Surfaces with vanishing normal curvature

Dedicate to Professor Yoshie Katsurada on her 60th birthday

By Yoshihiko TAZAWA

§1. Introduction.

The normal curvature of a submanifold is defined by the square of the length of the curvature form of the connection in the normal bundle (cf [6]). The minimal index (M-index) at a point of a submanifold is defined by the dimension of the linear space of all second fundamental forms with vanishing trace (cf [8]). In this paper we prove the following proposition:

PROPOSITION. Let M be a compact connected surface with positive Gaussian curvature G isometrically immersed in a (2+p)-dimensional space form N of curvature c. If M is non-minimal and the mean curvature vector H is parallel in the normal bundle and the normal curvature vanishes identically, then M is a totally umbilical surface with M-index 0. Especially if N is euclidean then M is a sphere in a 3-dimensional linear subspace of N.

Without the assumption that H is parallel the same result holds under the assumption that H never vanishes and H/||H|| is parallel, if G is constant and c is non-positive, or if the Lipschitz-Killing curvature corresponding to H/||H|| is constant.

The proof is based on the Laplacian of the length of the second fundamental form (cf [3]). In §2 we recall the connection in the normal bundle and obtain a formula similar to one essentially used in [6] (cf REMARK 2). In §3 we prove that M is of M-index 0. In §4 we make use of a classical method in the theory of Weingarten surfaces and show that M is pseudoumbilical and prove the proposition.

§2. Preliminaries.

Let ι be an isometric immersion of an n-dimensional Riemannian manifold M in an (n+p)-dimensional space form N with curvature c. We shall make use of the following convention of the range of indices:

$$1 \leq A, B, C, \dots \leq n+p; \ 1 \leq i, j, k, \dots \leq n;$$

$$n+1 \leq \alpha, \beta, \gamma, \dots \leq n+p; \ n+2 \leq r, s, t, \dots \leq n+p.$$

STRUCTURE EQUATIONS.

Let O(N) and O(N, M) be respectively the bundle of orthonormal frames of N and the bundle of adapted frames, and let $\tilde{\epsilon}$ be the injection from O(N, M) into O(N). We denote by (ω'^A) and (ω'^A_B) respectively the canonical form and the connection form of O(N). ω'^A and ω'^A_B are 1-forms on O(N). Let σ

$$\sigma: M \longrightarrow O(N, M), \quad \sigma(p) = (e_1, \cdots, e_{n+p})$$

be a local cross section and put

Then ω^A and ω_B^A are local 1-forms on M determined by σ and satisfy the following structure equations:

 (ω^i) is the dual coframe field of (e_i)

$$(1) \qquad \qquad \boldsymbol{\omega}^{\boldsymbol{\alpha}} = 0$$

$$(2) \qquad \qquad \boldsymbol{\omega}_{i}^{\boldsymbol{\alpha}} = \sum h_{ij}^{\boldsymbol{\alpha}} \boldsymbol{\omega}^{j} , \ h_{ij}^{\boldsymbol{\alpha}} = h_{ji}^{\boldsymbol{\alpha}} ,$$

(3)
$$d\omega^{i} = -\sum \omega_{j}^{i} \wedge \omega^{j}, \ \omega_{j}^{i} + \omega_{i}^{j} = 0,$$

$$(4) \qquad \qquad d\omega_{j}^{i} = -\sum \omega_{k}^{i} \wedge \omega_{j}^{k} + \Omega_{j}^{i},$$
$$\Omega_{j}^{i} = \frac{1}{\sum} R_{jkl}^{i} \omega^{k} \wedge \omega^{l},$$

$$R_{jkl}^{i} = \bar{R}_{jkl}^{i} + \sum (h_{ik}^{\alpha} h_{jl}^{\alpha} - h_{il}^{\alpha} h_{jk}^{\alpha}),$$

$$(5) \qquad d\omega_{\beta}^{\alpha} = -\sum \omega_{r}^{\alpha} \wedge \omega_{\beta}^{r} + \Omega_{\beta}^{\alpha}, \ \omega_{\beta}^{\alpha} + \omega_{\alpha}^{\beta} = 0,$$

$$\Omega_{\beta}^{\alpha} = \frac{1}{2} \sum R_{\beta kl}^{\alpha} \omega^{k} \wedge \omega^{l},$$

$$R_{\beta kl}^{\alpha} = \bar{R}_{\beta kl}^{\alpha} + \sum (h_{ik}^{\alpha} h_{ll}^{\beta} - h_{il}^{\alpha} h_{lk}^{\beta}),$$

$$\bar{R}_{\beta kl}^{A} = -\bar{R}_{\beta kl}^{A} = C(\delta \omega \delta n p - \delta \omega \delta n q),$$

Connection in $T^r_s(M) \otimes T^{\perp p}_q(M)$.

