Surfaces with vanishing normal curvature

Dedicate to Professor Yoshie Katsurada on her 60th birthday

By Yoshihiko Tazawa

§ 1. Introduction.

The normal curvature of a submanifold is defined by the square of the length of the curvature form of the connection in the normal bundle (cf [6]). The minimal index (M-index) at a point of a submanifold is defined by the dimension of the linear space of all second fundamental forms with vanishing trace (cf [8]). In this paper we prove the following proposition:

Proposition. Let M be a compact connected surface with positive Gaussian curvature G isometrically immersed in a $(2+p)$-dimensional space form N of curvature c. If M is non-minimal and the mean curvature vector H is parallel in the normal bundle and the normal curvature vanishes identically, then M is a totally umbilical surface with M-index 0. Especially if N is euclidean then M is a sphere in a 3-dimensional linear subspace of N.

Without the assumption that H is parallel the same result holds under the assumption that H never vanishes and $H /\|H\|$ is parallel, if G is constant and c is non-positive, or if the Lipschitz-Killing curvature corresponding to $H /\|H\|$ is constant.

The proof is based on the Laplacian of the length of the second fundamental form (cf [3]). In $\S 2$ we recall the connection in the normal bundle and obtain a formula similar to one essenlially used in [6] (cf REmARK 2). In $\S 3$ we prove that M is of M-index 0 . In $\S 4$ we make use of a classical method in the theory of Weingarten surfaces and show that M is pseudoumbilical and prove the proposition.

§ 2. Preliminaries.

Let c be an isometric immersion of an n-dimensional Riemannian manifold M in an $(n+p)$-dimensional space form N with curvature c. We shall make use of the following convention of the range of indices:

$$
\begin{aligned}
& 1 \leqq A, B, C, \cdots \leqq n+p ; 1 \leqq i, j, k, \cdots \leqq n \\
& n+1 \leqq \alpha, \beta, \gamma, \cdots \leqq n+p ; n+2 \leqq r, s, t, \cdots \leqq n+p
\end{aligned}
$$

Structure equations.
Let $O(N)$ and $O(N, M)$ be respectively the bundle of orthonormal frames of N and the bundle of adapted frames, and let $\tilde{\varepsilon}$ be the injection from $O(N, M)$ into $O(N)$. We denote by $\left(\omega^{\prime A}\right)$ and $\left(\omega_{B}^{\prime A}\right)$ respectively the canonical form and the connection form of $O(N) . \omega^{\prime A}$ and $\omega_{B}^{\prime A}$ are 1 -forms on $O(N)$. Let σ

$$
\sigma: M \longrightarrow O(N, M), \quad \sigma(p)=\left(e_{1}, \cdots, e_{n+p}\right)
$$

be a local cross section and put

$$
\begin{aligned}
& \omega^{A}=(\tilde{\ell} \circ \sigma)^{*} \omega^{\prime A}, \omega_{B}^{A}=(\tilde{\imath} \circ \sigma)^{*} \omega_{B}^{\prime A} . \\
& O(N, M) \xrightarrow{\stackrel{\tilde{\epsilon}}{\longrightarrow}} O(N)
\end{aligned}
$$

Then ω^{4} and ω_{B}^{A} are local 1-forms on M determined by σ and satisfy the following structure equations:
$\left(\omega^{i}\right)$ is the dual coframe field of $\left(e_{i}\right)$

$$
\begin{gather*}
\omega^{\alpha}=0 \tag{1}\\
\omega_{i}^{\alpha}=\sum h_{j i}^{a} \omega^{j}, h_{i j}^{\alpha}=h_{j i}^{\alpha}, \tag{2}\\
d \omega^{i}=-\sum \omega_{j}^{i} \wedge \omega^{j}, \omega_{j}^{i}+\omega_{i}^{j}=0, \tag{3}\\
d \omega_{j}^{i}=-\sum \omega_{k}^{i} \wedge \omega_{j}^{k}+\Omega_{j}^{i}, \tag{4}\\
\Omega_{j}^{i}=\frac{1}{2} \sum R_{j k l}^{d} \omega^{k} \wedge \omega^{l}, \\
R_{j k l}^{i}=\bar{R}_{j k l}^{i}+\sum\left(h_{i k}^{\alpha} h_{j l}^{\alpha}-h_{i l}^{\alpha} h_{j k}^{\alpha}\right), \\
d \omega_{\beta}^{\alpha}=-\sum \omega_{r}^{\alpha} \wedge \omega_{\beta}^{\tau}+\Omega_{\beta}^{\alpha}, \omega_{\beta}^{\alpha}+\omega_{a}^{\beta}=0, \tag{5}\\
\Omega_{\beta}^{\alpha}=\frac{1}{2} \sum R_{\beta k l}^{\alpha} \omega^{k} \wedge \omega^{l}, \\
R_{\beta k l}^{\alpha}=\bar{R}_{\beta k l}^{\alpha}+\sum\left(h_{i k}^{\alpha} h_{i l}^{s}-h_{i l}^{a} h_{i k}^{\beta}\right), \\
\bar{R}_{B C D}^{A}=-\bar{R}_{B D C}^{A}=c\left(\delta_{A C} \delta_{B D}-\delta_{A D} \delta_{B C}\right) .
\end{gather*}
$$

