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\S 1. Introduction.

The normal curvature of a submanifold is defined by the square of the
length of the curvature form of the connection in the normal bundle (cf
[6] ). The minimal index (M-index) at a point of a submanifold is defined
by the dimension of the linear space of all second fundamental forms with
vanishing trace (cf [8]). In this paper we prove the following proposition:

PROPOSITION. Let M be a compact connected surface with positive
Gaussian curvature G isometrically immersed in a(2+p)-dimmsional space
form N of cumature c. If M is non-minimal and the mean cumature
vector H is parallel in the normal bundle and the normal cunature vanishes
idmtically, then M is a totally umbilical surface with M-in&x 0. Espe-
cially if N is euclidean thm M is a sphere in a 3-dimensional linear sub-
space of N.

Without the assumption that H is parallel the same result holds under
the assumption that H never vanishes and H/||H||| is pardlel, if G is con-
stant and c is non-positive, or if the Lipschitz-Killing cumature corre-
sponding to H/||H|| is constant.

The proof is based on the Laplacian of the length of the second funda-
mental form (cf [3]). In \S 2 we recall the connection in the normal bundle
and obtain a formula similar to one essenlially used in [6] (cf REMARK 2).
In \S 3 we prove that M is of M-index 0. In \S 4 we make use of a classical
method in the theory of Weingarten surfaces and show that M is pseud0-
umbilical and prove the proposition.

\S 2. Preliminaries.

Let \iota be an isometric immersion of an n-dimensional Riemannian mani-
fold M in an (n+p)-dimensional space form N with curvature c. We shall
make use of the following convention of the range of indices:

1\leqq A , B, C, \cdots\leqq n+p;1\leqq i,j, k, \cdots\leqq n ;

n+1\leqq\alpha, \beta, \gamma, \cdots\leqq n+p;n+2\leqq r, s, t, \cdots\leqq n+p .
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STRUCTURE EQUATIONS.

Let O(N) and O(N, M) be respectively the bundle of orthonormal frames
of N and the bundle of adapted frames, and let \tilde{\iota} be the injection from
O(N, M) into O(N). We denote by (\omega^{\prime A}) and (\omega_{B}^{\prime A}) respectively the canonical
form and the connection form of O(N). \omega^{\prime A} and \omega_{B}^{\prime A} are 1-forms on O(N).
Let \sigma

\sigma:Marrow O(N, M) , \sigma(p)=(e_{1}, \cdots, e_{n+p})

be a local cross section and put

\omega^{A}=(\overline{\iota}\circ\sigma)^{*}\omega^{\prime A}, \omega_{B}^{A}=(\tilde{\iota}\circ\sigma)^{*}\omega_{B}^{\prime A} .

O(N, M)arrow O(N)\tilde{\iota}

\sigma|

\iota

\downarrow\pi

M-N
Then \omega^{A} and \omega_{B}^{A} are local 1-forms on M determined by \sigma and satisfy the
following structure equations:

(\omega^{i}) is the dual coframe field of (e_{i})

(1) \omega^{a}=0

(2) \omega_{i}^{\alpha}=\sum h_{iJ\prime}^{\alpha f}\omega- h_{if}^{a}=h_{fi:}^{\alpha}

(3) d \omega^{i}=-\sum\omega_{j}^{i}\Lambda\omega^{f}’-\omega_{f}^{i}+\omega_{i}^{f}=0 ,

(4) d \omega_{f}^{i}=-\sum\omega_{k}^{i}\Lambda\omega_{f}^{k}+\Omega_{f}^{i} ,

\Omega_{f}^{i}=\frac{1}{2}\sum R_{fkl}^{i}\omega^{k}\Lambda\omega^{l}’.

