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Introduction

In their papers [7] and [4], Hattori and EndO-Watanabe proved that in
a central separable C-algebra, there exists a one to one correspondence of
the class of semisimple C-subalgebras to itself (See Theorem 3. 5 [7] and
Theorem 4.2 [4] ). The author tried to extend this theorem to the case
of separable extension, and obtained a partial extension of their theorem
(See \S 2). Let \Lambda|\Gamma be a ring extension with \Lambda\Lambda\otimes_{r}\Lambda_{A}<\oplus_{A}(\Lambda\oplus\cdots\oplus\Lambda)_{A} (we
call this extension H-separable extension), and denote \mathfrak{B}_{l}=\{B|B\supset\Gamma

-
BB\Gamma<\oplus

B\Lambda\Gamma and B\otimes_{\Gamma}\Lambdaarrow\Lambda splits}, \mathfrak{D}_{l}= {D|C\subset D, DD<\oplus_{D}\Delta and D\otimes_{C}\Deltaarrow\Delta splits}, \mathfrak{B}

= {B|separable extension of \Gamma, BBB<\oplus_{B}\Lambda_{B}} and \mathfrak{D}=\{D|separable C-subal-
gebras of \Delta}. In \S 0 we state some important properties of H-separable
extension which have been obtained already for convenience to readers. In
\S 1 we shall prove that there exist one to one correspondences between \mathfrak{B}_{l}

and \mathfrak{D}_{l} and between \mathfrak{B} and \mathfrak{D}. The latter correspondence has been proved
by the same author under the additional condition that \Lambda is left or right
\Gamma- f.g. projective. In \S 2 we shall prove that B in \mathfrak{B}_{l} is left (resp. right\rangle

semisimple over \Gamma
- D=V_{A}(B) is right (resp. left) semisimple over C under the

condition that \Lambda is left \Gamma-f.g. projective and a C-generator. In \S 3 we shall
give an example of separable extension which is not a Frobenius extension.

0. Preliminaries

All rings in this paper shall be assumed to have unities and all sub-
rings have the s^{1}ame identities as the over rings. First, we shall recall
the definitions. Let \Lambda be a ring and \Gamma a subring of \Lambda , C the center of
\Lambda , \Delta=V_{A}(\Gamma)= {x\in\Lambda|xr=rx for every r\in\Gamma}.

DEFINITION. \Lambda is a separable extension of \Gamma if the map \pi:\Lambda\otimes_{\Gamma}\Lambdaarrow\Lambda

defined by \pi(x\otimes y)=xy splits as \Lambda-\Lambda-map.
DEFINITION. \Lambda is an H-separable extension of \Gamma if \Lambda\otimes_{\Gamma}\Lambda is \Lambda-\Lambda-

isomorphic to a \Lambda-\Lambda-direct summand of a finite direct sum of copies of \Lambda .
DEFINITION. \Lambda is a left semisimple extension of \Gamma if every left \Lambda-

module is (\Lambda, \Gamma)-projective, or equivalently, if every left \Lambda-module is (\Lambda, \Gamma)-
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injective. \Lambda is a semisimple extension of \Gamma if \Lambda is both left and right
semisimple extension of \Gamma_{-}

DEFINITION. Let R be a commutative ring and \Lambda an R-algebra. \Lambda is
a left semisimple R-algebra if every finitely generated left \Lambda-module is (\Lambda, \Gamma)-

projective.
It has been proved that in the case where R is Noetherian and \Lambda is

finitely generated over R, \Lambda is a left semisimple R-algebra if and only if
\Lambda is a right semisimple R-algebra.

Now we shall pi_{t}ck up some main properties of H-separable extension
which have been obtained in [9], [10], [14], [15], and [18].

(0. 1) If \Lambda is an H-separable .extension of \Gamma , \Lambda is a separable extmsion
of \Gamma (Theorem 2. 2 [9]).

(0. 2) The following three conditions are equivalmt;
(1) \Lambda is an H-separable extension of \Gamma

(2) \Delta is C-f.g. projective and the map \eta of \Lambda\otimes_{\Gamma}\Lambda to Hom(_{C^{l}C}\Delta,\Lambda)

defifined by \eta(x\otimes y)(d)=xdy for x, y\in\Lambda and d\in\Delta is a \Lambda-\Lambda-isomorphism
(3) For eve\eta \Lambda-\Lambda-module M, the map g : of \Delta\otimes_{C}M^{A} to M^{\Gamma} such that

g(d\otimes m)=dm for d\in\Delta and m\in M is an isomorphism. Here M^{\Omega}=\{m\in M|

mx=xm for every x\in\Omega } for a subring \Omega of \Lambda . (Theorem 1. 1 and Theorem
1. 3 [14] ).

