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For surfaces in a Euclidean 4-space E^{4}, the author [4] proved the
following

THEOREM. A complete, connected, orimted and pseudO-umbilical sur-
faces immersed in E^{4} with non-vanishing constant mean cumature H and
the Gaussian cunature K which does not change its sign is necessarily either
a Clifford fiat torus in E^{4} or a sphere with radius 1/H in a hyperplane E^{3}.

In this case, by Lemma 2.2 in [4] we see that surfaces are minimal
in a hypersphere S^{3} in E^{4}. In this paper, the author will study surfaces
with constant mean curvature H in a 3-dimensional Riemannian manifold
\overline{M} of constant curvature \overline{c} . Our main result is the following

THEOREM. Let M be a complete, connected and orimted 2-dimmsionaJ
Riemannian manifold isometrically immersed in a 3-dimensional orimted
Riemannian manifold \overline{M} of constant cumature \overline{c} . If H^{2}+\overline{c} is positive con-
stant and the Gaussian curvature K does not change its sign, thm we have

(I) M is umbilic free and K=0 on M,
or

(II) M is tottally umbilic and K=H^{2}+\overline{c} on M.
By this theorem, we can verify the following results:
COROLLARY 1. Let M be a complete, orimted and connected 2-dimen-

sional Riemannian manifold isometrically immersed in a unit 3-sphere S^{3} in
E^{4}. If the mean cumature H is constant and the Gaussian cur.vature. K
does not change its sign, then M is a sphere or a Clifford fiat torus.

COROLLARY 2. (T. Klotz and R. Osserman [3]) Let M be a cmplete,
oriented and connected 2-dimmsional Riemannian manifold isometricdly
immersed in a Euclidean 3-space E^{3}. If H is non-zero constant and K does
not change its sign, thm M is a sphere or a right circular cylinder.

COROLLARY 3. Let M be a complete, orimted and connected 2-dimen-
sional Riemannian manifold isometrically immersed in a hyperbo\grave{l}ic 3-space
H^{3} of constant cumature -1. If H^{2}-1 is positive constant and K does
not change its sign, thm M is a sphere or a right circular cylin&r.

Let \overline{M} be a 3-dimensional Riemannian manifold of constant curvature
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\overline{c.} and M be a 2-dimensional Riemannian manifold isometrically immersed
in \overline{M} with the immersion x:Marrow\overline{M} . Let F(\overline{M}) and F(M) be the bundles
of all orthonormal frames over \overline{M} and M respectively. L.et B be the set
of all elements b=(p, e_{1}, e_{2}, e_{3})\in F(\overline{M}) such that (p, e_{1}, e_{2})\in F(M), identifying
p\in M with x(p) and e_{i} with dx(e_{i}), i=1,2. Then B is cosidered as a smooth
submanifold of F(\overline{M}) . We have, as is well known, a system of differential
1-forms \omega_{1} , \omega_{2} , \omega_{12}=-\omega_{21} , \omega_{13}=-\omega_{31} , \omega_{23}=-\omega_{32} on B associated with the
immersion x such that

(0. 1)

’

d\omega_{i}=\omega_{if}\wedge\omega_{f} , (i,j=1,2, i\neq j)

d\omega_{12}=-\omega_{13}\wedge\omega_{23}-\overline{c}\omega_{1}\Lambda\omega_{2} ,
d\omega_{i3}=\omega_{if}\wedge\omega_{f3} , (i,j=1,2, i\neq j)

and

(0. 2) \omega_{i3}=\sum_{f}A_{if}\omega_{f} , A_{ij}=A_{fi} , (i,j=1,2)

We call H=1/2 \sum_{i}A_{ii} the mean curvature. M is said to be umbilic at

p if A_{11}=A_{22}=H and A_{12}=0 at p. We say M to be totally umbilic if M
is umbilic at each point of M. We may consider M as a Riemann surface,
because M is a 2-dimensional oriented Riemannian manifold. We say M
to be parabolic if there are non-constant negative subharmonic functions
on M. We shall prove the theorem for the case (1) K\leqq 0 and the case (2)
K\geqq 0 .