Connection in $T_{s}^{r}(M) \otimes T_{q}^{\perp p}(M)$.
$\left(\omega_{j}^{i}\right)$ defines the connection in the tangent bundle $T(M)$ and the cotangent bundle $T(M)^{*}$, and $\left(\omega_{\beta}^{a}\right)$ defines the connection in the normal bundle $T^{\perp}(M)$. We express this using ∇ as follows:

If we put

$$
\begin{equation*}
\omega_{j}^{i}=\Sigma C_{j k}^{i} \omega^{k}, \omega_{\beta}^{\alpha}=\Sigma C_{\beta k}^{\alpha} \omega^{k}, \tag{7}
\end{equation*}
$$

then

$$
\begin{align*}
& \nabla_{e_{i}} e_{j}=\sum C_{j i}^{k} e_{k}, \tag{8}\\
& \nabla_{e_{i}} \omega^{j}=-\sum C_{k i}^{j} \omega^{k}, \tag{9}\\
& \nabla_{e_{i}} e_{\alpha}=\sum C_{\alpha i}^{\beta} e_{\beta} . \tag{10}
\end{align*}
$$

We define the conormal bundle $T^{\perp}(M)^{*}$ by

$$
\begin{equation*}
T^{\perp}(M)^{*}=\bigcup \bigcup_{p \in M}\left\{T_{p}^{\perp}(M)^{*} \mid \text { the dual linear space of } T_{p}{ }^{\perp}(M)\right\} \tag{11}
\end{equation*}
$$

then $\left(\omega_{\beta}^{\alpha}\right)$ defines a connection also in $T^{\perp}(M)^{*}$. If we denote by $\left(e^{* \alpha}\right)$ the dual coframe field of $\left(e_{\alpha}\right)$, then

$$
\begin{equation*}
\nabla_{e_{i}} e^{* \alpha}=-\sum C_{\beta i}^{\alpha} e^{* \beta} \tag{12}
\end{equation*}
$$

Hence $\left(\omega_{j}^{i}\right)$ and $\left(\omega_{\beta}^{\alpha}\right)$ determine a connection in $T_{s}^{r}(M) \otimes T_{q}^{\perp p}(M)$;

$$
\begin{aligned}
& T_{s}^{r}(M) \otimes T_{q}^{\perp p}(M)=T(M) \underset{(r \text { times })}{\otimes \cdots \otimes} T(M) \otimes T(M) \underset{(s t i m e s)}{*} \underset{\otimes}{\otimes} \\
& T(M)^{*} \otimes T^{\perp}(M) \underset{(p \text { times })}{\otimes} T^{\perp}(M) \otimes T^{\perp}(M)^{*} \underset{(q \text { times })}{\otimes} \cdots T^{\perp}(M)^{*}
\end{aligned}
$$

For a tensor field $K: M \rightarrow T_{s}^{r}(M) \otimes T_{q}^{\perp p}(M)$ the covariant differential $\nabla K: M$ $\rightarrow T_{s+1}^{r}(M) \otimes T_{q}^{\perp p}(M)$ is defined. For example a tensor field K

$$
K: M \longrightarrow T(M)^{*} \otimes T(M)^{*} \otimes T^{\perp}(M)
$$

can be considered as a bilinear mapping

$$
K: T(M) \times T(M) \longrightarrow T^{\perp}(M)
$$

and ∇K
$\nabla K: M \longrightarrow T(M)^{*} \otimes T(M)^{*} \otimes T(M)^{*} \otimes T^{\perp}(M)$
regarded as a multilinear mapping

$$
\nabla K: T(M) \times T(M) \times T(M) \longrightarrow T^{\perp}(M)
$$

is given by
$\nabla K(X, Y ; Z)=\left(\nabla_{Z} K\right)(X, Y), \quad X, Y, Z \in T(M)$.
If we express K and ∇K using σ as

$$
\begin{aligned}
& K=\sum K_{i j}^{\alpha} \omega^{i} \otimes \omega^{j} \otimes e_{\alpha} \\
& \nabla K=\sum K_{i j k}^{\alpha} \omega^{i} \otimes \omega^{j} \otimes \omega^{k} \otimes e_{\alpha}
\end{aligned}
$$

then $\left(K_{i j k}^{\alpha}\right)$ satisfies the relation

$$
\begin{equation*}
\sum K_{i j k}^{\alpha} \omega^{k}=d K_{i j}^{\alpha}-\sum K_{k j}^{\alpha} \omega_{i}^{k}-\sum K_{i k}^{\alpha} \omega_{j}^{k}+\sum K_{i j}^{\beta} \omega_{\beta}^{\alpha} \quad \text { (cf [3]) } \tag{14}
\end{equation*}
$$

We can consider that $\nabla K=\sum\left(\nabla_{e_{k}} K\right) \otimes \omega^{k}$, hence

$$
\begin{equation*}
\nabla_{e_{k}} K=\sum K_{i j k}^{\alpha} \omega^{i} \otimes \omega^{j} \otimes e_{\alpha} \tag{15}
\end{equation*}
$$

For $\nabla^{2} K=\nabla(\nabla K)$ the similar formular to the Proposition 2.12, p 125, [1], holds;

$$
\begin{equation*}
\nabla^{2} K(\cdots ; X ; Y)=\nabla_{Y}\left(\nabla_{X} K\right)-\nabla_{\nabla_{Y} X} K \tag{16}
\end{equation*}
$$

