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§1. Introduction.

The normal curvature of a submanifold is defined by the square of the
length of the curvature form of the connection in the normal bundle (cf
[6]. The minimal index (M-index) at a point of a submanifold is defined
by the dimension of the linear space of all second fundamental forms with
vanishing trace (cf [8]). In this paper we prove the following proposition:

PrOPOSITION. Let M be a compact connected surface with positive
Gaussian curvature G isometrically immersed in a (2+ p)-dimensional space
form N of curvature c. If M is non-minimal and the mean curvature
vector H is parallel in the normal bundle and the normal curvature vanishes
identically, then M 1is a totally umbilical surface with M-index 0. Espe-
cially if N is euclidean then M is a sphere in a 3-dimensional linear sub-
space of N.

Without the assumption that H is parallel the same result holds under
the assumption that H never vanishes and HJ\|\H| is parallel, if G is con-
stant and c is non-positive, or if the Lipschitz-Killing curvature corre-
sponding to H||H|| is constant.

The proof is based on the Laplacian of the length of the second funda-
mental form (cf [3]. In §2 we recall the connection in the normal bundle
and obtain a formula similar to one essenlially used in [6] (cf REMARK 2).
In §3 we prove that M is of M-index 0. In §4 we make use of a classical
method in the theory of Weingarten surfaces and show that M is pseudo-
umbilical and prove the proposition.

§ 2. Preliminaries.

Let ¢ be an isometric immersion of an n-dimensional Riemannian mani-
fold M in an (n+p)-dimensional space form N with curvature ¢. We shall
make use of the following convention of the range of indices:

1A,B,C,---Sn+p; 1=54,j5,k,---=n;
n+1Za, 8,7, -Sn+p; n+2=r,s,t,--Sn+p.
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STRUCTURE EQUATIONS.

Let O(N) and O(N, M) be respectively the bundle of orthonormal frames
of N and the bundle of adapted frames, and let 7 be the injection from
O(N, M) into O(N). We denote by (»'4) and («'4) respectively the canonical
form and the connection form of O(N). 4 and «'§ are 1-forms on O(N).
Let ¢

g: M__)O(M M), U(P)=(el""9en+p)
be a local cross section and put
14
B

o' =(f0)*w', wi=(f0)*w

: 4

O(N, M)— O(N)
o l ] ©
ot
M—
Then o* and wf are local 1-forms on M determined by ¢ and satisfy the

following structure equations:

(oY) is the dual coframe field of (e,)

(1) o' =0

(2) o = 2 hi0’, hi;=hj,

(3)  do'= =T, itel=0,
(4) doj= —Loi\N;+ 25,

‘Q; = —;“'ZRij/czwk/\wl -

Réy = Réy + X(hachs—hihsy)
(5) ‘ dof = — N0+ 25, wj+0t=0,

2 = TRiuw* A,

R,‘;u = ngz + Z(hgkhgl'_ hgzhg}é) ’
(6) | . Réep=—Ripc=c(0.4020—8400xc) -

A

CoNNECTION IN Ty (M)QT*2(M).

(%) defines the connection in the tangent bundle 7(M) and the co-
tangent bundle 7T(M)*, and (og) defines the connection in the normal bundle
T+ (M). We express this using V as follows:
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If we put
(7) wf= LCho*, 0f = LChot,
then |
(8) | 7oy = ECher,
(9) Vol = —2Cho*,
(10) Veea= 2Coe.
We define the conormal bundle 7'+ (M)* by
(11) TH(M)* =pLEJ M{T,,l (M)*|the dual linear space of T,*(M)},

then (®f) defines a connection also in T(M)* If we denote by (e*7) the
dual coframe field of (e,), then

(12) Vet = —2XCye*.
Hence (%) and (0%) determine a connection in 7,7 (M)QT*2(M);
THM)@T (M) = TM)®: S TMBT(MF® - ®

(r times (stimes)

TMPFQTHM)®---QT(M)QT(M)*®---@T*(M)*

(p times) (g times)

For a tensor field K:M—T,(M)QT*'2(M) the covariant differential FK: M
T (M)YQT2(M) is defined. For example a tensor field K

K: M—TMPFQTM>*QT* (M)

can be considered as a bilinear mapping
K: TM)x TM)—T+(M),
and FK
FK: M—TM*QT(MP*QT(M*QT* (M)

regarded as a multilinear mapping

PK: TIM)x T(M)x T(M)—T*(M)
is given by

(13) PK(X,Y;Z)=0,K)(X,Y), X,Y,Ze T(M).