 (ω_j^i) defines the connection in the tangent bundle T(M) and the cotangent bundle $T(M)^*$, and $(\omega_{\beta}^{\alpha})$ defines the connection in the normal bundle $T^{\perp}(M)$. We express this using \mathcal{V} as follows: If we put

(7)
$$\omega_j^i = \sum C_{jk}^i \omega^k, \ \omega_\beta^\alpha = \sum C_{\beta k}^\alpha \omega^k,$$

then

 $(8) \qquad \qquad \nabla_{e_i} e_j = \sum C_{ji}^k e_k \,,$

$$(9) \qquad \qquad \qquad \nabla_{e_i} \omega^j = -\sum C^j_{ki} \omega^k$$

(10) $V_{e_i} e_{\alpha} = \sum C^{\beta}_{\alpha i} e_{\beta} .$

We define the conormal bundle $T^{\perp}(M)^*$ by

(11)
$$T^{\perp}(M)^* = \bigcup_{p \in \mathcal{M}} \{T_p^{\perp}(M)^* | \text{ the dual linear space of } T_p^{\perp}(M) \},$$

then $(\omega_{\beta}^{\alpha})$ defines a connection also in $T^{\perp}(M)^*$. If we denote by $(e^{*\alpha})$ the dual coframe field of (e_{α}) , then

(12)
$$V_{e_i} e^{*\alpha} = -\sum C^{\alpha}_{\beta i} e^{*\beta} .$$

Hence (ω_j^i) and (ω_j^{α}) determine a connection in $T_s^r(M) \otimes T_q^{\perp p}(M)$;

$$T^{\,r}_{s}(M) \otimes T^{\perp p}_{q}(M) = T(M) \underset{(r \text{ times})}{\otimes} T(M) \otimes T(M)^{*} \underset{(s \text{ times})}{\otimes} \cdots \underset{(p \text{ times})}{\otimes} T(M)^{*} \otimes T^{\perp}(M) \otimes T^{\perp}(M)^{*} \underset{(q \text{ times})}{\otimes} T^{\perp}(M)^{*} \otimes T^{\perp}(M)^{*} \underset{(q \text{ times})}{\otimes} T^{\perp}(M)^{*} \otimes T^{\perp}(M)^{$$

For a tensor field $K: M \to T_s^r(M) \otimes T^{\perp p}_q(M)$ the covariant differential $\nabla K: M \to T_{s+1}^r(M) \otimes T^{\perp p}_q(M)$ is defined. For example a tensor field K

 $K \colon M \longrightarrow T(M)^* \otimes T(M)^* \otimes T^{\perp}(M)$

can be considered as a bilinear mapping

 $K: T(M) \times T(M) \longrightarrow T^{\perp}(M)$,

and VK

$$\nabla K \colon M \longrightarrow T(M)^* \otimes T(M)^* \otimes T(M)^* \otimes T^{\perp}(M)$$

regarded as a multilinear mapping

$$\nabla K \colon T(M) \times T(M) \times T(M) \longrightarrow T^{\perp}(M)$$

is given by

(13)
$$\nabla K(X, Y; Z) = (\nabla_Z K)(X, Y), \quad X, Y, Z \in T(M).$$

If we express K and ∇K using σ as

$$K = \sum K_{ij}^{\alpha} \omega^{i} \otimes \omega^{j} \otimes e_{\alpha} ,$$

$$V K = \sum K_{ijk}^{\alpha} \omega^{i} \otimes \omega^{j} \otimes \omega^{k} \otimes e_{\alpha} ,$$

then (K_{ijk}^{α}) satisfies the relation

(14)
$$\sum K_{ijk}^{\alpha} \omega^{k} = dK_{ij}^{\alpha} - \sum K_{kj}^{\alpha} \omega_{i}^{k} - \sum K_{ik}^{\alpha} \omega_{j}^{k} + \sum K_{ij}^{\beta} \omega_{\beta}^{\alpha} \quad (\text{cf } [3]).$$

We can consider that $VK = \sum (V_{e_k}K) \otimes \omega^k$, hence

(15)
$$\nabla_{e_k} K = \sum K^{\alpha}_{ijk} \omega^i \otimes \omega^j \otimes e_{\alpha} .$$

For $V^2K = V(VK)$ the similar formular to the Proposition 2.12, p 125, [1], holds;