We define now the canonical bundle isomorphism *

$$
*: T_{s}^{r}(M) \otimes T_{q}^{\perp p}(M) \longrightarrow T_{r}^{s}(M) \otimes T_{p}^{\perp q}(M),
$$

for example, by

$$
\begin{align*}
& *\left(\sum K_{i j}^{\alpha} \omega^{i} \otimes \omega^{j} \otimes e_{\alpha}\right) \tag{17}\\
& \quad=\left(\sum K_{i j}^{\alpha} \omega^{i} \otimes \omega^{j} \otimes e_{\alpha}\right)^{*} \\
& \quad=\left(\sum K_{i j}^{\alpha} e_{i} \otimes e_{j} \otimes e^{* \alpha}\right) .
\end{align*}
$$

By (8), (9), (10), and (12) we obtain

$$
\begin{equation*}
\left(\nabla_{X} K\right)^{*}=\nabla_{X} K^{*} \quad X \in T(M) \tag{18}
\end{equation*}
$$

Restricted Laplacian Δ^{\prime}.
The "restricted" Laplacian (cf [4]) of a tensor field K is defined by

$$
\begin{equation*}
\Delta^{\prime} K=\sum\left(\nabla^{2} K\right)\left(\cdots ; e_{i} ; e_{i}\right) \tag{19}
\end{equation*}
$$

This is independent of the choice of σ. If K is given by

$$
K=\sum K_{i j}^{\alpha} \omega^{i} \otimes \omega^{j} \otimes e_{\alpha}
$$

and $\Delta^{\prime} K$ and $\nabla^{2} K$ is expressed by

$$
\begin{aligned}
& \Delta^{\prime} K=\sum\left(\Delta^{\prime} K\right)_{i j}^{a} \omega^{i} \otimes \omega^{j} \otimes e_{\alpha} \\
& \nabla^{2} K=\sum K_{i j k l l}^{a} \omega^{t} \otimes \omega^{j} \otimes \omega^{k} \otimes \omega^{t} \otimes e_{\alpha},
\end{aligned}
$$

then the relation between $\left(\left(\Delta^{\prime} K\right)_{i j}^{\alpha}\right)$ and $\left(K_{i j k l}^{\alpha}\right)$ is expressed as

$$
\begin{equation*}
\left.\left(\Delta^{\prime} K\right)_{i j}^{\alpha}=\sum_{k} K_{i j k k}^{\alpha} \quad(\operatorname{cf}[3])\right) \tag{20}
\end{equation*}
$$

When K is a function $f, \Delta^{\prime} f$ coincides with the ordinary Laplacian Δf.
Fibre metric.
We denote by g the fibre metric in $T_{s}^{r}(M) \otimes T_{q}^{\perp p}(M)$ induced by the Riemannian metric of N. Let C be the contraction

$$
C:\left(T_{s}^{r}(M) \otimes T_{q}^{\perp_{q}^{p}}(M)\right) \otimes\left(T_{r}^{s}(M) \otimes T_{p}^{1 q}(M)\right) \longrightarrow T_{0}^{0}(M),
$$

such that, for example,

$$
C\left(\left(e_{i} \otimes \omega^{j} \otimes e_{a} \otimes e^{* \rho}\right) \otimes\left(\omega^{k} \otimes e_{i} \otimes e^{* k} \otimes e_{l}\right)\right)=\delta_{i k} \delta_{j l} \delta_{\alpha \lambda} \delta_{\rho t},
$$

then

$$
\begin{equation*}
g\left(K, K^{\prime}\right)=C\left(K \otimes K^{\prime *}\right) . \tag{21}
\end{equation*}
$$

Since ∇_{x} is a type preserving derivation and commutes with every contraction, by (18) and (21)

$$
\begin{equation*}
\nabla_{x} g\left(K, K^{\prime}\right)=g\left(\nabla_{X} K, K^{\prime}\right)+g\left(K, \nabla_{X} K^{\prime}\right) . \tag{22}
\end{equation*}
$$

Second fundamental form.
The second fundamental form $h: T(M) \times T(M) \rightarrow T^{\perp}(M)$, i.e., $h: M \rightarrow$ $T(M)^{*} \otimes T(M)^{*} \otimes T^{\perp}(M)$ of the immersion ι is locally expressed, using $\left(h_{i j}^{\alpha}\right)$ of (2), by

$$
\begin{equation*}
h=\sum h_{i j}^{a} \omega^{i} \otimes \omega^{j} \otimes e_{\alpha} . \tag{23}
\end{equation*}
$$

The mean curvature vector H is given by

$$
\begin{equation*}
H=\frac{1}{n} \sum h_{i i}^{\alpha} e_{\alpha} . \tag{24}
\end{equation*}
$$