R_{jkl}^{i}= \overline{R}_{fkl}^{i}+\sum(h_{ik}^{\alpha}h_{fl}^{a}-h_{il}^{\alpha}h_{fk}^{\alpha}) ,

(5) d_{\omega_{\beta}=}^{\alpha}- \sum\omega_{\gamma^{1}}^{a}\Lambda\omega_{\beta}^{\gamma}+\Omega_{\beta}^{a} , \omega_{\beta}^{\alpha}+\omega_{a}^{\beta}=0 ,

\Omega_{\beta}^{a}=\frac{1}{2}\sum R_{\beta kl}^{\alpha k}\omega\Lambda\omega^{l}’.
R_{\beta kl}^{a}= \overline{R}_{\beta kl}^{\alpha}+\sum(h_{ik}^{\alpha}h_{il}^{\beta}.-h_{il}^{a}h_{ik}^{\beta}) ,

(6) \overline{R}_{BCD}^{A}=-\overline{R}_{BDC}^{A}=c(\delta_{AC}\cdot\delta_{BD}-\delta_{AD}\delta_{BC}) .
,-\sim

CONNECTION 1N T_{s}^{r}(M)\otimes T_{q}^{lp}(M) .
(\omega_{f}^{i}) defines the connection in the tangent bundle T(M) and the c0-

tangent bundle T(M)^{*} , and (\omega_{\beta}^{a}) defines the connection in the normal bundle
T^{\perp}(M) . We express this using \nabla as follows:
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If we put

(7) \omega_{f}^{i}=\sum C_{fk}^{i}\omega^{k}’\neg\omega_{\beta}^{\alpha}=\sum C_{\beta k}^{\alpha}\omega^{k}-

,

then
(8) \nabla_{e_{i}}e_{f}=\sum C_{fi}^{k}e_{k} ,

(9) \nabla_{e_{i}}\omega^{f}=-\sum C_{ki}^{j}\omega^{k} ,

(10) \nabla_{e_{i}}e_{a}=\sum C_{\alpha i}^{\beta}e_{\beta} .
We define the conormal bundle T^{\perp}(M)^{*} by

(11) T^{\perp}(M)^{*}= \bigcup_{p\epsilon M}{ T_{p}^{\perp}(M)^{*}|the dual linear space of T_{p}^{\perp}(M)},

then (\omega_{\beta}^{\alpha}) defines a connection also in T^{\perp}(M)^{*} . If we denote by (e^{*a}) the
dual coframe field of (e_{\alpha}) , then

(12) \nabla_{e_{i}}e^{*a}=-\sum C_{\beta i}^{a}e^{*\beta}\iota

Hence (\omega_{f}^{i}) and (\omega_{\beta}^{a}) determine a connection in T_{s}^{r}(M)\otimes T_{q}^{\perp p}(M) ;

T_{s}^{r}(M) \otimes T_{q}^{\perp p}(M)=T(M)\bigotimes_{(rl1m}\cdots\bigotimes_{es)}T(M)\otimes T(M)^{*}\bigotimes_{(st1m}\cdots\bigotimes_{es)}

T(M)^{*} \otimes T^{\perp}(M)\bigotimes_{(pt1m}\cdots\bigotimes_{es)}T^{\perp}(M)\otimes T^{\perp}(M)^{*}\bigotimes_{(qt1m}\cdots\bigotimes_{es)}T^{\perp}(M)^{*}

For a tensor field K:Marrow T_{s}^{r}(M)\otimes T_{q}^{\perp p}(M) the covariant differential \nabla K:M

arrow T_{s+I}^{r}(M)\otimes T_{q}^{1p}(M) is defined. For example a tensor field K

K:Marrow T(M)^{*}\otimes T(M)^{*}\otimes T^{\perp}(M)

can be considered as a bilinear mapping

K:T(M)\cross T(M)arrow T^{\perp}(M) ,

and \nabla K

\nabla K:Marrow T(M)^{*}\otimes T(M)^{*}\otimes T(M)^{*}\otimes T^{\perp}(M)

regarded as a multilinear mapping

\nabla K:T(M)\cross T(M)\cross T(M)- T^{\perp}(M)

is given by

(13) \nabla K(X, Y;Z)=(\nabla_{Z}K)(X, Y) , X, Y, Z\in T(M) .

If we express K and \nabla K using \sigma as

K= \sum K_{if}^{\alpha}\omega^{i}\otimes\omega^{f}\otimes e_{\alpha} ,
\nabla K=\sum K_{ifk}^{\alpha}\omega^{i}\otimes\omega^{f}\otimes\omega^{k}\otimes e_{\alpha} ,
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then (K_{ifk}^{\alpha}) satisfies the relation

(14) \sum K_{ifk}^{a}\omega^{k}=dK_{if}^{\alpha}-\sum K_{kf}^{\alpha k}\omega_{i}-\sum K_{ik}^{ak}\omega_{f}+\sum K_{if\beta}^{\beta a}\omega (cf [3]).