(16)
$$\boldsymbol{\nabla}^{2} K(\cdots; X; Y) = \boldsymbol{\nabla}_{\boldsymbol{Y}} (\boldsymbol{\nabla}_{\boldsymbol{X}} K) - \boldsymbol{\nabla}_{\boldsymbol{P}_{\boldsymbol{Y}} \boldsymbol{X}} K.$$

We define now the canonical bundle isomorphism *

$$T^{r}: T^{r}_{s}(M) \otimes T^{\perp p}_{q}(M) \longrightarrow T^{s}_{r}(M) \otimes T^{\perp p}_{p}(M),$$

for example, by

(

17)

$$*(\sum K_{ij}^{\alpha} \omega^{i} \otimes \omega^{j} \otimes e_{\alpha})$$

$$= (\sum K_{ij}^{\alpha} \omega^{i} \otimes \omega^{j} \otimes e_{\alpha})^{*}$$

$$= (\sum K_{ij}^{\alpha} e_{i} \otimes e_{j} \otimes e^{*\alpha}).$$

By (8), (9), (10), and (12) we obtain

(18)
$$(\nabla_x K)^* = \nabla_x K^* \qquad X \in T(M).$$

Restricted Laplacian Δ' .

The "restricted" Laplacian (cf [4]) of a tensor field K is defined by

(19)
$$\Delta' K = \sum (\nabla^2 K) \ (\cdots; e_i; e_i).$$

This is independent of the choice of σ . If K is given by

$$K = \sum K_{ij}^{\alpha} \omega^i \otimes \omega^j \otimes e_{\alpha}$$
 ,

and $\Delta' K$ and $\nabla^2 K$ is expressed by

$$egin{aligned} & \varDelta' K = \sum (\varDelta' K)^{lpha}_{ij} oldsymbol{\omega}^i \otimes oldsymbol{\omega}^j \otimes oldsymbol{e}_{lpha} \ &
abla^2 K = \sum K^{lpha}_{ijkl} oldsymbol{\omega}^i \otimes oldsymbol{\omega}^j \otimes oldsymbol{\omega}^k \otimes oldsymbol{\omega}^l \otimes oldsymbol{e}_{lpha} \,, \end{aligned}$$

then the relation between $((\varDelta' K)_{ij}^{\alpha})$ and (K_{ijkl}^{α}) is expressed as $(\varDelta' K)_{ij}^{\alpha} = \sum_{k} K_{ijkk}^{\alpha}$ (cf [3])). (20)

When K is a function $f, \Delta' f$ coincides with the ordinary Laplacian Δf . FIBRE METRIC.

We denote by g the fibre metric in $T^r_s(M) \otimes T^{\perp p}_q(M)$ induced by the Riemannian metric of N. Let C be the contraction

Y. Tazawa

$$C: \left(T^{r}_{s}(M)\otimes T^{\perp p}_{q}(M)\right)\otimes \left(T^{s}_{r}(M)\otimes T^{\perp q}_{p}(M)\right)\longrightarrow T^{0}_{0}(M),$$

such that, for example,

$$C\Big((e_i\otimes\omega^j\otimes e_{\alpha}\otimes e^{*\beta})\otimes(\omega^k\otimes e_l\otimes e^{*\lambda}\otimes e_{\iota})\Big)=\delta_{ik}\delta_{jl}\delta_{\alpha\lambda}\delta_{\beta\iota},$$

then

(21)
$$g(K, K') = C(K \otimes K'^*)$$

Since V_x is a type preserving derivation and commutes with every contraction, by (18) and (21)

(22)
$$\nabla_{\mathcal{X}} g(K, K') = g(\nabla_{\mathcal{X}} K, K') + g(K, \nabla_{\mathcal{X}} K').$$

SECOND FUNDAMENTAL FORM.

The second fundamental form $h: T(M) \times T(M) \rightarrow T^{\perp}(M)$, i.e., $h: M \rightarrow T(M)^* \otimes T(M)^* \otimes T^{\perp}(M)$ of the immersion ι is locally expressed, using (h_{ij}^{α}) of (2), by

(23)
$$h = \sum h_{ij}^{\alpha} \omega^{i} \otimes \omega^{j} \otimes e_{\alpha} \,.$$