If we put

$$
\begin{aligned}
& \nabla h=\sum h_{i j k}^{\alpha} \omega^{t} \otimes \omega^{j} \otimes \omega^{k} \otimes e_{\alpha} \\
& \nabla^{2} h=\sum h_{i j k l}^{\alpha} \omega^{t} \otimes \omega^{j} \otimes \omega^{k} \otimes \omega^{t} \otimes e_{\alpha},
\end{aligned}
$$

then by (5) and (6) (cf [3])

$$
\begin{align*}
& h_{i j k l}^{\alpha}-h_{i j l k}^{\alpha}=\sum h_{i m}^{\alpha} h_{j k k}^{m}+\sum h_{m j}^{\alpha} R_{i k l}^{m}-\sum h_{i j}^{\beta} R_{k g l}^{\alpha}, \tag{26}\\
&\left(\Delta^{\prime} h\right)_{i j}^{\alpha}= \sum_{k}^{\alpha} h_{i j k k}^{\alpha}=\sum h_{k k i j}^{\alpha}+n c h_{i j}^{\alpha}-c\left(\sum h_{k k}^{\alpha}\right) \delta_{i j} \tag{27}\\
&+\sum h_{m i}^{\alpha} h_{m j}^{\beta} h_{k k}^{\beta}+2 h_{k m}^{\alpha} h_{m h}^{\beta} h_{k i}^{\beta} \\
&-\sum\left(h_{k m}^{\alpha} h_{k m}^{\beta} h_{i j}^{\beta}+h_{m i}^{\alpha} h_{m h}^{\beta} h_{k j}^{\beta}+h_{m j}^{\alpha} h_{k i}^{\beta} h_{m k}^{\beta}\right),
\end{align*}
$$

$$
\begin{equation*}
\frac{1}{2} \Delta\left(\sum_{\alpha i j}\left(h_{i j}^{\alpha}\right)^{2}\right)=\sum_{\alpha i j k}\left(h_{i j k}^{\alpha}\right)^{2}+\sum_{\alpha i j} h_{i j}^{\alpha}\left(\Delta^{\prime} h\right)_{i j}^{\alpha} . \tag{28}
\end{equation*}
$$

(28) is the formula (3.12) of [3], but we give here a proof to compare it with the next lemma. By (15), (16), (19) and (22)

$$
\begin{aligned}
\Delta\left(\sum_{\alpha i j}\left(h_{\imath j}^{\alpha}\right)^{2}\right) & =\Delta^{\prime} g(h, h)=\sum_{k} \nabla_{e_{k}}\left(\nabla_{e_{k}} g(h, h)\right)-\sum_{k} \nabla_{\nabla_{e_{k}} e_{k}} g(h, h) \\
& =2 \sum_{k} g\left(\nabla_{e_{k}} \nabla_{e_{k}} h-\nabla_{\nabla_{e_{k}} e_{k}} h, h\right)+2 \sum_{k} g\left(\nabla_{e_{k}} h, \nabla_{e_{k}} h\right) \\
& =2 g\left(\Delta^{\prime} h, h\right)+2 \sum_{k} g\left(\nabla_{e_{k}} h, \nabla_{e_{k}} h\right) \\
& =2 \sum_{\alpha i j} h_{i j}^{\alpha}\left(\Delta^{\prime} h\right)_{i j}^{\alpha}+2 \sum_{\alpha i j k}\left(h_{i j k}^{\alpha}\right)^{2} .
\end{aligned}
$$

Lemma 1. If there exists a number α such e_{α} is parallel, then for this α

$$
\begin{equation*}
\frac{1}{2}\left(\sum_{i j}\left(h_{i j}^{\alpha}\right)\right)^{2}=\sum_{i j k}\left(h_{i j k}^{\alpha}\right)^{2}+\sum_{i j} h_{i j}^{\alpha}\left(\Delta^{\prime} h\right)_{i j}^{\alpha} . \tag{29}
\end{equation*}
$$

Proof. Let C be a contraction

$$
C: T(M)^{*} \otimes T(M)^{*} \otimes T^{\perp}(M) \otimes T^{\perp}(M)^{*} \longrightarrow T(M)^{*} \otimes T(M)^{*}
$$

We set

$$
h^{\alpha}=C\left(h \otimes e^{* \alpha}\right)
$$

then

$$
h^{\alpha}=\sum_{i j} h_{i j}^{\alpha} \omega^{i} \otimes \omega^{j}
$$

Therefore

$$
\begin{aligned}
\Delta\left(\left(\sum_{i j}\left(h_{i j}^{\alpha}\right)^{2}\right)=\right. & \Delta^{\prime} g\left(h^{\alpha}, h^{\alpha}\right)=2 g\left(\sum_{k}\left(\nabla_{e_{k}} \nabla_{e_{k}} h^{\alpha}-\nabla_{\nabla_{e_{k}} e k} h^{\alpha}\right), h^{\alpha}\right) \\
& +2 \sum_{k} g\left(\nabla_{e_{k}} h^{\alpha}, \nabla_{e_{k}} h^{\alpha}\right) .
\end{aligned}
$$

Since e_{α} is parallel, $\nabla_{X} e^{* \alpha}=0$ for any $X \in T(M)$. Hence

$$
\nabla_{e_{k}} h^{\alpha}=C\left(\left(\nabla_{e_{k}} h\right) \otimes e^{* \alpha}\right)=\sum_{i j} h_{i j k}^{\alpha} \omega^{i} \otimes \omega^{j}
$$

and consequently

$$
g\left(\nabla_{e_{k}} h^{\alpha}, \nabla_{e_{k}} h^{\alpha}\right)=\sum_{i j}\left(h_{i j k}^{\alpha}\right)^{2} .
$$