If we express K and FK using ¢ as

K=} K;0'Qu’Qe,,
FK = ZKigkwi@)wJ@wk@ea ’
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then (K7,) satisfies the relation

(14) 2LKjG0* = dKg— Y Kgef— T Kaot+ DK ep  (cf [3)).
We can consider that FK=}(F, K)®«*, hence ‘
(15) V. K= 2 K50'Q0’Re, .

For VK=V (FK) the similar formular to the Proposition 2.12, p 125, [1],
holds ;

(16) VPK(- s X3 Y) =Py (Ve K)—V, K.
We define now the canonical bundle isomorphism *
T (M)QTH(M)— T} M)QT (M),

for example, by

(17) L Kyo' Qo' ®e,)
= (L K50'Q0'®e.)*
= (LKHe®e,Qe*).
By (8), (9), and we obtain
(18) PLK)Y =V K*  XeT(M).

REesTRICTED LAPLACIAN 4.
The “restricted” Laplacian (cf [4]) of a tensor field K is defined by

(19) 4K =2XK) (- e e).
This is independent of the choice of ¢. If K is given by
K=3K0'Qo'Re,,
and 4'K and P’K is expressed by
4K = (4K ) 0' R0’ Re,
VK = 2 K{0'Q0’@o* @' Qe. ,
then the relation between (4'K);;) and (Kf,,) is expressed as

(20) ('K = ;Ki}“ ~(cf [3])-

When K is a function f; 4'f coincides with the ordinary Laplacian 4f.

F1BRE METRIC.

We denote by ¢ the fibre metric in 7;(M)®T*4(M) induced by the
Riemannian metric of N. . Let C be the contraction : :
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C: (Ty(MQT (M) ® (T:AM)QT 4(M))— T(M),
such that, for example,

C(e®0'®e.®e*) @ (0 Qe Qe ®e)) = 310,035
then ' o
(21) (K, K') = C(K®K"™).

Since Fx is a type preserving derivation and commutes with every contrac-

tion, by and ‘
(22) Vg K, K)=g(V:K, K")+¢(K,VzK').
SECOND FUNDAMENTAL FORM.

The second fundamental form h: T(M)x T(M)—T* (M), i.e.,, h: M—
TM*QT(M*QT*(M) of the immersion ¢ is locally expressed, using (Ag;)
of (2), by |

(23) h= 2 hio'QR@Re’'Re, .
The mean curvature vector H is given by

(24) H=1 shee .
n

If we put

Vh= X hie'Qe’Qe* e,

Vh = Zhinue' @0’ Qe @’ Qe, ,
then by (5) and (6) (cf [3]) '

(25) h’:jk — hg/cj = jok =0 ’
(26) hispe—hi = 2 hng?}cl + 2 ha R — Z he iR
(27) (A 'h).';j = Zk:h:ﬂck = Z h::lcij + nChgj —C (Z h/:k) 551

+ D Mt 2B
— bty + B Rt i),
@8) (S ) = B+ SRy,

azj azjk

(28) is the formula (3.12) of [3], but we give here a proof to compare it
with the next lemma. By [15), [16), [19) and
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A(Z (i) = d'g (s )= 57, Py g b 1) = TPy, e, s )
= 2§g(7% Ve, h—V,ekek h, h)+ 2§g Ve hV.h)
= 2g(d'h, h)+ sz:g Peh, Ve h)
= 20155 h)gy+ 2 3 (i

LEMMA 1. If there exists a number a such e, is parallel, then for
this a |

(29) (5 0h2) = 3 (haga+ T By

7] it
Proor. Let C be a contraction
C: TM@}QTWMP*QTHM)QT(M)*—T(M*QT(M)*.
We set
h*=ChQe*),
then.
h® = %‘,hg,-w‘®wf .
Therefore
A (hisF) = Ao (e, 1) = 20 (B0, Vo =T, b, 1)
+ 2%]9(17%}1“, Ve h.
Since e, is | parallel, Fye**=0 for any XeT(M). Hence
o bt = C((Pe, ®e*) = Dhino'®a?,
and consequently
gWe b Ve b)) = 2 (hise)’
Similarly
SVl =50, oh* = C(Z T h =V, aN®e*)
= C(A'hRe*)
=2 (4'h)ij0' @,