The mean curvature vector H is given by

(24)
$$H = \frac{1}{n} \sum h_{ii}^{\alpha} e_{\alpha} \, .$$

If we put

$$egin{aligned}
abla h &= \sum h^{lpha}_{ijk} oldsymbol{\omega}^i \otimes oldsymbol{\omega}^j \otimes oldsymbol{\omega}^k \otimes oldsymbol{e}_{lpha} \
abla^2 h &= \sum h^{lpha}_{ijkl} oldsymbol{\omega}^i \otimes oldsymbol{\omega}^j \otimes oldsymbol{\omega}^k \otimes oldsymbol{\omega}^l \otimes oldsymbol{e}_{lpha} \,, \end{aligned}$$

then by (5) and (6) (cf [3])

$$h^{\alpha}_{ijk} - h^{\alpha}_{ikj} = \bar{R}^{\alpha}_{ijk} = 0,$$

(26)
$$h_{ijkl}^{\alpha} - h_{ijlk}^{\alpha} = \sum h_{im}^{\alpha} R_{jkl}^{m} + \sum h_{mj}^{\alpha} R_{ikl}^{m} - \sum h_{ij}^{\beta} R_{\beta kl}^{\alpha},$$

(27)
$$(\varDelta'h)_{ij}^{\alpha} = \sum_{k} h_{ijkk}^{\alpha} = \sum h_{kkij}^{\alpha} + nch_{ij}^{\alpha} - c(\sum h_{kk}^{\alpha})\delta_{ij} + \sum h_{mi}^{\alpha}h_{mj}^{\beta}h_{kk}^{\beta} + 2\sum h_{km}^{\alpha}h_{mj}^{\beta}h_{ki}^{\beta} - \sum (h_{km}^{\alpha}h_{km}^{\beta}h_{ij}^{\beta} + h_{mi}^{\alpha}h_{mk}^{\beta}h_{kj}^{\beta} + h_{mj}^{\alpha}h_{ki}^{\beta}h_{mk}^{\beta}),$$

(28)
$$\frac{1}{2} \varDelta \left(\sum_{\alpha \imath j} (h_{\imath j}^{\alpha})^2 \right) = \sum_{\alpha \imath j k} (h_{\imath j k}^{\alpha})^2 + \sum_{\alpha \imath j j} h_{\imath j}^{\alpha} (\varDelta' h)_{\imath j}^{\alpha} .$$

(28) is the formula (3.12) of [3], but we give here a proof to compare it with the next lemma. By (15), (16), (19) and (22)

Surfaces with vanishing normal curvatur

$$\begin{split} \mathcal{A}\Big(\sum_{a \neq j} (h_{ij}^{\alpha})^2\Big) &= \mathcal{A}'g(h, h) = \sum_k \mathcal{V}_{e_k} \Big(\mathcal{V}_{e_k}g(h, h)\Big) - \sum_k \mathcal{V}_{\mathcal{V}_{e_k}e_k}g(h, h) \\ &= 2\sum_k g(\mathcal{V}_{e_k}\mathcal{V}_{e_k}h - \mathcal{V}_{\mathcal{V}_{e_k}e_k}h, h) + 2\sum_k g(\mathcal{V}_{e_k}h, \mathcal{V}_{e_k}h) \\ &= 2g(\mathcal{A}'h, h) + 2\sum_k g(\mathcal{V}_{e_k}h, \mathcal{V}_{e_k}h) \\ &= 2\sum_{a \neq j} h_{ij}^{\alpha}(\mathcal{A}'h)_{ij}^{\alpha} + 2\sum_{a \neq jk} (h_{ijk}^{\alpha})^2 \,. \end{split}$$

LEMMA 1. If there exists a number α such e_{α} is parallel, then for this α

(29)
$$\frac{1}{2} \left(\sum_{ij} (h_{ij}^{\alpha}) \right)^2 = \sum_{ijk} (h_{ijk}^{\alpha})^2 + \sum_{ij} h_{ij}^{\alpha} (\mathcal{\Delta}' h)_{ij}^{\alpha} .$$

PROOF. Let C be a contraction

 $C: \ T(M)^* \otimes T(M)^* \otimes T^{\perp}(M) \otimes T^{\perp}(M)^* \longrightarrow T(M)^* \otimes T(M)^* \, .$

We set

$$h^{\alpha} = C(h \otimes e^{*\alpha}),$$

then

$$h^{lpha} = \sum_{ij} h^{lpha}_{ij} \omega^i \otimes \omega^j$$
 .