Similarly

$$
\begin{aligned}
& \sum_{k} \nabla_{e_{k}} \nabla_{e_{k}} h^{\alpha}-\sum_{k} \nabla_{\nabla_{e_{k}} e_{k}} h^{\alpha}=C\left(\sum_{k}\left(\nabla_{e_{k}} \nabla_{e_{k}} h-\nabla_{\nabla_{e_{k}} e k} h\right) \otimes e^{* \alpha}\right) \\
&=C\left(\Delta^{\prime} h \otimes e^{* \alpha}\right) \\
&=\sum_{i j}\left(\Delta^{\prime} h\right)_{i j}^{\alpha} \omega^{i} \otimes \omega^{j} \\
& g\left(\sum_{k}\left(\nabla_{e_{k}} \nabla_{e_{k}} h^{\alpha}-\nabla_{\nabla_{e_{k}} e_{h}} h^{\alpha}\right), h^{\alpha}\right)=\sum_{i j} h_{i j}^{\alpha}\left(\Delta^{\prime} h\right)_{i j}^{\alpha}
\end{aligned}
$$

Therefore we obtain

$$
\frac{1}{2} \Delta \sum_{i j}\left(h_{i j}^{\alpha}\right)^{2}=\sum_{i j k}\left(h_{i j k}^{\alpha}\right)^{2}+\sum_{i j} h_{i j}^{\alpha}\left(\Delta^{\prime} h\right)_{i j}^{\alpha} . \quad \text { q.e.d. }
$$

REMARK 1. If the mean curvature vector H never vanishes, we may choose e_{n+1} in the direction of H, i. e., $e_{n+1}=H /\|H\|$. If $H /\|H\|$ is parallel, then we get by Lemma above

$$
\begin{equation*}
\frac{1}{2} \Delta\left(\sum_{i j}\left(h_{i j}^{n+1}\right)^{2}\right)=\sum_{i j k}\left(h_{i j k}^{n+1}\right)^{2}+\sum_{i j} h_{i j}^{n+1}\left(\Delta^{\prime} h\right)_{i j}^{n+1} . \tag{30}
\end{equation*}
$$

For (28) and (30)

$$
\begin{equation*}
\frac{1}{2} \Delta \sum_{r i j}\left(h_{i j}^{r}\right)^{2}=\sum_{r i j k}\left(h_{i j k}^{r}\right)^{2}+\sum_{r i j}\left(h_{i j}^{r}\right)\left(\Delta^{\prime} h\right)_{i j}^{r} \quad(r=n+2, \cdots, n+p) . \tag{31}
\end{equation*}
$$

Remark 2. The formula (31) plays the essential role in [5] or [6], but it is not assumed there, that $H /\|H\|$ is parallel. It seems to the author that (31) does not hold without this assumption or other.

Normal curvature (cf. [6]).
The normal curvature of the immersion c is defined by

$$
\begin{equation*}
K_{N}=\sum_{\alpha \beta k l}\left(R_{\beta k l}^{\alpha}\right)^{2} \tag{32}
\end{equation*}
$$

ince N is a space form,

$$
K_{N}=\sum_{\alpha \beta k l}\left(\sum_{i}\left(h_{i k}^{\alpha} h_{i l}^{\beta}-h_{i l}^{\alpha} h_{i k}^{\beta}\right)\right)^{2}
$$

Hence the normal curvature vanishes if and only if the $p n \times n$-matrices $\left(h_{i j}^{\alpha}\right)$ can be transformed simaltaneously in diagonalized forms.

§3. Surfaces with $K_{N}=0$.

In the following throughout this paper we assume;
M is a compact connected surface,
$K_{N} \equiv 0$,
the Gaussian curvature G of M is positive,
H never vanishes,
$H /\|H\|$ is parallel,
and we choose σ so that
$e_{3}=H /\|H\|$.
Lemma 2.

$$
\begin{equation*}
\sum_{k} h_{k k i j}^{r}=0 \quad \text { for } \quad r \geqq 4 . \tag{34}
\end{equation*}
$$

Proof. We note

$$
\begin{equation*}
\sum_{k} h_{k k}^{r}=0 \quad \text { for } \quad r \geqq 4 . \tag{35}
\end{equation*}
$$

e_{3} is parallel, hence by (7) and (10) we obtain

$$
\begin{equation*}
\omega_{3}^{\alpha}=0 . \tag{36}
\end{equation*}
$$

By (14)

$$
\begin{equation*}
\sum_{k} h_{i j k}^{\alpha} \omega^{k}=d h_{i j}^{\alpha}-\sum_{l} h_{i j}^{\alpha} \omega_{i}^{l}-\sum_{l} h_{i l}^{\alpha} \omega_{j}^{l}+\sum_{\beta} h_{i j}^{\beta} \omega_{\beta}^{\alpha}, \tag{37}
\end{equation*}
$$

hence, using (35) and (36), we have

$$
\begin{gather*}
\sum_{k}\left(\sum_{i} h_{k k i}^{r} \omega^{i}\right)=0, \\
\sum_{k} h_{k k i}^{r}=0 . \tag{38}
\end{gather*}
$$