We can consider that \nabla K=\sum(\nabla_{e_{k}}K)\otimes\omega^{k}, hence

(15) \nabla_{e_{k}}K=\sum K_{ifk}^{a}\omega^{i}\otimes\omega^{f}\otimes e_{a}\ulcorner

For \nabla^{2}K=\nabla(\nabla K) the similar formular to the Proposition 2. 12, p125, [1],
holds;

(16) \nabla^{2}K(\cdots ; X;Y)=\nabla_{Y}(\nabla_{X}K)-\nabla_{r_{Y}x}K

We define now the canonical bundle isomorphism *

*:T_{s}^{r}(M)\otimes T_{q}^{1p}(M)arrow T_{r}^{g}(M)\otimes T_{p}^{1q}(M) ,

for example, by

(17) *( \sum K_{if}^{a}\omega^{i}\otimes\omega^{f}\otimes e_{a})

=( \sum K_{if}a\omega\otimes i\omega^{l}\otimes e_{a})^{*}

=( \sum K_{if}^{\alpha}e_{i}\otimes e_{f}\otimes e^{*\alpha})1

By (8), (9), (10), and (12) we obtain
(18) (\nabla_{X}K)^{*}=\nabla_{X}K^{*} X\in T(M) .

R_{ESTRICTED}L_{APLACIAN}\Delta’ .
The “restricted” Laplacian (cf [4]) of a tensor field K is defined by

(19) \Delta’K=\sum(\nabla^{2}K)(\cdots _{;} _{e_{i}} _{;} _{e_{i}}) .
This is independent of the choice of \sigma. If K is given by

K= \sum K_{if}^{\alpha}\omega^{i}\otimes\omega^{f}\otimes e_{a} ,

and \Delta’K and \nabla^{2}K is expressed by
\Delta’K=\sum(\Delta’K)_{if}^{\alpha}\omega^{i}\otimes\omega^{f}\otimes e_{\alpha}

\nabla^{2}K=\sum K_{ifkl}^{\alpha}\omega^{i}\otimes\omega^{f}\otimes\omega^{k}\otimes\omega^{l}\otimes e_{\alpha} ,

then the relation between ((\Delta’K)_{if}^{\alpha}) and (K_{ifkl}^{\alpha}) is expressed as
(20) ( \Delta’K)_{if}^{\alpha}=\sum_{k}K_{ijkk}^{a} (cf [3])) .

When K is a function f, \Delta’f coincides with the ordinary Laplacian \Delta f.
FIBRE METRIC.

We denote by g the fibre metric in T_{s}^{r}(M)\otimes T_{q}^{1p}(M) induced by the
Riemannian metric of N. Let C be the contraction
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C:(T_{s}^{?}.(M)\otimes T_{q}^{1p}(M))\otimes(T^{s},(M)\otimes T_{p}^{1q}(M)) – T_{0}^{0}(M) ,

such that, for example,

C((e_{i}\otimes\omega^{f}\otimes e_{\alpha}\otimes e^{*\beta})\otimes(\omega^{k}\otimes e_{l}\otimes e^{*\lambda}\otimes e_{\epsilon}))=\delta_{ik}\delta_{fl}\delta_{\alpha\lambda}\delta_{\beta\epsilon} ,

then

(21) g(K, K’)=C(K\otimes K^{\prime*}) .
Since \nabla_{X} is a type preserving derivation and commutes with every contrac-
tion, by (18) and (21)

(22) \nabla_{X}g(K, K’)=g(\nabla_{X}K, K’)+g(K, \nabla_{X}K’) .
SECOND FUNDAMENTAL FORM.