0( D0 eht =T, 0, ), 1) = Sy ( AR
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Therefore we obtain

AR = Db+ ShAR. qed

iik

ReEMARK 1. If the mean curvature vector H never vanishes, we may
choose e,,; in the direction of H, i.e., e,,=H/||H||. If HJ|H| is parallel,
then we get by LEMMA above

(30) - A(ShY) = D+ D AR
[ ejk <7
For and
(31) LAsp = 5 (hipf+ D)@Y, (r=n+2,n+p).
2  rij rijk i

REMARK 2. The formula plays the essential role in or [6],
but it is not assumed there, that HJ||H]|| is parallel. It seems to the author

that does not hold without this assumption or other.

NORMAL CURVATURE (cf. [6]).
The normal curvature of the immersion ¢ is defined by

(32) Ky= Z (R;/cz)z

apkl

ince N is a space form,

Ky=% (Dbt —haht))

afkl \ @

Hence the normal curvature vanishes if and only if the p 7 x n-matrices
(hg;) can be transformed simaltaneously in diagonalized forms.

§ 3. Surfaces with K,=0.

In the following throughout this paper we assume;
M is a compact connected surface,
Ky=0,
the Gaussian curvature G of M is positive,
H never vanishes,
HJ||H]|| is parallel,
and we choose ¢ so that
e; = HJ||H||.

LEMMmA 2.
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(34) Zh;kij =0 fOI‘ r g 4.

i
Proor. We note

(35) Shy=0 - for r=4.
k

e; is parallel, hence by (7) and we obtain

136) w;=0.

By (14)

(37) §h;jka)k = dh«gj— ;h;'jwf; —_— ;h:zws + ;hgng ’

hence, using (35) and (36), we have
z; (Z’;:h;kiwi) =0,

(38) | Zk: hie=0.

Similarly

(39) | Zl: hijw® = dhizp— z:: hijwi— zl‘_'_. hiws — Zl: hi )+ Zp: hinws
therefore

Z (;thijwj) = ; dh;ki - % h;}czwi - % h;uwi - % thzwg + Z h}‘:ua): .

P
Since hir=hiy,, the formula above is, using (36) and [38), reduced to
2 (3 Ahs0?) =0, |
that is, |
Zk]h;m=0. g.e.d.

REMARK 3. In the case of minimal submanifolds
Zh;k,zj:O for azn""l,
% -
as is seen in [3] But in the case of nonminimal submanifolds, choosing
é.+1 in the direction of H, we cannot obtain
Zh;ku=0 fOI' r%n*l-z
— ‘
without some additional condition.
For each a, we denote the symmetric 2 x 2-matrix (hg;). by

(40) ' H, = (h?j) s



270 - Y. Tazawa

and set ,

(41) S, =trace H,-'H, = z_?.( i)
(42) S = Z Sa ’

(43) S= LS. = 2 (ki)

rij
If we use the expression in the proof of LEMMA 1,
S=gh,h),
S=g(h, h)—g(h, b?).

Since e, is global, S is a well defined function over M.
We now consider a decomposition of T,*(M) (cf. [8]). We set

N,={ec T,*(M)|g(e, &) = 0},
and define a linear mapping ¢, from N, into the set of 2 x 2-matrices by
| 0.(Zve) = (Luhiy). |
Then the kernel of o,, ‘x‘vhich We denote by O,, isvindependent of the choice
of ¢, and dim O,=Zp—2. In fact, if we put
é= ;hﬁe,., é= ;h;;ef, e, eeN,,

e€ N, belongs to O, when and. only when

gle, &)=gle,8)=0.

Since Ky=0, it follows that & and & are linearly dependent in N,. There-
fore dim O,=dim N,—1=p—2.
We call dim N,—dim O, the minimal index (M-index) of M at p (cf. [8]).

LEmMA 3. M-index of M is everywhere zero.
Proor. We deﬁne two subsets of M by

= {p€ M|M-index =0 at p},
= {p€ M| M-index =1 at p}.

