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Introduction. Let M be a compact C^{\infty} Riemannian manifold of dimen-
sion n\geq 2 without boundary and X a C^{1} vector field on M. Let \{f^{t}\} be
the one-parameter group of C^{1}-diffeomorphisms f^{t} of M generated by X.
\{f^{t}\} is called a differentiable ffiow (or dynamical system) on M. More
generally, a one-parameter group of homeomorphisms \{g^{t}\} is called a con-
tinuous ffiow on M if the map g:M\cross R- M defined by g(x, t)=g^{t}(x)

(x\in M, t\in R) is continuous.
A point x\in M is called a periodic point of \{f^{t}\} if there is a t_{0}>0. such

that f^{t_{0}}(x)=x holds. We denote by Per (\{f^{t}\}) the set of all periodic points
of \{f^{t}\} . The orbit \{f^{t}(x)|t\in R\} is called a periodic orbit if x\in Per(\{f^{t}\}) .

A point x\in M is called a non-wandering point of \{f^{t}\} if for any n.eigh-
borhood U of x and any k>0 we can find a t_{0}\geq k such that f^{t_{0}}(U) \bigcap_{1}U\neq\phi

holds. We denote by \Omega(\{f^{t}\}) the set of all non-wandering points of \{f^{t}\} .
Clearly \Omega(\{f^{t}\}) is closed in M and we have

Per (\{f^{t}\})\subset\Omega(\{f^{t}\}) .

Let Map(M) be the set of all continuous maps f of M into M. For

f, g\in Map(M) we define the metric d(f, g) by

d(f, g)= \sup_{x\in M}d(f(x), g(x)) ,

where d denotes the metric on M induced by the Riemannian metric on
M. For any continuous function \mu on M we define the norm ||\mu|| by

||\mu||=Maxx\in M^{\cdot}|\mu(x)|t

DEFINITION 1. \{f^{t}\} is called to be topologically stable, if there exists
a positive number \epsilon_{0} having the following property: For any positive \epsilon<\epsilon_{0} ,
there exists a positive \delta=\delta(\epsilon) such that for any continuous flow \{g^{t}\} with
d(f^{t}, g^{t})<\delta for t \in[\frac{1}{4},1] , there exist a continuous function p on M\cross R

and a surjective map u\in Map(M) such that

u(g^{t}(x))=f^{p(x,t)}(u(x))



On periodic orbits of stable flows 299

holds for every x\in M and t\in R and that the followilng conditions are satisfied:
(i) d(u, 1_{M})+||(1/t)\backslash p_{t}-1||<\epsilon

for t \in[\frac{1}{4},1] , where p_{t}(x)=p(x, t)(x\in M, t\in R) ,

(ii) p(x, t+1)=p(g^{t}(x), 1)+p(x, t) (x\in M, t\in R)i

(iii) ||p_{t}||\leq 2 for t\in[0,1]

In this note we shall prove the following
THEOREM 1. If \{f^{t}\} is topologically^{\backslash } stable, thm Per(\{f^{t}\}) is dense in

f2 (\{f^{t}\}) .
We have proved in [2] the following
THEOREM A. Any Anosov ffiow \{f^{t}\} is topologically stable.
For Anosov flows, see [1], [3], [5].
In fact, we have proved the uniqueness of u and p in Definition 1 under

certain conditions on u, which we shall not use in what follows.
Combining Theorem 1 and Theorem A we obtain the following,
COROLLARY. If \{f^{t}\} is an Anosov ffiow, then Per(\langle f^{t}\}) is dense in

\Omega(\{f^{t}\}) .
Anosov [1] proved the above corollary by making use of stable manifold

theory.
It is conjectured that \Omega(\{f^{t}\})=M holds for Anosov flow \{f^{t}\} (cf. [5]).
The idea of the proof of Theorem 1 was inspired by that of Theorem

4 [6].