The second fundamental form h : T(M)\cross T(M)-T^{\perp}(M) , i.e. , h : Marrow

T(M)^{*}\otimes T(M)^{*}\otimes T^{\perp}(M) of the immersion \iota is locally expressed, using (h_{if}^{\alpha})

of (2), by

(23) h=\Sigma h_{if}a\omega\otimes i\omega^{J}\otimes e_{a}

The mean curvature vector H is given by

(24) H= \frac{1}{n}\sum h_{ii}^{\alpha}e_{\alpha}

If we put

\nabla h=\sum h_{ifk}\alpha\omega\otimes i\omega^{J}\otimes\omega^{k}\otimes e_{\alpha}

\nabla^{2}h=\sum h_{ifkl}a\omega\otimes t\omega^{f}\otimes\omega^{k}\otimes\omega^{l}\otimes e_{\alpha} ,

then by (5) and (6) (cf [3])

(25) h_{ifk}^{a}-h_{ikf}^{\alpha}=\overline{R}_{ifk}^{\alpha}=0 ,

(26) h_{ifkl}^{\alpha}-h_{ijlk}^{\alpha}= \Sigma h_{im}^{\alpha}R_{fkl}^{m}+\Sigma h_{mf}^{\alpha}R_{ikl}^{m}-\sum h_{if}^{\beta}R_{\beta kl}^{a} ,

(27) ( \Delta’h)_{tf}^{a}=\sum_{k}h_{ifkk}^{\alpha}=\sum h_{kkif}^{a}+nch_{if}^{a}-c(\sum h_{kk}^{a})\delta_{if}

+ \sum h_{m}^{\alpha} ih_{mf}^{\beta}h_{kk}^{\beta}+2\Sigma h_{km}^{\alpha}h_{mf}^{\beta}h_{ki}^{\beta}

-\Sigma(h_{km}^{\alpha}h_{km}^{\beta}h_{if}^{\beta}+h_{m}^{\alpha} fh_{m}^{\beta} kh^{\beta}kf+h_{m}^{\alpha} Jh_{ki}^{\beta}h_{m}^{\beta} k) ,

(28) \frac{1}{2}\Delta(\sum_{\alpha\iota f}(h_{if}^{\alpha})^{2})=\sum_{\alpha\iota fk}(h_{ifk}^{a})^{2}+\sum_{\alpha if}h_{\iota f}^{\alpha}(\Delta’h)_{if}^{\alpha} .

(28) is the formula (3. 12) of [3], but we give here a proof to compare it
with the next lemma. By (15), (16), (19) and (22)



Surfaces with vanishing normal curvatur 267

\Delta(\sum_{aij}(h_{\iota f}^{\alpha})^{2})=\Delta’g(h, h)=\sum_{k}\nabla_{e_{k}}(\nabla_{e_{k}}g(h, h))-\sum_{k}\nabla_{r_{e_{k}}e_{k}}g(h, h)

=2 \sum_{k}g(\nabla_{e_{k}}\nabla_{e_{k}}h-\nabla_{r_{e_{k}}e_{k}}h, h)+2\sum_{k}g(\nabla_{e_{k}}h,\nabla_{e_{k}}h)

=2g( \Delta’h, h)+2\sum_{k}g(\nabla_{e_{k}}h, \nabla_{e_{k}}h)

=2 \sum_{\alpha if}h_{if}^{\alpha}(\Delta’h)_{if}^{\alpha}+2\sum_{\alpha ifk}(h_{ifk}^{\alpha})^{2} .

LEMMA 1. If there exists a number \alpha such e_{\alpha} is parallel, thm for
this \alpha

(29) \frac{1}{2}(\sum_{if}(h_{if}^{\alpha}))^{2}=\sum_{ifk}(h_{ifk}^{\alpha})^{2}+\sum_{if}h_{if}^{\alpha}(\Delta’h)_{if}^{\alpha} .