\S 1. The proof of the theorem. We first prove the following

PROPOSITION 1. Let M be a complete, orimted and connected 2-dimen-
siond Riemannian manifold immersed in a 3-dimmsional orimted Rieman-
nian manifold \overline{M} of constant cumature \overline{c} . If H^{2}+\overline{c} is positive constant
and K is not greater than zero, thm M is umbilic free and K=0 on M.

PROOF. The Gaussian curvature K is given by the equation d\omega_{12}=

-K\omega_{1}\Lambda\omega_{2} . On the other hand, by (0. 1) and (0.2) we have d\omega_{12}=-

(\delta+\ tA)\omega_{1}\Lambda\omega_{2} , where A is the matrix (A_{if}) . Writting \omega_{13}=(H+h_{1})\omega_{1}+h_{2}\omega_{2}

and \omega_{23}=h_{2}\omega_{1}+(H-h_{1})\omega_{2} , we have
(1. 1) K=\overline{c}+H^{2}-(h_{1}^{2}+h_{2}^{2}) ,

which, together with K\leqq 0 and H^{2}+\overline{c}>0 , implies that M is umbilic free.
Hence, we can choose locally frames b\in B such that A is given by

(1. 2) A=\{
H+h

0
H-h0) ,
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where the function h is differentiable and defined globally on M, because
det A=H^{2}-h^{2} is a global differentiable function on M. Since M is umbilic
free, we may suppose h>0 on M. Using the structure equations (0. 1) for
\omega_{i3} , we have

2hd\omega_{1}+dh\wedge\omega_{1}=0 ,
2hd\omega_{2}+dh\wedge\omega_{2}=0’.

which show that we have a neighborhood U of a point p\in M in which there
exist the following isothermal coordinates (u, v) :
(1. 3) ds^{2}=\lambda\{du^{2}+dv^{2}\} , \omega_{1}=\sqrt\overline{\lambda}du, \omega_{2}=\sqrt\overline{\lambda}dv , h\lambda=1 ,

where \lambda=\lambda(u, v) is a positive function on U. Now, we get the following

LEMMA 1. The universal covering surface \overline{M} of M is conformdly
equivalent to the mtire plane, so that M is parabolic.

PROOF OF LEMMA. Since H^{2}+\hat{c} is positive constant, the conformal
metric \sqrt\overline{H^{2}+\delta}ds^{2} is complete on M. However, since \sqrt H^{2}+\overline{c}\leqq h, the
conformal metric hds^{2} is also complete on M. Furthermore, the metric hds^{2}

is flat from (1. 3). Hence the covering surface \overline{M} with the lifted metric from
hds^{2} on M is isometric to the entire plane. Thus \overline{M} is conformally equivalent
to the entire plane, so th^{1at}M is parabolic. Hence M is also parabolic.

As is well known, the Gaussian curvature K is given by
K=-(1/2\lambda)\Delta log \lambda , \Delta=\partial^{2}/\partial u^{2}+\partial^{2}/\partial v^{2} ,

with respect to the isothermal coordinates (u, v). Since K\leqq 0 and h\lambda=1 ,
we have

\Delta log h=-\Delta log \lambda\leqq 0’.
which implies that the function log h is a superharmonic function on M.
Since 0<H^{2}+c\leqqarrow h^{2} , the superharmonic function log h on M is bounded
from below by (1/2) log (H^{2}+\overline{c}), so that log h must be constant, because M
is parabolic by Lemma 1. Therefore, K is identically zero on M. Thus
we have proved Proposition 1.

We next prove the following
PROPOSITION 2. Let M be a complete, orimted and connected 2-dimen-

sional Rimannian manifold immersed in a 3-dimmsional orimted Rieman-
nian manifold \overline{M} of consttant cunature \overline{c} . If H^{2}+\overline{c} is positive constant
and K is not less than zero, thm we have

(i) M , is umbilic free and K=0 on M,
or
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(ii) M is totally umbilic and K=H^{2}+\overline{c} on M.
PROOF. We first prove.