\S 1. Preliminary Lemmas. We shall first prove the following\backslash lemma

which is intuitively clear.
LEMMA 1. Let \delta_{i} , \epsilon_{i}(i=1,2) and a, b be real numbers with \delta_{1}<\delta_{2} ,

\epsilon_{1}<a<\epsilon_{2} , and \epsilon_{1}<b<\epsilon_{2} . Then for each y\in R we can fifind a continuous
curve c_{y}(t)(t\in R) in R^{2} satisfying the following conditions (a)\sim(e)

(a) c_{y}(t)=(t, g_{y}(t)) , (y, t)\in R^{2}

where g_{y} is a differentiable function on R and

g_{y}(t)=\{
y for t\leq\delta_{1} or y\zeta [\epsilon_{1}, \epsilon_{2}] ,
g_{y}(\delta_{2}) for t\geq\delta_{2} and y\in[\epsilon_{1}, \epsilon_{2}]

(b) \epsilon_{1}\leq g_{y}(t)\leq\epsilon_{2} for t\in R and y\in[\epsilon_{1}, \epsilon_{2}]

(c) g_{a}(\delta_{2})=b .
(d) For each x\in R^{2} , we can fifind one and only one (t, y)\in R^{2} such

that x=c_{y}(t) .



300 A. Morimoto

(e) For each s\in R we can defifine the map \psi^{s} : R^{2}arrow R^{2} by \psi^{s}(c_{y}(t))=

c_{y}(t+s) . \{\psi^{s}\} is a continuous ffiow on R^{2} .
PROOF. Let g\in C^{\infty}(R) be a differentiable function on R such that

g(t)=\{
0 t\leq\delta_{1} ,

1 t\geq\delta_{2} ,

and that g(t)<g(s) for \delta_{1}\leq t<s\leq\delta_{2} .
Next, we can find a differentiable monotone increasing function h on

R satisfying the following conditions ( i)\sim(iv) .
(i) h([\epsilon_{1}, \epsilon_{2}])=[\epsilon_{1}, \epsilon_{2}] .
(ii) h(a)=b .
(iii) h|_{S}=1_{S} ,

where S=R-[\epsilon_{1}, \epsilon_{2}] .
(iv) h(t)\leq t (resp. h(t)\geq t) for t\in[\epsilon_{1}, \epsilon_{2}] if a\geq b (resp. a\leq b).

Put g_{y}(t)=y+(h(y)-y)g(t) for (t, y)\in R^{2} . It is easily seen that g_{y}(t) is
an increasing function of y for fixed t\in R , from which we can verify (d).
It is also readily seen that (a)\sim(c) hold.

By the property (d) the map \psi^{s} is well defined. The map \varphi , \varphi_{s} of R^{2}

onto R^{2} defined by \varphi(t, y)=(t, g_{y}(t)) and \varphi_{s}(t, y)=(t+s, g_{y}(t+s)) for (t, y)\in R^{2}

are both homeomorphisms of R^{2} onto R^{2} . Since \psi^{s}=\varphi_{s}\circ\varphi^{-1} , we see that
\{\psi^{s}\} is a continuous flow on R^{2}. Q. E. D.

We can now prove the following lemma w.hich is a generalization of
Lemma 1.

LEMMA 2. (Detour Lemma). Let \epsilon_{i} , \delta_{i}(i=1,2) be real numbers with
\delta_{1}<\delta_{2} and \epsilon_{1}<\epsilon_{2} . Let Q=(\epsilon_{1}, \epsilon_{2})^{n-1} be the cube in R^{n-1} , where (\epsilon_{1}, \epsilon_{2})=

\{t\in R|\epsilon_{1}<t<\epsilon_{2}\} . Let A, B\in Q .
Then, for each y\in R^{n-1} we can fifind a continuous curve C_{y}(t)(t\in R) in

R^{n} satisfying the following conditions (a)\sim(e) .
(a) C_{y}(t)=(t, G_{y}(t)) t\in R ,

where G_{y} : Rarrow R^{n-1} is differentiable and

G_{y}(t)^{\neg}=’\{

y t\leq\delta_{1} or y\xi Q

G_{y}(\delta_{2}) t\geq,\delta_{2} and y\in\overline{Q}

(b) G_{y}(t)\in\overline{Q} t\in R , y\in\overline{Q} .
(c) G_{A}(\delta_{2})=B .
(d) For each x\in R^{n} we can-fifind one and only one (t, y)\in R9iR^{n-1}

such that x=C_{y}(t) .
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(e) For each s\in R we can define the map \Psi^{s} : R^{n}arrow R^{n} by \Psi^{s}(C_{y}(t))=