Similarly

$$
\begin{equation*}
\sum_{l} h_{i j k l}^{\alpha} \omega^{2}=d h_{i j k}^{\alpha}-\sum_{l} h_{i j k}^{\alpha} \omega_{i}^{2}-\sum_{i} h_{i t k}^{\alpha} \omega_{j}^{2}-\sum_{l} h_{i j l}^{\alpha} \omega_{k}^{\alpha}+\sum_{\beta}^{2} h_{i j k}^{\theta} \omega_{\beta}^{\alpha}, \tag{39}
\end{equation*}
$$

therefore

$$
\sum_{k}\left(\sum_{j} h_{k k i j}^{r} \omega^{j}\right)=\sum_{k} d h_{k k i}^{r}-\sum_{k l} h_{l k i}^{r} \omega_{k}^{2}-\sum_{k l} h_{k l i}^{r} \omega_{k}^{2}-\sum_{k l} h_{k k l i}^{r} \omega_{i}^{l}+\sum_{\alpha} h_{k k i l}^{\alpha} \omega_{\alpha}^{r} .
$$

Since $h_{l k i}^{r}=h_{k l}^{r}$, the formula above is, using (36) and (38), reduced to

$$
\sum_{k}\left(\sum_{j} h_{k k i j}^{r} \omega^{j}\right)=0,
$$

that is,

$$
\sum_{k} h_{k k t j}^{r}=0 . \quad \text { q. e.d. }
$$

Remark 3. In the case of minimal submanifolds

$$
\sum_{k} h_{k k i j}^{\alpha}=0 \quad \text { for } \quad \alpha \geqq n+1,
$$

as is seen in [3]. But in the case of nonminimal submanifolds, choosing e_{n+1} in the direction of H, we cannot obtain

$$
\sum_{k} h_{k k i j}^{r}=0 \quad \text { for } \quad r \geqq n+2
$$

without some additional condition.
For each α, we denote the symmetric 2×2-matrix $\left(h_{i j}^{\alpha}\right)$ by

$$
\begin{equation*}
H_{a}=\left(h_{i j}^{\alpha}\right), \tag{40}
\end{equation*}
$$

and set

$$
\begin{gather*}
S_{\alpha}=\operatorname{trace} H_{\alpha} \cdot{ }^{t} H_{\alpha}=\sum_{i j}\left(h_{i j}^{\alpha}\right)^{2}, \tag{41}\\
S=\sum_{\alpha} S_{\alpha} \tag{42}\\
\tilde{S}=\sum_{r} S_{r}=\sum_{r i j}\left(h_{i j}^{r}\right)^{2} . \tag{43}
\end{gather*}
$$

If we use the expression in the proof of Lemma 1 ,

$$
\begin{aligned}
& S=g(h, h), \\
& \tilde{S}=g(h, h)-g\left(h^{3}, h^{3}\right) .
\end{aligned}
$$

Since e_{3} is global, \tilde{S} is a well defined function over M.
We now consider a decomposition of $T_{p}^{\perp}(M)$ (cf. [8]). We set

$$
N_{p}=\left\{e \in T_{p}^{\perp}(M) \mid g\left(e, e_{3}\right)=0\right\}
$$

and define a linear mapping φ_{σ} from N_{p} into the set of 2×2-matrices by

$$
\varphi_{\sigma}\left(\sum_{r} \nu_{r} e_{r}\right)=\left(\sum_{r} \nu_{r} h_{i j}^{r}\right) .
$$

Then the kernel of φ_{o}, which we denote by O_{p}, is independent of the choice of σ, and $\operatorname{dim} O_{p} \geqq p-2$. In fact, if we put

$$
\bar{e}=\sum_{r} h_{11}^{r} e_{r}, \overline{\bar{e}}=\sum_{r} h_{12}^{r} e_{r}, \bar{e}, \overline{\bar{e}} \in N_{p},
$$

$e \in N_{p}$ belongs to O_{p} when and only when

$$
g(e, \bar{e})=g(e, \overline{\bar{e}})=0
$$

Since $K_{N}=0$, it follows that \bar{e} and $\overline{\bar{e}}$ are linearly dependent in N_{p}. Therefore $\operatorname{dim} O_{p} \geqq \operatorname{dim} N_{p}-1=p-2$.

We call $\operatorname{dim} N_{p}-\operatorname{dim} O_{p}$ the minimal index (M-index) of M at p (cf. [8]).
Lemma 3. M-index of M is everywhere zero.
Proof. We define two subsets of M by

$$
\begin{aligned}
& M_{0}=\{p \in M \mid \mathrm{M} \text {-index }=0 \text { at } p\}, \\
& M_{1}=\{p \in M \mid \mathrm{M} \text {-index }=1 \text { at } p\} .
\end{aligned}
$$

Then $\widetilde{S}=0$ on $M_{0}, \widetilde{S}>0$ on M_{1}, M_{1} is open and $M=M_{0} \cup M_{1}$.
If $M_{1} \neq \phi$, then $N_{p}, p \in M_{1}$, is decomposed as

$$
N_{p}=N_{p}^{\prime} \otimes O_{p}
$$

where N_{p}^{\prime} is the 1-dimensional orthogonal complement of O_{p} in N_{p}. This decomposition is well-defined and smooth on M_{1}. Therefore we can choose
σ locally on M_{1}, so that $e_{4} \in N_{p}^{\prime}$. Since $K_{N}=0$ and H_{α} are simultaneously diagonalized, we may put

$$
\begin{align*}
& H_{3}=\left(\begin{array}{ll}
k_{1} & 0 \\
0 & k_{2}
\end{array}\right), H_{4}=\left(\begin{array}{rr}
a & 0 \\
0 & -a
\end{array}\right), a \neq 0, \tag{44}\\
& H_{r}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \text { for } r \geqq 5 .
\end{align*}
$$