Therefore

$$\begin{split} \begin{split} \varDelta \Big((\sum_{ij} (h_{ij}^{\alpha})^2 \Big) &= \varDelta' g (h^{\alpha}, h^{\alpha}) = 2g \Big(\sum_k (\nabla_{e_k} \nabla_{e_k} h^{\alpha} - \nabla_{\nabla_{e_k} e^k} h^{\alpha}), h^{\alpha} \Big) \\ &+ 2\sum_k g (\nabla_{e_k} h^{\alpha}, \nabla_{e_k} h^{\alpha}) \,. \end{split}$$

Since e_{α} is parallel, $\nabla_{x}e^{*\alpha} = 0$ for any $X \in T(M)$. Hence

$$\nabla_{e_k} h^{\alpha} = C((\nabla_{e_k} h) \otimes e^{*\alpha}) = \sum_{ij} h^{\alpha}_{ijk} \omega^i \otimes \omega^j$$
,

and consequently

$$g(\overline{V}_{e_k}h^{\scriptscriptstyle \alpha},\overline{V}_{e_k}h^{\scriptscriptstyle \alpha})=\sum\limits_{ij}(h^{\scriptscriptstyle \alpha}_{ijk})^{\! 2}$$
 .

Similarly

$$\begin{split} \sum_{k} \nabla_{e_{k}} \nabla_{e_{k}} h^{\alpha} &- \sum_{k} \nabla_{\mathbb{F}_{e_{k}}e_{k}} h^{\alpha} = C \Big(\sum_{k} (\nabla_{e_{k}} \nabla_{e_{k}} h - \nabla_{\mathbb{F}_{e_{k}}e_{k}} h) \otimes e^{*\alpha} \Big) \\ &= C (\mathcal{\Delta}' h \otimes e^{*\alpha}) \\ &= \sum_{ij} (\mathcal{\Delta}' h)_{ij}^{\alpha} \omega^{i} \otimes \omega^{j} , \\ g \Big(\sum_{k} (\nabla_{e_{k}} \nabla_{e_{k}} h^{\alpha} - \nabla_{\mathbb{F}_{e_{k}}e_{k}} h^{\alpha}), h^{\alpha} \Big) = \sum_{ij} h_{ij}^{\alpha} (\mathcal{\Delta}' h)_{ij}^{\alpha} . \end{split}$$

Y. Tazawa

Therefore we obtain

$$\frac{1}{2} \varDelta \sum_{ij} (h_{ij}^{\alpha})^2 = \sum_{ijk} (h_{ijk}^{\alpha})^2 + \sum_{ij} h_{ij}^{\alpha} (\varDelta' h)_{ij}^{\alpha}. \qquad \text{q. e. d.}$$

REMARK 1. If the mean curvature vector H never vanishes, we may choose e_{n+1} in the direction of H, i.e., $e_{n+1}=H/||H||$. If H/||H|| is parallel, then we get by LEMMA above

(30)
$$\frac{1}{2} \mathcal{I}\left(\sum_{ij} (h_{ij}^{n+1})^2\right) = \sum_{ijk} (h_{ijk}^{n+1})^2 + \sum_{ij} h_{ij}^{n+1} (\mathcal{I}'h)_{ij}^{n+1}$$

For (28) and (30)

(31)
$$\frac{1}{2} \varDelta \sum_{rij} (h_{ij}^r)^2 = \sum_{rijk} (h_{ijk}^r)^2 + \sum_{rij} (h_{ij}^r) (\varDelta' h)_{ij}^r \qquad (r = n + 2, \dots, n + p).$$

REMARK 2. The formula (31) plays the essential role in [5] or [6], but it is not assumed there, that H/||H|| is parallel. It seems to the author that (31) does not hold without this assumption or other.

NORMAL CURVATURE (cf. [6]).

The normal curvature of the immersion ι is defined by

(32)
$$K_N = \sum_{\alpha\beta kl} (R^{\alpha}_{\beta kl})^2$$

ince N is a space form,

$$K_N = \sum_{\alpha\beta kl} \left(\sum_i (h_{ik}^{\alpha} h_{il}^{\beta} - h_{il}^{\alpha} h_{ik}^{\beta}) \right)^2.$$

Hence the normal curvature vanishes if and only if the $p \ n \times n$ -matrices (h_{ij}^{α}) can be transformed simultaneously in diagonalized forms.

§ 3. Surfaces with $K_N = 0$.

In the following throughout this paper we assume;

M is a compact connected surface,

$$K_N \equiv 0$$
,

the Gaussian curvature G of M is positive,

H never vanishes,

H/||H|| is parallel,

and we choose σ so that

$$e_3 = H / \|H\|$$
 .

Lemma 2.