Then §=0 on M,, §>0 on Ml, M, is open and M M,UM,.
If M,#¢, then N,, peM,, is decomposed as

Np:Nz:®Op’

where N, is the 1-dimensional orthogonal complement of O, in N,. This
decomposition is well-defined and smooth.on M,. Therefore we can choose
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¢ locally on M,, so that ¢€N,. Since Ky=(0 and H, are simultaneously
diagonalized, we may put

kR O a O
44 H,= , H, = , a¥0,
44) 3 (O kz) ,4 (0 —a) ¢
0 0 |
H,=( for r=5
0 O

Hence we obtain
(45) ' S=2a.
The Gaussian curvature G is given by
dw; = G(0'Ad).
Accordingly by (4), (6) and (44)
G =vc+k1k2-—-a2 s

that is, if we denote the Lipschitz-Killing curvature of the immersion ¢ by

G(p, o),

(46) ' G=C+G(p,e3)———"§— |

3

Since G>0 and §=0, we obtain, using Lemma 2, (27) and (44),

(47 TRl dhey = Sk 'Ry = Tk (AR = 28G 2 0.
Therefore by | |

1,5 1 (D
(48) | E—AS = ——A(MZ; (his))

2
Zj:(hm) + Zhw( 'h) =0,

ie, 4§=0 on M,.

At a boundary point of M,, if any, 4§=0 by continuity. At an inner
point of M,, if any, 4§=0 clearly. Hence 4§=0 on M,. Therefore 45=0
over M and accordingly 48§=0, because M is compact. Hence by (47) and
(48) §=0 on M,, which contradicts the construction of M. Therefore
M,=¢. q.e.d. : '

By LEmMMA 3 4nd (31)

(49) hiw=0 for all 74,7, %
(50) . §=0.
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§ 4. Proof of Proposition.

In this section we assume further that one of the following three con-
ditions holds:

(51) - G=const, c=<0,

(52) G(p, H|H|)) = const,
(53) |H || = const .

If we denote by %, and %, the principal curvatures corresponding to HJ|H |,

or means by (46) and (50)

(54) kik, = const >0 ,
and means
(55) k,+ k, = const .

LEMMA 4. M is pseudo-umbilical, i.e., ky=Fk, every-where on M.

Proor. We shall use a well known method, for example, in [7].

We choose %, and %, so that k,=k,, then %k, and %, are continuous func-
tions on M and differentiable .on the subset of M, where k2, >%,. Since M
is compact, there exists a point p,, by or where &, has a maximum
and %, has a minimum.

If we assume £k,(po)>ky(po), then %k and k, are differentiable in a
neighbourhood of p, and we can choose a local cross section ¢ around p,
so that e,=H/||H|| and e, and e, are the principal directions corresponding
respectively to &, and k,. We have

(56) ek, =ek, =0 at py,

(57) e;(ek) <0, éi (eky) =0 at p,.
We have also |

(58) w;=0 at po.

Indeed, setting a=3, i=j=1 in and using (36), we obtain
T huo' = dhy = (k) @,
h; = ek, . o
Similarly by setting a=3, i=j=2
h = ek, .

By setting a=3, i=1, j=2
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Zz: hinw' = v".(kx_kz) w; .

Since h§;=h5,, by we see that
(59) W = hyy = R, = ek,
(60) R = i = B3y = ek, .
Therefore we obtain
(€)' +(eky) 0 = —(ky— ko) @ -

At p, the left hand side equals zero and k,>%,, hence wi=0. By we
obtain

(61) hine = ex(eky) at po.
Indeed

3 1 __ 3 3 1 3 1 3 2 3
Z kzuzw = dhzu - hmwz - h2210)2 - h21z(01 + Z hgllwa ’
a

and using (36), (58) and we reduce the formula above to

X i’ = dhiy = d(eky) = Telek), hiu = eledy).
Similarly by [60] o
(62) hn = e (ek,) at py.
Since Ky=0, R;;=0. Hence setting a=3, i=I[=2, j=k=1 in (26), we
obtain

Ry — My = (k,—ky) R, .
From (4) and the formula dwi=Go'A«? R}, is nothing but G. Hence
» hy—hym = (ki— k)G .

By (61) and (62) we have
(63) e(ek))—e (ek,) = (ki—k) G at py.

Since G>0, (63) contradicts, by (57), the assumption that &>k, at p,.
Therefore =%, at p,, which implies that 2, =%, everywhere on M. g.e.d.

By LEMMA 3 and LEMMA 4 we see that M is a pseudo-umbilical surface
with M-index=0 (and hence totally umbilical) in N. Especially if N is the
euclidean space E**?, then we may apply here Theorem 1 in [9] and see
that M is a sphere in a linear subspace E® of E?*».

Department of Mathematics,
Hokkaido University
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