Hence we obtain

$$
\begin{equation*}
\tilde{S}=2 a^{2} . \tag{45}
\end{equation*}
$$

The Gaussian curvature G is given by

$$
d \omega_{2}^{1}=G\left(\omega^{1} \wedge \omega^{2}\right)
$$

Accordingly by (4), (6) and (44).

$$
G=c+k_{1} k_{2}-a^{2},
$$

that is, if we denote the Lipschitz-Killing curvature of the immersion c by $G(p, e)$,

$$
\begin{equation*}
G=c+G\left(p, e_{3}\right)-\frac{\tilde{\boldsymbol{S}}}{2} . \tag{46}
\end{equation*}
$$

Since $G>0$ and $\tilde{S} \geqq 0$, we obtain, using Lemma 2, (27) and (44),

$$
\begin{equation*}
\sum_{r i j} h_{i j}^{r}\left(\Delta^{\prime} h\right)_{i j}^{r}=\sum_{i j} h_{i j}^{4}\left(\Delta^{\prime} h\right)_{i j}^{4}=\sum_{i} h_{i i}^{4}\left(\Delta^{\prime} h\right)_{i i}^{4}=2 \tilde{S} G \geqq 0 . \tag{47}
\end{equation*}
$$

Therefore by (31)

$$
\begin{align*}
\frac{1}{2} \Delta \widetilde{S} & =\frac{1}{2} \Delta\left(\sum_{r i j}\left(h_{i j}^{r}\right)^{2}\right) \tag{48}\\
& =\sum_{r i j k}\left(h_{i j k}^{r}\right)^{2}+\sum_{r i j} h_{i j}^{r}\left(\Delta^{\prime} h\right)_{i j}^{r} \geqq 0,
\end{align*}
$$

i. e., $\Delta \tilde{S} \geqq 0$ on M_{1}.

At a boundary point of M_{0}, if any, $\Delta \tilde{S} \geqq 0$ by continuity. At an inner point of M_{0}, if any, $\Delta \widetilde{S}=0$ clearly. Hence $\Delta \widetilde{S} \geqq 0$ on M_{0}. Therefore $\Delta \tilde{S} \geqq 0$ over M and accordingly $\Delta \tilde{S} \equiv 0$, because M is compact. Hence by (47) and (48) $\tilde{S}=0$ on M_{1}, which contradicts the construction of M_{1}. Therefore $M_{1}=\phi . \quad$ q.e.d.

By Lemma 3 4nd (31)

$$
\begin{equation*}
h_{i j k}^{r}=0 \quad \text { for all } r, i, j, k, \tag{49}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{S} \equiv 0 \tag{50}
\end{equation*}
$$

§4. Proof of Proposition.

In this section we assume further that one of the following three conditions holds:

$$
\begin{gather*}
G=\text { const }, \quad c \leqq 0 \tag{51}\\
G(p, H /\|H\|)=\text { const }, \tag{52}\\
\|H\|=\text { const } \tag{53}
\end{gather*}
$$

If we denote by k_{1} and k_{2} the principal curvatures corresponding to $H /\|H\|$, (51) or (52) means by (46) and (50)

$$
\begin{equation*}
k_{1} k_{2}=\text { const }>0, \tag{54}
\end{equation*}
$$

and (53) means

$$
\begin{equation*}
k_{1}+k_{2}=\text { const } . \tag{55}
\end{equation*}
$$

Lemma 4. M is pseudo-umbilical, i.e., $k_{1}=k_{2}$ every-where on M.
Proof. We shall use a well known method, for example, in [7].
We choose k_{1} and k_{2} so that $k_{1} \geqq k_{2}$, then k_{1} and k_{2} are continuous functions on M and differentiable on the subset of M, where $k_{1}>k_{2}$. Since M is compact, there exists a point p_{0}, by (54) or (55), where k_{1} has a maximum and k_{2} has a minimum.

If we assume $k_{1}\left(p_{0}\right)>k_{2}\left(p_{0}\right)$, then k_{1} and k_{2} are differentiable in a neighbourhood of p_{0} and we can choose a local cross section σ around p_{0} so that $e_{3}=H /\|H\|$ and e_{1} and e_{2} are the principal directions corresponding respectively to k_{1} and k_{2}. We have

$$
\begin{gather*}
e_{i} k_{1}=e_{i} k_{2}=0 \quad \text { at } \quad p_{0}, \tag{56}\\
e_{i}\left(e_{i} k_{1}\right) \leqq 0, \quad e_{i}\left(e_{i} k_{2}\right) \geqq 0 \tag{57}
\end{gather*} \quad \text { at } \quad p_{0} .
$$

We have also

$$
\begin{equation*}
\omega_{2}^{1}=0 \quad \text { at } \quad p_{0} . \tag{58}
\end{equation*}
$$