(34)
$$\sum_{k} h_{kkij}^{r} = 0 \qquad \text{for} \quad r \ge 4.$$

PROOF. We note

(35)
$$\sum_{k} h_{kk}^{r} = 0 \quad \text{for} \quad r \ge 4.$$

 e_3 is parallel, hence by (7) and (10) we obtain

$$\omega_3^{\alpha} = 0.$$

By (14)

(37)
$$\sum_{k} h_{ijk}^{\alpha} \omega^{k} = dh_{ij}^{\alpha} - \sum_{l} h_{lj}^{\alpha} \omega_{l}^{l} - \sum_{l} h_{il}^{\alpha} \omega_{j}^{l} + \sum_{\beta} h_{ij}^{\beta} \omega_{\beta}^{\alpha} ,$$

hence, using (35) and (36), we have

(38)
$$\sum_{k} \left(\sum_{i} h_{kki}^{r} \omega^{i} \right) = 0,$$
$$\sum_{k} h_{kki}^{r} = 0.$$

Similarly

(39)
$$\sum_{i} h_{ijkl}^{\alpha} \omega^{i} = dh_{ijk}^{\alpha} - \sum_{i} h_{ljk}^{\alpha} \omega_{i}^{i} - \sum_{i} h_{ilk}^{\alpha} \omega_{j}^{i} - \sum_{i} h_{ijl}^{\alpha} \omega_{k}^{i} + \sum_{\beta} h_{ijk}^{\beta} \omega_{\beta}^{\alpha} ,$$

therefore

$$\sum_{k} \left(\sum_{j} h_{kkij}^{r} \omega^{j} \right) = \sum_{k} dh_{kki}^{r} - \sum_{kl} h_{lkl}^{r} \omega_{k}^{l} - \sum_{kl} h_{kll}^{r} \omega_{k}^{l} - \sum_{kl} h_{kkl}^{r} \omega_{l}^{l} + \sum_{\alpha} h_{kkl}^{\alpha} \omega_{\alpha}^{r}.$$

Since $h_{iki}^r = h_{kii}^r$, the formula above is, using (36) and (38), reduced to

$$\sum_{k} \left(\sum_{j} h^{r}_{kkij} \omega^{j} \right) = 0$$
 ,

that is,

$$\sum_{k} h_{kkij}^{r} = 0. \qquad \text{q. e. d.}$$

REMARK 3. In the case of minimal submanifolds

$$\sum_{k} h_{kkij}^{\alpha} = 0 \qquad \text{for} \quad \alpha \ge n+1 \,,$$

as is seen in [3]. But in the case of nonminimal submanifolds, choosing e_{n+1} in the direction of H, we cannot obtain

$$\sum_{k} h_{kkij}^{r} = 0 \qquad \text{for} \quad r \ge n+2$$

without some additional condition.

For each
$$\alpha$$
, we denote the symmetric 2×2-matrix (h_{ij}^{α}) by
(40) $H_{\alpha} = (h_{ij}^{\alpha})$.

and set

(41)
$$S_{\alpha} = \text{trace } H_{\alpha} \cdot {}^{t}H_{\alpha} = \sum_{ij} (h_{ij}^{\alpha})^{2},$$

$$(42) S = \sum_{\alpha} S_{\alpha}$$

(43)
$$\widetilde{S} = \sum_{r} S_{r} = \sum_{rij} (h_{ij}^{r})^{2}.$$

If we use the expression in the proof of LEMMA 1,

$$S = g(h, h),$$

$$\tilde{S} = g(h, h) - g(h^3, h^3)$$

Since e_3 is global, \tilde{S} is a well defined function over M.

We now consider a decomposition of $T_{p^{\perp}}(M)$ (cf. [8]). We set

$$N_{p} = \left\{ e \in T_{p^{\perp}}(M) | g(e, e_{3}) = 0 \right\},$$

and define a linear mapping φ_{σ} from N_p into the set of 2×2 -matrices by

$$\varphi_{\sigma}(\sum_{r}\nu_{r}e_{r})=(\sum_{r}\nu_{r}h_{ij}^{r}).$$

Then the kernel of φ_{σ} , which we denote by O_p , is independent of the choice of σ , and dim $O_p \ge p-2$. In fact, if we put

$$ar{e} = \sum\limits_r h^r_{11} e_r, \ ar{e} = \sum\limits_r h^r_{12} e_r, \ ar{e}, \ ar{e} \in N_p,$$

 $e \in N_p$ belongs to O_p when and only when

 $g(e, \bar{e}) = g(e, \bar{e}) = 0$.

Since $K_N=0$, it follows that \bar{e} and $\bar{\bar{e}}$ are linearly dependent in N_p . Therefore dim $O_p \ge \dim N_p - 1 = p - 2$.

We call dim N_p -dim O_p the minimal index (*M*-index) of *M* at *p* (cf. [8]). LEMMA 3. *M*-index of *M* is everywhere zero.

PROOF. We define two subsets of M by

$$M_0 = \{ p \in M | \text{M-index} = 0 \text{ at } p \},$$
$$M_1 = \{ p \in M | \text{M-index} = 1 \text{ at } p \}.$$

Then $\tilde{S}=0$ on M_0 , $\tilde{S}>0$ on M_1 , M_1 is open and $M=M_0\cup M_1$.

