Complete surfaces in 3-dimensional space forms
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For surfaces in a Euclidean 4-space E‘ the author proved the
following

THEOREM. A complete, connected, oriented and pseudo-umbilical sur-
Jaces immersed in E* with non-vanishing constant mean curvature H and
the Gaussian curvature K which does not change its sign is necessarily either
a Clifford flat torus in E* or a sphere with radius 1/H in a hyperplane E°.

In this case, by Lemma 2.2 in we see that surfaces are minimal
in a hypersphere S® in E% In this paper, the author will study surfaces
with constant mean curvature H in a 3-dimensional Riemannian manifold
M of constant curvature & Our main result is the following

THEOREM. Let M be a complete, connected and oriented 2-dimensional
Riemannian manifold isometrically immersed in a 3-dimensional oriented
Riemannian manifold M of constant curvature €. If H*+G is positive con-
stant and the Gaussian curvature K does not change its sign, then we have

(I) M is umbilic free and K=0 on M,
or

(II) M is tottally umbilic and K=H?+¢ on M.

By this theorem, we can verify the following results:

CoROLLARY 1. Let M be a complete, oriented and connected 2-dimen-
sional Riemannian manifold isometrically immersed in a unit 3-sphere S* in
E*. If the mean curvature H is constant and the Gaussian curvature K
does not change its sign, then M is a sphere or a Clifford flat torus.

CoroLLARY 2. (T. Klotz and R. Osserman [3]) Let M be a complete,
oriented and connected 2-dimensional Riemannian manifold isometrically
immersed in a Euclidean 3-space E®. If H is non-zero constant and K does
not change its sign, then M is a sphere or a right circular cylinder.

COROLLARY 3. Let M be a complete, oriented and connected 2-dimen-
sional Riemannian manifold isometrically immersed in a hyperbolic 3-space
H? of constant curvature —1. If H?*—1 is positive constant and K does
not change its sign, then M is a sphere or a right circular cylinder.

Let M be a 3-dimensional Riemannian manifold of constant curvature
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¢ and M be a 2-dimensional Riemannian manifold isometrically immersed
in M with the immersion x: M->M. Let F(M) and F(M) be the bundles
of all orthonormal frames over M and M respectively. Let B be the set
of all elements b=(p, e,, e,, ;)€ F(M) such that (p, e,, &, € F(M), identifying
peM with x(p) and e; with dx(e;), i=1,2. Then B is cosidered as a smooth
submanifold of F(M). We have, as is well known, a system of differential
1-forms w;, @;, W= —wy, W= —wy, Ws=—wy on B associated with the
immersion x such that

d(oi':(l)ij/\wj, (i9j=1? 2’ iij)
(0. '1) doy, = _0)13/\(023"50)1/\0)2 ’
o | dwia‘:wij/\sz’ (1,j=1,2, i:#j)
and '
(0. 2) : W = ;Awwj ,  Ay=Ayu, (5,7=1,2)

We call H - 1/233 A,; the mean curvature. M is said to be umbilic at
' [
pif Ay=A,=H and A,=0 at p. We say M to be totally umbilic if M

is umbilic at each point of M. We may consider M as a Riemann surface,
because M is a 2-dimensional oriented Riemannian manifold. We say M
to be parabolic if there are non-constant negative subharmonic functions
on M. We shall prove the theorem for the case (1) K<0 and the case (2)
K=0.

§1. The proof of the theorem. We first prove the following

ProrosiTIiON 1. Let M be a complete, oriented and connected 2-dimen-
sional Riemannian manifold immersed in a 3-dimensional oriented Rieman-
nian manifold M of constant curvature €. If H?+¢ is positive constant
and K is not greater than zero, then M is umbilic free and K=0 on M.

Proor. The Gaussian curvature K is given by the equation dw, =

— KoyAw,. On the other hand, by (0.1) and (0.2) we have dw,= —
(E+detA)w Aw,, where A is the matrix (A,;). Writting w,;=(H+ h,) o, + o,
and wy="hw, +(H—h)®,, we have

(1. 1) o K=+ H*—(R2+hY),

which, together with K<0 and H?+&>0, implies that M is umbilic free.
Hence, we can choose 1oca11y frames b€B such that A is given by
H+h = 0 )_ |

1.2) . N 4=( 0 H-—#h
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where the function 2 is differentiable and defined globally on M, because
det A=H*—h? is a global differentiable function on M. Since M is umbilic
free, we may suppose h>0 on M Using the structure equations (0. 1) for
0,3, we have

2hd(01+dh/\w1 = O N
Zhdw2+dh/\(!)2 e 0 ’

which show that we have a neighborhood U of a point p€ M in which there
exist the following isothermal coordinates (x, v):

(1. 3) dst={d*+dv?), w,=yidu, w,=yidv, hi=1,
where 1=12(u, v) is a positive function on U. Now, we get the following

LEMMA 1. The universal covering surface M of M is conformally
equivalent to the entire plane, so that M is parabolic.