C_{y}(t+s) . \{\Psi^{s}\} is a continuous ffiow on R^{n} .
PROOF. We denote g_{y}(t) in Lemma 1 by g_{y}(t)=g_{a,b,y}(t) , since g_{y} depends

on a, b. Put A=(a_{2}, \cdots, a_{n}) , B=(b_{2}, \cdots, b_{n}) and y=(y_{2}, \cdots, y_{n}) with a_{i} , b_{i} , y_{i}\in R

(i=2, \cdots, n) .
We define G_{y}(t) in the following manner j

G_{y}(t)=(g_{y}^{2}(t), \cdots , g_{y}^{n}(t)) ,

where g_{y}^{i}(t)=g_{a_{i},b_{i},y_{i}}(t) for i=2, \cdots , n .
We can see as in Lemma 1 that the family of curves C_{y}(t)=(t, G_{y}(t))

satisfies the conditions (a)\sim(e) . Q. E. D.
REMARK. We see that the fiows \{\psi^{t}\} and \{\Psi^{t}\} above are differentiable

flows on R^{2} and R^{n} respectively.

LEMMA 3. ’Iake \epsilon_{0}\leq\frac{1}{2} in Definition 1. Then the function p(x, t) in

Def. 1 takes positive values for t\geq 4 and x\in M.
PROOF. Using the property (ii) in Def. 1. we can prove by induction

on k that for t\in[k, k+1] we have

p(x, t)=p(x, t-k)+ \sum_{i=0}^{k-1}p(g^{t-i}(x), 1)

for x\in M. Since 1-\epsilon<p(x, 1)<1+\epsilon and |p(x, t)|\leq 2 for every (x, t)\in M^{\backslash },<

[0, 1] we get

p(x, t)>k(1-\epsilon)-2’.
from which the lemma follows. Q. E. D.

\S 2. Proof of Theorem 1.

Take a point x_{0}\in\Omega(\{f^{t}\})- Per (\{f^{t}\}) and fix a positive \epsilon<\epsilon_{0} and \delta_{0}=\delta(\epsilon),
where \epsilon_{0} is as in Definition 1. We can assume \delta_{0}\leq\epsilon . Since x_{0}\leq Per (\{f^{t}\})

we have X(x_{0})\neq 0 .
Assume first that X is of class C^{2}. Then, we can find a coordinate

neighborhood U of x_{0} with C^{2}-coordinate system \{x^{1}, \cdots, x^{n}\} such that
x^{i}(x_{0})=0 , |x^{i}|< \delta_{1}\leq\frac{1}{2} for i=1,2, \cdots , n and that

(1) X|_{I7}=\partial/\partial x^{1}|_{U}

(cf. [4] p. 115). For \delta_{1}>\delta>0, we put U_{\delta}=\{x\in U||x^{i}(x)|\leq\delta(i=1, \cdots, n)\} .
We take a positive \delta_{2}<\delta_{1} such that
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(2) diam (U_{\delta_{?}})<0_{0}^{Q} .

We assert that there is a positive \delta<\frac{\delta_{2}}{3} such that

(3) f^{t}(U_{\delta})\cap U_{\delta}=\phi for \frac{2\delta_{2}}{3}\leq t\leq 6 .

If not, there would be sequences \{t_{\nu}\} and \{p_{\nu}\}\subset U_{\delta_{2}} such that p_{\nu}arrow x_{0}

(\nuarrow\infty), 2\delta_{2}/3\leq t_{\nu}\leq 6 and that f^{t_{\nu}}(p_{\nu})arrow x_{0}(\nuarrow\infty) . Then, we can assume that
t_{v}arrow t_{0}(\nuarrow\infty) with some t_{0}\in[2\delta_{2}/3,6] . Hence f^{t_{0}}(x_{0})=x_{0} , whence x_{0}\in Per(\{f\}) .
Thus our assertion is verified.