Indeed, setting $\alpha=3, i=j=1$ in (37) and using (36), we obtain

$$
\begin{aligned}
& \sum h_{112}^{3} \omega^{l}=d h_{11}^{3}=\left(e_{l} k_{1}\right) \omega^{i}, \\
& h_{112}^{3}=e_{2} k_{1} .
\end{aligned}
$$

Similarly by setting $\alpha=3, i=j=2$

$$
h_{221}^{3}=e_{1} k_{2} .
$$

By setting $\alpha=3, i=1, j=2$

$$
\sum_{l} h_{12 l}^{3} \omega^{l}=-\left(k_{1}-k_{2}\right) \omega_{2}^{1}
$$

Since $h_{i j k}^{\alpha}=h_{j i k}^{\alpha}$, by (25) we see that

$$
\begin{align*}
& h_{121}^{3}=h_{211}^{3}=h_{12}^{3}=e_{2} k_{1}, \tag{59}\\
& h_{122}^{3}=h_{212}^{3}=h_{221}^{3}=e_{1} k_{2} . \tag{60}
\end{align*}
$$

Therefore we obtain

$$
\left(e_{2} k_{1}\right) \omega^{1}+\left(e_{1} k_{2}\right) \omega^{2}=-\left(k_{1}-k_{2}\right) \omega_{2}^{1} .
$$

At p_{0} the left hand side equals zero and $k_{1}>k_{2}$, hence $\omega_{2}^{1}=0$. By (39) we obtain

$$
\begin{equation*}
h_{2112}^{3}=e_{2}\left(e_{2} k_{1}\right) \quad \text { at } \quad p_{0} . \tag{61}
\end{equation*}
$$

Indeed

$$
\sum h_{211}^{3} \omega^{2}=d h_{211}^{3}-h_{11}^{3} \omega_{2}^{1}-h_{21}^{3} \omega_{2}^{1}-h_{212}^{3} \omega_{1}^{2}+\sum_{\alpha} h_{211}^{\alpha} \omega_{\alpha}^{3},
$$

and using (36), (58) and (59), we reduce the formula above to

$$
\sum h_{2111}^{3} \omega^{l}=d h_{211}^{3}=d\left(e_{2} k_{1}\right)=\sum e_{l}\left(e_{1} k_{1}\right) \omega^{l}, \quad h_{2112}^{3}=e_{2}\left(e_{2} k_{1}\right) .
$$

Similarly by (60)

$$
\begin{equation*}
h_{2121}^{3}=e_{1}\left(e_{1} k_{2}\right) \quad \text { at } \quad p_{0} . \tag{62}
\end{equation*}
$$

Since $K_{N}=0, R_{\beta i j}^{\alpha}=0$. Hence setting $\alpha=3, i=l=2, j=k=1$ in (26), we obtain

$$
h_{212}^{3}-h_{2112}^{3}=\left(k_{1}-k_{2}\right) R_{212}^{1} .
$$

From (4) and the formula $d \omega_{2}^{1}=G \omega^{1} \wedge \omega^{2}, R_{212}^{1}$ is nothing but G. Hence

$$
h_{2112}^{3}-h_{2121}^{3}=\left(k_{1}-k_{2}\right) G .
$$

By (61) and (62) we have

$$
\begin{equation*}
e_{2}\left(e_{2} k_{1}\right)-e_{1}\left(e_{1} k_{2}\right)=\left(k_{1}-k_{2}\right) G \quad \text { at } \quad p_{0} . \tag{63}
\end{equation*}
$$

Since $G>0$, (63) contradicts, by (57), the assumption that $k_{1}>k_{2}$ at p_{0}. Therefore $k_{1}=k_{2}$ at p_{0}, which implies that $k_{1}=k_{2}$ everywhere on M. q.e.d.

By Lemma 3 and Lemma 4 we see that M is a pseudo-umbilical surface with M-index $=0$ (and hence totally umbilical) in N. Especially if N is the euclidean space E^{2+p}, then we may apply here Theorem 1 in [9] and see that M is a sphere in a linear subspace E^{3} of E^{2+p}.

References

[1] S. Kobayashi and K. Nomizu: Foundations of differential geometry, Vol. I, Interscience, New York, 1963.
[2] S, Kobayashi and K. Nomizu: Foundations of differential geometry, Vol, II, Interscience, New York, 1969.
[3] S. S. Chern, M. do Carmo and S. Kobayashi: Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, (1970), 59-75.
[4] K. Nomizu and B. Smyth: A formula of Simons' type and hypersurfaces with constant mean curvature, J. Differntial geometry, 3 (1969), 367-377.
[5] B.-Y. ChEn: Pseudo-umbilical Submanifolds of a Riemannian manifold of constant curvature, II, to appear.
[6] B.-Y. CHEN: Pseudo-umbilical Submanifolds of a Riemannian manifold of constant curvature, III, to appear.
[7] S. S. Chern: Some new characterization of Euclidean sphere, Duke Math. J. 12 (1945), 279-290.
[8] T. ŌTSUKI: A theory of Riemannian submanifolds, Kōdai Math, Sem. Rep. 20 (1968), 282-295.
[9] T. ÖTsuki: Pseudo-umbilical submanifolds with M-index $\leqq 1$ in Euclidean spaces, Kōdai Math, Sem. Rep. 20 (1968), 296-304.