Proor oF LEMMA. Since H?+é is positive constant, the conformal
metric § H?+¢& ds® is complete on M. However, since y H*+¢ < h, the
conformal metric hds® is also complete on M. Furthermore, the metric Ads?
is flat from (1.3). Hence the covering surface M with the lifted metric from
hds® on M is isometric to the entire plane. Thus M is conformally equivalent
to the entire plane, so that M is parabolic. Hence M is also parabohc

As is well known, the Gaussian curvature K is given by

K= —(1/204dlog1, 4= 0d*0u’+3d*ov*,

with respect to the isothermal coordinates (u,v). Since K<0 and hi=1,
we have

dlogh= —4logig0,

which implies that the function log A is a superharmonic function on M.
Since 0<H?*+¢<h?, the superharmonic function logh on M is bounded
from below by (1/2)log (H?+¢), so that log 2 must be constant, because M
is parabolic by Lemma 1. Therefore, K is identically zero on M. Thus
we have proved [Proposition 1|

We next prove the following

PrROPOSITION 2. Let M be a complete, oriented and connected 2-dimen-
stonal Riemannian manifold immersed in a 3-dimensional oriented Rieman-
nian manifold M of consttant curvature ¢. If H?+E is positive constant
and K is not less than zero, then we have

(1) M .is umbilic free and K=0 on M,

or
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(ii) M is totally umbilic and K=H?+¢ on M.
Proor. We first prove.
LemMmA 2. K is a superharmonic function on M.

- ProoOF of LEMMA. Let M, be the set of all points at which M is
umbilic, i.e., Ay=A,=H and A;,;=0. Since M, is closed in M, M,=
M—M, is open in M. Then, analogously in the proof of [Proposition 1,
we can choose a neighborhood U of a point peM, in M, where there exist
isothermal coordinates («, v) such that

ds=2{did+dv?), o, =y2du, w,=4y2 dv,
_(H+h 0 )
“\ 0 H-R)
where h is a differentiable function on U: Since K is given by

= —(1/20)dlog 2= (h[2)dlogh <0 and Ah>O0,

(1. 4)
R>0, hi=1,

we have 4h=0, so that we get
4K = — 4h* = —2{(oh/0uf + (0h/ov}} —2hdh <0 .

Thus we have 4K<0 on M,. We next prove that 4JK=<0 at any point of
M,. Take a point p, of M, and consider the isothermal coordinates (, v)
and frames on a neighborhood V of p, such that

dst=2{di?+dv?, o, =yidu, w,=+y1dv.
In this case, the second foundamental form A may be represented by
4 (H +h, h, )’
h, H—h
where h, and h, are functions on V. Then we have
K=¢e¢+H*—(hi+h?) on V.
Hence, with respect to the isothermal coordinates (, v), we get on V
(1.5) 4dK = -2 {(6h1/au)2 +(0h,/ov) +(0h,/ou) + (ahz/a«o)?-}
—2hdh,—2h,4h, .
Since A, and A, attain zero at o, we have
dK<0 . at py.

Thus we have 4K<0 at a point of M,. We have proved Lemma.
Now, if M is compact, the superharmonic function K on M attains
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its minimum at some point on M, so that K must be constant on M. On
the other hand, if M is non compact, M is parabolic by Theorem 15 in
Huber [2], because K=0. Since K is non-negative superharmonic function
on M, K must be constant on M. Thus K is constant on M. Since
K=¢+ H?*—(h}+ h})=constant and H?+ ¢=constant>0, we can consider the
following two cases:

Case (a): M, is not empty.

Case (b): M, is empty.

We first consider the case (a). If M, is not empty, H2+c K attams
zero at points of M,, so that H?+&—K must be 1dentlcally zero on M.
Hence, K= H?+ ¢=constant. >0 holds identically on M.

We next consider the case (b)." If M, is empty, in ‘the same manner
as the proof of [Proposition 1, we can choose a nelghborhood U of a point
pEM satisfying (1.2) and (1.3). Then, since K=&+ H?—A? is constant, A’
is also constant, which implies K 0, because K=(h/2)4 logh. Thus, we
have proved [Proposition 2, ' o
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