We can also Pssume that \delta satisfies the following condition:

(4) | d_{0}(x, y)<\delta;x, y\in U imply
| d (f^{t}(x) , f^{t}(y))<\delta_{0}

for
0\leq t\leq 1,wherIfnot,there\partial^{i}ou1dbesequences\{t_{\nu}\}andx_{p}d_{0}(x,y)={\rm Max}|x^{i}(x)-x^{i}(y)|.

, y_{\nu}\in U(\nu=1,2, \cdots) such that

d_{0}(x_{\nu}, y_{\nu})arrow 0 , d(f^{t_{\mu}}(x_{\nu}), f^{t_{\nu}}(y_{\nu}))\geq\delta_{0} .

We can assume that t_{\nu}->t_{0} , x_{\nu}arrow x^{0} , y_{\nu}arrow y^{0} (\nu-\infty) with t_{0}\in[0,1] , x^{0}, y^{0}\in M.
Then we have x^{0}=y^{0} and d(f^{t_{0}}(x^{0}), f^{t_{0}}(y^{0}))\geq\delta_{0} , which is a contradiction.

Now, since x_{0}\in\Omega(\{f^{t}\}) , there is a t_{1}\geq 6 such that f^{t_{1}}(U_{\delta}^{0})\cap U_{\delta}^{0}\neq\phi , where
U_{\delta}^{0} denotes the interior of U_{\delta} . Hence there are two points v, w\in U_{\delta}^{0} such
that f^{t_{1}}(v)=w holds. Put t_{0}^{*}= \inf\{t\geq 6|f^{t}(v)=w\} . Then we have f^{t_{0}^{*}}(v)=w .
Consider two points A’, B’\in U_{o^{*}} defined by

(5) A’=f^{-x^{1}(w)-\delta}(w) , B’=f^{\delta-x^{1}(v)}(v)\mathbb{C}

Clearly we have
(6) x^{1}(A’)=-\delta’. x^{1}(B’)=\delta .
Hence in the coordinate system \{x^{1_{ }},\cdots, x^{n}\} , we have A’=(-\delta, A),B’=(\delta, B)

with A, B\in(-\delta, \delta)^{n-1} .
By making use of the Detour Lemma for \epsilon_{1}=\delta_{1}=-\delta , \epsilon_{2}=\delta_{2}=\delta, and

Q=(-\delta, \delta)^{n-1}, we can construct a continuous flow \{g^{t}\} on Mby| patching
up the restriction of the flows \{f^{t}|_{M-U_{\delta}}\} and \{\Psi^{t}|_{U_{\delta}}\} . The flow \langle g^{t}\} has the
following properties:

(\alpha) g^{2\delta}(A’)=B’ .
(\beta) x\in M, f^{t}(x)\not\in U_{\delta} for t\in[0,1] imply g^{t}(x)=f^{t}(x) for t\in[0,1] .
(\gamma) If f^{t_{0}}(x)\in U_{\delta} and f^{t}(x)\in U_{\delta} for 0<t<t_{0} , then g^{t}(x)=f^{t}(x) for
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0\leq t\leq t_{0} and g^{t}(x)=\Psi^{t-t_{0}}(f^{t_{0}}(x)) for t_{0}+2\delta\geq t\geq t_{0} .
Next, we assert that

(7) d(f^{t}, g^{t})<\delta_{0} for t\in[0,1]

Take a point x\in M and fix it. If f^{t}(x)\not\in U_{\delta} for all t\in[0_{t},1]\backslash , the_{\Gamma}ni we
have f^{t}(x)=g^{t}(x) and so d(f^{t}(x), g^{t}(x))=0.’