LEMMA 2. K is a superharmonic function on M.
PROOF of LEMMA. Let M_{0} be the set of all points at which M is

umbilic, i.e. , A_{11}=A_{22}=H and A_{12}=0 . Since M_{0} is closed in M, M_{1}=

M-M_{0} is open in M. Then, analogously in the proof of Proposition 1,
we can choose a neighborhood U of a point p\in M_{1} in M_{1} where there exist
isothermal coordinates (u, v) such that

–

(1. 4) \{

ds^{2}=\lambda\langle du^{2}+dv^{2}}, \omega_{1}=\sqrt\lambda du, \omega_{2}=\sqrt\lambda dv ,

A=(\begin{array}{llll}H+ h 0 0, H- h\end{array}) , h>0 , h\lambda=1 ,

where h is a differentiable function on U : Since K is given by

K=-(1/2\lambda)\Delta log \lambda=(h/2)\Delta log h\leqq 0 and h>0 ,

we have \Delta h\geqq 0 , so that we get

\Delta K=-\Delta h^{2}=-2\{(\partial h/\partial u)^{2}+(\partial h/\partial v)^{2}\}-2h\Delta h\leqq 0e

Thus we have \Delta K\leqq 0 on M_{1} . We next prove that \Delta K\leqq 0 at any point of
M_{0} . Take a point p_{0} of M_{0} and consider the isothermal coordinates (u, v)

and frames on a neighborhood V of p_{0} such that
ds^{2}=\lambda\{du^{2}+dv^{2}\} , \omega_{1}=\sqrt\overline{\lambda}du,\cdot

\omega_{2}=\sqrt\overline{\lambda}dv

In this case, the second foundamental form A may be represented by

A=(\begin{array}{ll}H+h_{1} h_{2}h_{2} H-h_{1}\end{array}) ,

where h_{1} and h_{2} are functions on V. Then we have
K=\overline{c}+H^{2}-(h_{2}^{2}+h_{2}^{2}) on V

Hence, with respect to the isothermal coordinates (u, v), we get on V

(1. 5) \Delta K=-2\{(\partial h_{1}/\partial u)^{2}+(\partial h_{1}/\partial v)^{2}+(\partial h_{2}/\partial u)^{2}+(\partial h_{2}/\partial v)^{2}\}

-2h_{1}\Delta h_{1}-2h_{2}\Delta h_{2} .
Since h_{1} and h_{2} attain zero at p_{0} , we have

\Delta K\leqq 0 at p_{0} .
Thus we have \Delta K\leqq 0 at a point of M_{0} . We have proved Lemma.

Now, if M is compact, the superharmonic function K on M attains
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its minimum at some point on M, so that K must be constant on M. On
the other hand, if M is non compact, M is parabolic by Theorem 15 in
Huber [2], because K\geqq 0 . Since K is non-negative superharmonic function
on M, K must be constant on M. Thus K is constant on M. Since
K=\overline{c}+H^{2}-(h_{1}^{2}+h_{2}^{2})=constant and H^{2}+\overline{c}=constant>0 , we can consider the
following two cases :

Case (a): M_{0} is not empty.
Case (b): M_{0} is empty.
We first consider the case (a). If M_{0} is not empty, H^{2}+\overline{c}-K attains

zero at points of M_{0} , so that H^{2}+\overline{c}-K must be identically zero on M.
Hence, K=H^{2}+\overline{c}=constant.>0 holds identically on M.

We next consider the case (b). If M_{0} is empty, in the same manner
as the proof of Proposition 1, we can choose a neighborhood U of a point
p\in M satisfying (1. 2) and (1. 3). Then, since K=\dot{\overline{c}}+H^{2}-h^{2} is constant, h^{2}

is also constant, which implies K=0, because K=(h/2)\Delta\} log h. Thus, we
have proved Proposition 2.
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