PROOF. Let C be a contraction

C:T(M)^{*}\otimes T(M)^{*}\otimes T^{\perp}(M)\otimes T^{\perp}(M)^{*}arrow T(M)^{*}\otimes T(M)^{*}r

We set

h^{a}=C(h\otimes e^{*\alpha})’.
then

h^{\alpha}= \sum_{if}h_{ij}^{a}\omega^{\dot{l}}\otimes\omega^{f}

Therefore

\Delta((\sum_{\dot{\iota}f}(h_{if}^{a})^{2})=\Delta’g(h^{\alpha}, h^{\alpha})=2g(\sum_{k}(\nabla_{e_{k}}\nabla_{e_{k}}h^{\alpha}-\nabla_{r_{e_{k}}ek}h^{\alpha}), h^{a})

+2 \sum_{k}g(\nabla_{e_{k}}h^{\alpha}, \nabla_{e_{k}}h^{\alpha})1

Since e_{\alpha} is parallel, \nabla_{X}e^{*u}=0 for any X\in T(M) . Hence

\nabla_{e_{k}}h^{\alpha}=C((\nabla_{e_{k}}h)\otimes e^{*a})=\sum_{if}h_{ifk}^{\alpha i}\omega\otimes\omega^{f} ,

and consequently

g( \nabla_{e_{k}}h^{\alpha}, \nabla_{e_{k}}h^{\alpha})=\sum_{if}(h_{ifk}^{\alpha})^{2} .

Similarly

\sum_{k}\nabla_{e_{k}}\nabla_{e_{k}}h^{\alpha}-\sum_{k}\nabla_{r_{e_{k}}e_{k}}h^{\alpha}=C(\sum_{k}(\nabla_{e_{k}}\nabla_{e_{k}}h-\nabla_{r_{e_{k^{ek}’}}} ^{h})\otimes e^{*\alpha})

=C(\Delta’h\otimes e^{*\alpha})

= \sum_{if}(\Delta’h)_{ij}^{\alpha}\omega^{i}\otimes\omega^{f} ,

g ( \sum_{k}(\nabla_{e_{k}}\nabla_{e_{k}}h^{\alpha}-\nabla_{r_{e_{k}}e_{l}}h^{\alpha}) , h^{\alpha})= \sum_{if}h_{if}^{a}(\Delta’h)_{if}^{\alpha}(
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Therefore we obtain

\frac{1}{2}\Delta\sum_{if}(h_{if}^{\alpha})^{2}=\sum_{ifk}(h_{ifk}^{\alpha})^{2}+\sum_{if}h_{if}^{a}(\Delta’h)_{if}^{\alpha} . q.e.d.

REMARK 1. If the mean curvature vector H never vanishes, we may
choose e_{n+1} in the direction of H, i.e. , e_{n+1}=H/||H|| . If H/||H|| is parallel,
then we get by LEMMA above

(30) \frac{1}{2}\Delta(\sum_{if}(h_{if}^{n+1})^{2})=\sum_{ifk}(h_{\iota fk}^{n+1})^{2}+\sum_{if}h_{if}^{n+1}(\Delta’h)_{if}^{n+1}

For (28) and (30)

(31) \frac{1}{2}\Delta\sum_{rif}(h_{tf}^{r})^{2}=\sum_{rifk}(h_{ifk}^{r})^{2}+\sum_{rif}(h_{if}^{r})(\Delta’h)_{if}^{r} (r=n+2, \cdots, n+p) .

REMARK 2. The formula (31) plays the essential role in [5] or [6],

but it is not assumed there, that H/||H|| is parallel. It seems to the author
that (31) does not hold without this assumption or other.

NORMAL CURVATURE (cf. [6]).

The normal curvature of the immersion \iota is defined by

(32) K_{N}= \sum_{\alpha\beta kl}(R_{\beta kl}^{a})^{2}

ince N is a space form,

K_{N}= \sum_{a\beta kl}(\sum_{i}(h_{ik}^{\alpha}h_{il}^{\beta}-h_{\iota l}^{\alpha}h_{ik}^{\beta}))^{2}

Hence the normal curvature vanishes if and only if the pn\cross n-matrices
(h_{if}^{a}) can be transformed simaltaneously in diagonalized forms.