If $M_1 \neq \phi$, then N_p , $p \in M_1$, is decomposed as

$$N_{p}\,{=}\,N_{p}^{\prime}\,{\otimes}\,O_{p}$$
 ,

where N'_p is the 1-dimensional orthogonal complement of O_p in N_p . This decomposition is well-defined and smooth on M_1 . Therefore we can choose

 σ locally on M_1 , so that $e_4 \in N'_p$. Since $K_N = 0$ and H_{α} are simultaneously diagonalized, we may put

(44)
$$H_{3} = \begin{pmatrix} k_{1} & 0 \\ 0 & k_{2} \end{pmatrix}, \ H_{4} = \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix}, \ a \neq 0,$$
$$H_{r} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \text{ for } r \geq 5.$$

Hence we obtain

 $\tilde{S} = 2a^2.$

The Gaussian curvature G is given by

$$d\omega_2^1 = G(\omega^1 \wedge \omega^2) \, .$$

Accordingly by (4), (6) and (44)

$$G=c+k_1k_2-a^2,$$

that is, if we denote the Lipschitz-Killing curvature of the immersion ι by G(p, e),

(46)
$$G = c + G(p, e_3) - \frac{\tilde{S}}{2}$$

Since G>0 and $\tilde{S} \ge 0$, we obtain, using Lemma 2, (27) and (44),

(47)
$$\sum_{rij} h_{ij}^r (\varDelta' h)_{ij}^r = \sum_{ij} h_{ij}^4 (\varDelta' h)_{ij}^4 = \sum_i h_{ii}^4 (\varDelta' h)_{ii}^4 = 2\tilde{S}G \ge 0.$$

Therefore by (31)

(48)
$$\frac{1}{2} \Delta \tilde{S} = \frac{1}{2} \Delta \left(\sum_{rij} (h_{ij}^r)^2 \right)$$
$$= \sum_{rijk} (h_{ijk}^r)^2 + \sum_{rij} h_{ij}^r (\Delta' h)_{ij}^r \ge 0,$$

i.e., $\Delta \tilde{S} \geq 0$ on M_1 .

At a boundary point of M_0 , if any, $\Delta \tilde{S} \ge 0$ by continuity. At an inner point of M_0 , if any, $\Delta \tilde{S} = 0$ clearly. Hence $\Delta \tilde{S} \ge 0$ on M_0 . Therefore $\Delta \tilde{S} \ge 0$ over M and accordingly $\Delta \tilde{S} = 0$, because M is compact. Hence by (47) and (48) $\tilde{S} = 0$ on M_1 , which contradicts the construction of M_1 . Therefore $M_1 = \phi$. q.e.d.

By LEMMA 3 4nd (31)

(49)
$$h_{ijk}^r = 0$$
 for all r, i, j, k ,
(50) $\tilde{S} \equiv 0$.

§4. Proof of Proposition.

In this section we assume further that one of the following three conditions holds:

(51)
$$G = const, c \leq 0,$$

(52) G(p, H/||H||) = const,

$$\|H\| = const.$$

If we denote by k_1 and k_2 the principal curvatures corresponding to H/||H||, (51) or (52) means by (46) and (50)

$$(54) k_1k_2 = const > 0 ,$$

and (53) means

(55)

$$k_1+k_2=const$$
.

LEMMA 4. M is pseudo-umbilical, i.e., $k_1 = k_2$ every-where on M.

PROOF. We shall use a well known method, for example, in [7].

We choose k_1 and k_2 so that $k_1 \ge k_2$, then k_1 and k_2 are continuous functions on M and differentiable on the subset of M, where $k_1 > k_2$. Since M is compact, there exists a point p_0 , by (54) or (55), where k_1 has a maximum and k_2 has a minimum.

If we assume $k_1(p_0) > k_2(p_0)$, then k_1 and k_2 are differentiable in a neighbourhood of p_0 and we can choose a local cross section σ around p_0 so that $e_3 = H/||H||$ and e_1 and e_2 are the principal directions corresponding respectively to k_1 and k_2 . We have

(56)
$$e_i k_1 = e_i k_2 = 0$$
 at p_0 ,

(57)
$$e_i(e_ik_1) \leq 0$$
, $e_i(e_ik_2) \geq 0$ at p_0

We have also

$$\omega_2^1 = 0 \qquad \text{at} \quad p_0.$$

Indeed, setting $\alpha = 3$, i = j = 1 in (37) and using (36), we obtain

$$\sum h_{11\iota}^{3} \omega^{\iota} = dh_{11}^{3} = (e_{\iota}k_{1})\omega^{\iota},$$

$$h_{11\iota}^{3} = e_{\iota}k_{1}.$$

Similarly by setting $\alpha = 3$, i = j = 2

$$h_{221}^3 = e_1 k_2$$
.

