(B^{\prime}\right)\right) \leq d\left(x_{0}, B^{\prime}\right)+d\left(B^{\prime}, u\left(B^{\prime}\right)\right)<2 \varepsilon$. Thus, we have proved that there is a periodic point of $\left\{f^{t}\right\}$ in the 2ε-neighborhood of x_{0}. Since $\varepsilon>0$ can be taken arbitrarily small, we have proved $\operatorname{Per}\left(\left\{f^{t}\right\}\right)$ is dense in $\Omega\left(\left\{f^{*}\right\}\right)$.

In the case X is not of class C^{2}, we construct a "flow box" around x_{0}, namely, a homeomorphism Φ of an open cube $V=(-\delta, \delta)^{n}$ in R^{n} onto a neighborhood U of x_{0} satisfying the following conditions
(i) $\Phi(0)=x_{0}$,
(ii) $\quad\left(\Phi\left(x_{1}+t, x_{2}, \cdots, x_{n}\right)\right)=f^{t}\left(\Phi\left(x_{1}, \cdots, x_{n}\right)\right)$
for $\left(x_{1}, \cdots, x_{n}\right),\left(x_{1}+t, x_{2}, \cdots, x_{n}\right) \in V$. Using the Detour lemma for \dot{V} and transporting it into U by Φ we can construct a continuous flow $\left\{g^{t}\right\}$ satisfying (7). Therefore, we can prove Theorem 1 in the same way as in the case when X is of class C^{2}.
Q.E.D.

Mathematical Institute,
Nagoya University.

References

[1] D. V. Anosov: Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Steklov Inst. of Math. $90^{\prime}(1967)$.
[2] K. Kato and A. Моrimoto: Topological stability of Anosov flows and their centralizers, to appear.
[3] A. Morimoto: Anosov flows on a compact manifold, Diff. Geom. in honor of K. Yano, 1972, 281-290.
[4] R. Narasimhan: Analysis on real and complex manifolds, North-Holland, Amsterdam, 1968.
[5] S. Smale: Differentiable Dynamical.Systems, Bull. Amer. Math. Soc. 73 (1967), 747-817.
[6] P. Walters: Anosov diffeomorphisms are topologically stable, Topology 9 (1970), 71-78.