\S 3. Surfaces with K_{N}=0 .
In the following throughout this paper we assume;

M is a compact connected surface,
K_{N}\equiv 0 ,\cdot

the Gaussian curvature G of M is positive,

H never vanishes,
H/||H|| is parallel,

and we choose \sigma so that
e_{3}=H/||H|| .
LEMMA 2.
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(34) \sum_{k}h_{kkif}^{r}=0 for r\geqq 41

PROOF. We note

(35) \sum_{k}h_{kk}^{r}=0 for r\geqq 41

e_{3} is parallel, hence by (7) and (10) we obtain
.(36) \omega_{3}^{\alpha}=0 .
By (14)

(37)
\sum_{k}h_{ifk}^{\alpha}\omega^{k}=dh_{if}^{\alpha}-\sum_{l}h_{lf}^{\alpha}\omega_{l}^{l}-\sum_{l}h_{l}^{\alpha}‘\omega_{f}^{l}+\sum_{\beta}h_{if}\beta\omega_{\beta}\alpha’.

hence, using (35) and (36), we have

\sum_{k}(\sum_{i}h_{kki}^{r}\omega^{i})=0 ,

(38) \sum_{k}h_{kki}^{r}=0 .
Similarly

(39)
\sum_{l}h_{ifkl}^{\alpha}\omega^{l}=dh_{ifk}^{\alpha}-\sum_{l}h_{lfki}^{\alpha}\omega^{l}-\sum_{l}h_{ilk}^{\alpha l}\omega_{f}-\sum_{l}h_{ifl}^{\alpha}\omega_{k}^{l}+\sum_{\beta}h_{ijk}^{\beta}\omega_{\beta}^{\alpha} ,

therefore

\sum_{k}(\sum_{f}h_{kkif}^{r}\omega^{f})=\sum_{k}dh_{kki}^{r}-\sum_{kl}h_{lki}’.\omega_{k}^{l}-\sum_{kl}h_{kli}^{r}\omega_{k}^{l}-\sum_{kl}h_{kkl}^{r}\omega_{i}^{l}+\sum_{\alpha}h_{kki}^{\alpha}\omega_{\alpha}^{r} .

Since h_{lki}^{r}=h_{kli}^{r} , the formula above is, using (36) and (38), reduced to

\sum_{k}(\sum_{f}h_{kkif}^{r}\omega^{f})=0 ,

that is,

\sum_{k}h_{kkif}^{r}=0 . q.e.d.

REMARK 3. In the case of minimal submanifolds

\sum_{k}h_{kkif}^{\alpha}=0 for \alpha\geqq n+1,\cdot

as is seen in [3]. But in the case of nonminimal submanifolds, choosing
e_{n+1} in the direction of H, we cannot obtain

\sum_{k}h_{kkif}^{r}=0 for r\geqq n+2

without some additional condition.
For each \alpha, we denote the symmetric 2\cross 2-matrix (h_{if}^{\alpha}) by

(40) H_{a}=(h_{if}^{\alpha})_{:}
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and set

(41) S_{a}= traceH_{\alpha}\cdot {}^{t}H_{\alpha}=\sum_{if}(h_{if}^{\alpha})^{2} ,

(42) S= \sum_{\alpha}S_{\alpha} ,

(43) \tilde{S}=\sum_{r}S_{r}=\sum_{rif}(h_{if}^{r})^{2} .

If we use the expression in the proof of LEMMA 1,

S=g(h, h) ,
\tilde{S}=g(h, h)-g(h^{3}, h^{3}) .

Since e_{3} is global, \tilde{S} is a well defined function over M.
We now consider a decomposition of T_{p}^{\perp}(M) (cf. [8]). We set

N_{p}--\{e\in T_{p}-\llcorner(M)|g(e, e_{3})=0\} ,

and define a linear mapping \varphi_{\sigma} from N_{p} into the set of 2\cross 2-matrices by

\varphi_{\sigma}(\sum_{r}\nu_{r}e,.)=(\sum_{r}\nu,.h_{if}^{r}) .

Then the kernel of \varphi_{\sigma} , which we denote by O_{p} , is independent of the choice
of \sigma, and dim O_{p}\geqq p-2 . In fact, if we put

\overline{e}=\sum_{r}h_{11}^{r}e,.,\overline{\overline{e}}.=\sum_{r}h_{12}^{r}.e_{r} , e,\overline{\overline{e}}\in N_{p} ,

e\in N_{p} belongs to O_{p} when and only when
g(e,\overline{e})=g(e,\overline{\overline{e}})=0 .

Since K_{N}=0 , it follows that e and \overline{\overline{e}} are linearly dependent in N_{p} . There-
fore dim O_{p}\geqq\dim N_{p}-1=p-2 .