By setting $\alpha = 3$, i = 1, j = 2

Surfaces with vanishing normal curvatur

 $\sum_{i} h_{12i}^{3} \omega^{i} = -(k_{1}-k_{2}) \omega_{2}^{1}$.

Since $h_{ijk}^{\alpha} = h_{jik}^{\alpha}$, by (25) we see that

- (59) $h_{121}^3 = h_{211}^3 = h_{112}^3 = e_2 k_1$,
- (60) $h_{122}^3 = h_{212}^3 = h_{221}^3 = e_1 k_2$.

Therefore we obtain

$$(e_2k_1)\omega^1 + (e_1k_2)\omega^2 = -(k_1-k_2)\omega_2^1.$$

At p_0 the left hand side equals zero and $k_1 > k_2$, hence $\omega_2^1 = 0$. By (39) we obtain

(61)
$$h_{2112}^3 = e_2(e_2k_1)$$
 at p_0 .

Indeed

$$\sum h_{2112}^3 \omega^i = dh_{211}^3 - h_{111}^3 \omega_2^1 - h_{221}^3 \omega_2^1 - h_{212}^3 \omega_1^2 + \sum_{\alpha} h_{211}^{\alpha} \omega_{\alpha}^3$$

and using (36), (58) and (59), we reduce the formula above to

$$\sum h_{211i}^3 \omega^i = dh_{211}^3 = d(e_2k_1) = \sum e_i(e_1k_1)\omega^i, \quad h_{2112}^3 = e_2(e_2k_1).$$

Similarly by (60)

(62)

$$h_{2121}^3 = e_1(e_1k_2)$$
 at p_0 .

Since $K_N=0$, $R^{\alpha}_{\beta i j}=0$. Hence setting $\alpha=3$, i=l=2, j=k=1 in (26), we obtain

$$h_{2112}^3 - h_{2121}^3 = (k_1 - k_2) R_{212}^1$$
.

From (4) and the formula $d\omega_2^1 = G\omega^1 \wedge \omega^2$, R_{212}^1 is nothing but G. Hence

$$h_{2112}^3 - h_{2121}^3 = (k_1 - k_2)G$$
.

By (61) and (62) we have

(63)
$$e_2(e_2k_1) - e_1(e_1k_2) = (k_1 - k_2)G$$
 at p_0 .

Since G>0, (63) contradicts, by (57), the assumption that $k_1 > k_2$ at p_0 . Therefore $k_1 = k_2$ at p_0 , which implies that $k_1 = k_2$ everywhere on M. q.e.d.

By LEMMA 3 and LEMMA 4 we see that M is a pseudo-umbilical surface with M-index=0 (and hence totally umbilical) in N. Especially if N is the euclidean space E^{2+p} , then we may apply here Theorem 1 in [9] and see that M is a sphere in a linear subspace E^3 of E^{2+p} .

> Department of Mathematics, Hokkaido University

Y. Tazawa

References

- [1] S. KOBAYASHI and K. NOMIZU: Foundations of differential geometry, Vol. I, Interscience, New York, 1963.
- [2] S, KOBAYASHI and K. NOMIZU: Foundations of differential geometry, Vol, II, Interscience, New York, 1969.
- [3] S. S. CHERN, M. DO CARMO and S. KOBAYASHI: Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, (1970), 59-75.
- [4] K. NOMIZU and B. SMYTH: A formula of Simons' type and hypersurfaces with constant mean curvature, J. Differntial geometry, 3 (1969), 367-377.
- [5] B.-Y. CHEN: Pseudo-umbilical Submanifolds of a Riemannian manifold of constant curvature, II, to appear.
- [6] B.-Y. CHEN: Pseudo-umbilical Submanifolds of a Riemannian manifold of constant curvature, III, to appear.
- [7] S. S. CHERN: Some new characterization of Euclidean sphere, Duke Math. J. 12 (1945), 279-290.
- [8] T. ŌTSUKI: A theory of Riemannian submanifolds, Ködai Math, Sem. Rep. 20 (1968), 282-295.
- [9] T. ŌTSUKI: Pseudo-umbilical submanifolds with M-index≤1 in Euclidean spaces, Kōdai Math, Sem. Rep. 20 (1968), 296-304.

(Received July 28, 1972)