Assume that there is a t_{1}\in[0,1] such that f^{t_{1}}(x)\in U_{\delta} . Put t_{1}--1" n^{\mathfrak{l}}f\{t\in

[0, 1]|f^{t}(x)\in U_{\delta}\} and t_{2}=t_{1}+2\delta .
In case t_{2}\in[0,1] , we have f^{t}(x)=g^{t}(x) for 0\leq t\leq t_{1} , f^{t}(x)\in U_{\delta}f\dot{o}r.t_{1}\leq t\leq t_{2}

and f^{t}(x)\not\in. U_{\delta} for t_{2}<t\leq 1 by virtue of (3) and (1). Hence \star e get fi(ae),
g^{t}(x)\in U_{\delta} for t_{1}\leq t\leq t_{2} , which implies d(f^{t}(x), g^{t}(x))<\delta_{0} by (2). For t_{2}<t\leq 1

we have g^{t}(x)=f^{t-t_{2}}(x’), where x’=C_{f^{t_{1}}(x)}(2\delta) by (\gamma) . Put x’=f^{t_{2}}(x) . Then
x’, x’\in U_{\delta} and d_{0}(x’, x’)\leq\delta . Hence we get d(f^{t}(x), g^{t}(x))=d(f^{t-t_{0}}(x’) ,

f^{t-t_{2}}(x’))<\delta_{0} by (4).
In case t_{2}>1,\overline{w}e hav’e fi(x)\in U_{\delta} for t_{1}\leq t\leq 1 . We get d(f^{t}(x), g^{t}(x))=0

for 0\leq t\underline{<}t_{1} and f^{t}(x) , g^{t}(x)\in U_{\delta} for t_{1}\leq t\leq 1 , which implies d(f^{t}tx), g^{t}(x)\underline{)}<\delta_{0}

by (2).
Thus (7) is proved.

\sqrt.t^{L} ,

By our assumption and Def. 1 there exist a map u:Marrow M and a
function p on M\cross R satisfying the following condition:

(8) u(g^{t}(x))=f^{p(x,t)}(u(x))

for (x, t)\in M\cross R and d(u, 1_{M})<\epsilon .
Put t_{0}’=t_{0}^{*}+x^{1}(v)-x^{1}(w)-2\delta . Then, since f^{t_{0}^{*}}(v)=w we have

(9) f_{\acute{0}}^{t}(B’)=A’

by virtue of (5).
Clearly we have t_{0}^{*}\geq t_{0}’\geq 4 since t_{0}^{*}\geq 6 . Using (3) and (1) we see that

f^{t}(B’)\not\in U_{\delta} for 0<t<t_{0}’

By (\beta) and (9) we have g^{t_{\acute{0}}}(B’)=f^{t_{\acute{0}}}(B’)=A’ . By (\alpha) we get B’=g(2\delta A’)=

g^{t\acute{0}+2\delta}(B’)=g^{t}\acute{0}^{l}(B’), where we put t_{0}’=t_{0}’+2\delta . By (8) we obtain

u(B’)=u(g^{t_{\acute{0}}’}(B’))=f^{p(B’,t_{\acute{0}}’)}(u(B’))

Now, by virtue of Lemma 3 we have p(B’, t_{0}’)>0, since t_{0}’\geq t_{0}’\geq 4 . Hence
the point u(B’) is a periodic point of { f^{t}\rangle . Since d(u, 1_{M})<\epsilon, we have
d(x_{0}, u(B’))\leq d(x_{0}, B’)+d(B’, u(B’))<2\epsilon . Thus, we have proved that there
is a periodic point of \{f^{t}\} in the 2\epsilon-neighborhood of x_{0} . Since \epsilon>0 can
be taken arbitrarily small, we have proved Per (\{f^{t}\}) is dense in \Omega(\{f^{t}\}) .
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In the case X is not of class C^{2}, we construct a “flow box” around x_{0} ,
namely, a home\circ m\sigma^{t}rphism\backslash \Phi of an openc cube V=(-\delta, \delta)^{n} in R^{n} onto a
neighborhood U of x_{0} satisfying the following conditions

(i) \Phi(0)=x_{0} ,

(ii) (\Phi(x_{1}+t, x_{2}, \cdots, x_{n}))=f^{t}(\Phi(x_{1}, \cdots, x_{n}))

for (x_{1}, \cdots, x_{n}), (x_{1}+t, x_{2}, \cdots, x_{n})\in V. Using the Detour lemma.for V and
transporting it into U by \Phi we can construct a continuous flow \{g^{t}\} satisfying
(7). Therefore, we can prove Theorem 1 in the same way as in the case
when X is of class C^{2} . Q. E. D.

Mathematical Institute,
Nagoya University.
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