We call dim N_{p}-dim O_{p} the minimal index (M-index) of M at p (cf. [8]).

LEMMA 3. M-index of M is everywhere zero.
PROOF. We define two subsets of M by

M_{0}= {p\in M|M-index =0 at p},

M_{1}= {p\in M|M-index =1 at p}.

Then \tilde{S}=0 on M_{0},\tilde{S}>0 on M_{1}| , M_{1} is open and M=M_{0}\cup M_{1} .
If M_{1}\neq\phi, then N_{p} , p\in M_{1} , is decomposed as

N_{p}=N_{p}’\otimes O_{p} ,

where N_{p}’ is the 1-dimensional orthogonal complement of O_{p} in N_{p} . This
decomposition is well-defined and smooth on M_{1} . Therefore we can choose
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\sigma locally on M_{1} , so that e_{4}\in N_{p}’ . Since K_{N}=0 and H_{\alpha} are simultaneously
diagonalized, we may put

(44) H_{3}=(\begin{array}{ll}k_{1} 00 k_{2}\end{array}) , H_{4}=(\begin{array}{ll}a 00 -a\end{array}) , a\neq 0 ,

H_{r}=(\begin{array}{ll}0 00 0\end{array}) for r\geqq 5 .

Hence we obtain
(45) \tilde{S}=2a^{2} .
The Gaussian curvature G is given by

d\omega_{2}^{1}=G(\omega^{1}\Lambda\omega^{2})
[

Accordingly by (4), (6) and (44)

G=c+k_{1}k_{2}-a^{2} ,

that is, if we denote the Lipschitz-Killing curvature of the immersion \iota by
G(p, e),

(46) G=c+G(p, e_{3})- \frac{\tilde{S}}{2} .
Since G>0 and \tilde{S}\geqq 0 , we obtain, using Lemma 2, (27)J and (44),

(47) \sum_{r\iota f}h_{if}^{r}(\Delta’h)_{ij}^{r}=\sum_{if}h_{if}^{4}(\Delta’h)_{if}^{4}=\sum_{i}h_{ii}^{4}(\Delta’h)_{ii}^{4\underline{\perp}}2\tilde{S}G\geqq 0 .

Therefore by (31)

(48) \frac{1}{2}\Delta\tilde{S}=\frac{1}{2}\Delta(\sum_{rif}(h_{J}^{r})^{2^{\backslash }})

= \sum_{rifk}(h_{ifk}’.)^{2}+\sum_{rif}h_{if}^{r}(\Delta’h)_{if}’.\geqq 0 ,

i.e. , \Delta\tilde{S}\geqq 0 on M_{1} . s^{4}

At a boundary point of M_{0} , if any, \Delta\tilde{S}\geqq 0 by continuity. At an inner
point of M_{0} , if any, \Delta\tilde{S}=0 clearly. Hence \Delta\tilde{S}\geqq 0 on M_{0} . Therefore \Delta\tilde{S}\geqq 0

over M and accordingly \Delta\tilde{S}\equiv 0, because M is compact. Hence by (47) and
(48) \tilde{S}=0 on M_{1} , which contradicts the construction of M_{1} . Therefore
M_{1}=\phi . q.e.d.

By LEMMA 3 4nd(31)

(49) h_{lfk}^{r}=0 for all r, i,j, k,

(50) \tilde{S}\equiv 0 .
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\S 4. Proof of Proposition.

In this section we assume further that one of the following three con-
ditions holds:

(51) G=const , c\leqq 0 ,

(52) G(p, H/||H||)=const,

(53) ||H||=const .
If we denote by k_{1} and k_{2} the principal curvatures corresponding to H/||H|| ,
(51) or (52) means by (46) and (50)

(54) k_{1}k_{2}=const>0 ,

and (53) means
(55) k_{1}+k_{2}=const .

LEMMA 4. M is pseudO-umbilical, i.e. , k_{1}=k_{2} every-where on M.
PROOF. We shall use a well known method, for example, in [7].

We choose k_{1} and k_{2} so that k_{1}\geqq k_{2} , then k_{1} and k_{2} are continuous func-
tions on M and differentiable on the subset of M, where k_{1}>k_{2} . Since M
is compact, there exists a po.int p_{0} , by (54) or (55), where k_{1} has a maximum
and k_{2} has a minimum.

If we assume k_{1}(p_{0})>k_{2}(p_{0}) , then k_{1} and k_{2} are differentiable in a
neighbourhood of p_{0} and we can choose a local cross section \sigma around p_{0}

so that e_{3}=H/||H|| and e_{1} and e_{2} are the principal directions corresponding
respectively to k_{1} and k_{2} . We have

(56) e_{i}k_{1}=e_{i}k_{2}=0 at p_{0} ,

(57) e_{i}(e_{i}k_{1})\leqq 0 , e_{l}(e_{i}k_{2})\geqq 0 at p_{0} .
We have also

(58) \omega_{2}^{1}=0 at p_{0} .
Indeed, setting \alpha=3 , i=j=1 in (37) and using (36), we obtain

\sum h_{11l}^{3l}\omega=dh_{11}^{3}=(e_{l}k_{1})\omega^{l} ,

h_{112}^{3}=e_{2}k_{1}t

Similarly by setting \alpha=3 , i=j=2
h_{221}^{3}=e_{1}k_{2} .

By setting \alpha=3 , i=1, j=2
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\sum_{l}h_{12l}^{3l}\omega=-(k_{1}-k_{2})\omega_{2}^{1} .

Since h_{ifk}^{a}=h_{fik}^{\alpha} , by (25) we see that
(59) h_{121}^{3}=h_{211}^{3}=h_{112}^{3}=e_{2}k_{1} ,

(60) h_{122}^{3}=h_{212}^{3}=h_{221}^{3}=e_{1}k_{21}

Therefore we obtain

(e_{2}k_{1})\omega^{1}+(e_{1}k_{2})\omega^{2}=-(k_{1}-k_{2})\omega_{2}^{1} .
At p_{0} the left hand side equals zero and k_{1}>k_{2} , hence \omega_{2}^{1}=0 . By (39) we
obtain
(61) h_{2112}^{3}=e_{2}(e_{2}k_{1}) at p_{0} .
Indeed

\sum h_{211l}^{3}\omega^{l}=dh_{211}^{3}-h_{111}^{3}\omega_{2}^{1}-h_{221}^{3}\omega_{2}^{1}-h_{212}^{32}\omega_{1}+\sum_{\alpha}h_{211}^{\alpha 3}\omega_{\alpha} ,

and using (36), (58) and (59), we reduce the formula above to
\sum h_{211l}^{3}\omega^{l}=dh_{211}^{3}=d(e_{2}k_{1})=\sum e_{l}(e_{1}k_{1})\omega^{l} , h_{2112}^{3}=e_{2}(e_{2}k_{1}) .

Similarly by (60)

(62) h_{2121}^{3}=e_{1}(e_{1}k_{2}) at p_{0} .
Since K_{N}=0, R_{\beta if}^{\alpha}=0 . Hence setting \alpha=3 , i=l=2, j=k=1 in (26), we
obtain

h_{2112}^{3}-h_{2121}^{3}=(k_{1}-k_{2})R_{212}^{1} .
From (4) and the formula d\omega_{2}^{1}=G\omega^{1}\Lambda\omega^{2}, R_{212}^{1} is nothing but G. Hence

h_{2112}^{3}-h_{2121}^{3}=(k_{1}-k_{2})G .
By (61) and (62) we have
(63) e_{2}(e_{2}k_{1})-e_{1}(e_{1}k_{2})=(k_{1}-k_{2})G at p_{0} .
Since G>0 , (63) contradicts, by (57), the assumption that k_{1}>k_{2} at p_{0} .
Therefore k_{1}=k_{2} at p_{0} , which implies that k_{1}=k_{2} everywhere on M. q.e.d.

By LEMMA 3 and LEMMA 4 we see that M is a pseud0-umbilical surface
with M-index =0 (and hence totally umbilical) in N. Especially if N is the
euclidean space E^{2+p} , then we may apply here Theorem 1 in [9] and qee
that M is a sphere in a linear subspace E^{3} of E^{2+p} .
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