(0. 3) If \Lambda is H-separable over \Gamma r

, then the maps \eta_{r} of \Lambda\otimes_{c\Delta^{0}} to End
(\Lambda_{\Gamma}) defifined by \eta_{r}(x\otimes d^{0})(y)=xdy , \eta_{l} of \Delta\otimes_{C}\Lambda^{0} to End (_{\Gamma}\Lambda) defifined by
\eta_{l}(d\otimes x^{0})(y)=dyx and r_{t},

) of \Delta\otimes_{C}\Delta^{0} to End (_{\Gamma}\Lambda_{\Gamma}) defifined by \eta_{t}(d\otimes e^{0})(y)=dye

for x, y\in\Lambda and d, e\in\Delta are ring isomorphisms (Prop. 3. 1 and 4.7 [10]).
(0. 4) If \Lambda is H-separable over \Gamma_{:} and if \Gamma\Gamma<\oplus_{\Gamma}\Lambda or \Gamma_{\Gamma}<\oplus\Lambda_{\Gamma} , thm

V_{A}(V_{A}(\Gamma))=\Gamma (Prop. 1. 2 [14]).
(0. 5) If \Lambda is H-separable over \Gamma,\cdot and if B is a subring of \Lambda such

that B\supset\Gamma and BB\Gamma<\oplus_{B}\Lambda_{\Gamma} , then V_{A}(V_{A}(B))=B and the map \eta_{B} of B\otimes_{\Gamma}\Lambda

to Hom(_{D}\Delta, D\Lambda) defifined by \eta_{B}(b\otimes x)(d)=bdx for b\in B, x\in\Lambda and d\in D, where
D=V_{\Lambda}(B), is a B-\Lambda-isomorphism (Prop. 1. 3 [14]).

(0. 6) If. \Lambda is H-separable over \Gamma , and if r\Gamma_{\Gamma}<\oplus_{\Gamma}\Lambda_{\Gamma} (resp. r\Lambda_{\Gamma}<\oplus

\tau(\Gamma\oplus\cdots\oplus\Gamma)_{\Gamma}) , \Delta is a separable (resp. a cmtral separable) C-dgebra (Prop.
4. 7 [10] ).

(0. 7) Let \Lambda , B and \Gamma be rings such that \Gamma\subset B\subset\Lambda . Then if B is a
separable (resp. an H-separable)extension of \Gamma, we have DDD<\oplus_{D}\Delta_{D} (resp.
D\Delta_{D}<\oplus_{D}(D\oplus\cdots\oplus D)_{D}) (Prop. 1. 1 [15]).

Let B be a subring of \Lambda with \Gamma\subset B. Then we shall simply say that
B\otimes_{\Gamma}\Lambdaarrow\Lambda splits if the map \pi_{B} : B\otimes_{\Gamma}\Lambdaarrow\Lambda such that \pi_{B}(b\otimes x)=bx(b\in B, x\in\Lambda)

splits as B-\Lambda-map.
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(0. 8) If \Lambda is H-separable over \Gamma
- and if B is a subring of \Lambda such that

\Gamma\subset B and B\otimes_{\Gamma}\Lambdaarrow\Lambda or \Lambda\otimes_{\Gamma}Barrow\Lambda splits, then \Lambda is an H-separable extension
of B (Prop. 2. 2 [15]).

1. Commutor theory on separable subextensions

Let \mathfrak{B}_{l} (resp. \mathfrak{B}_{r}) be the set of subrings B of \Lambda such that \Gamma\subset B, BB\Gamma<\oplus

B\Lambda\Gamma(resp_{\Gamma}.B_{B}<\oplus_{\Gamma}\Lambda_{B}) and B\otimes_{\Gamma}\Lambdaarrow\Lambda (resp. \Lambda\otimes_{\Gamma}Barrow\Lambda ) splits, and \mathfrak{D}_{l} (resp.
\mathfrak{D}_{r}) the set of C-subalgebras D of \Delta such that DD<\oplus_{D}\Delta (resp. D_{D}<\oplus\Delta_{D})
and D\otimes_{C\Delta}arrow\Delta (resp. \Delta\otimes_{C}Darrow\Delta) splits. Furtheremore, let \mathfrak{B} be the set of
subrings B of \Lambda such that B is a separable extension of \Gamma and BBB<\oplus_{B}\Lambda_{B} ,
and \mathfrak{D} the set of separable C-subalgebras of \Delta .

(1. 1) Let R be a commutative rin\acute{g} and \Omega an R-algebra which is an
R-f.g. projective moduie. Thm any separable R-subalgebra \Lambda of 12 is a
\Lambda-\Lambda-direct summand of \Omega .

PROOF. Let C be the center of \Lambda , V_{\Omega}(C)=B.andV_{\Omega}(\Lambda)=\Gamma, Then by
(0. 7) and Theorem 2. 3 [1], r\Gamma_{\Gamma}<\oplus_{\Gamma}B_{\Gamma} and BBB<\oplus_{B}\Omega_{B} . Hence, B and \Gamma

are R-f.g. projective, consequently, C-f.g. projective. Then {}_{C}C<\oplus_{C}\Gamma r But
B\cong\Lambda\otimes_{C}\Gamma\oplus>\Lambda as \Lambda-\Lambda-module by Theorem 3. 1 [1]. Therefore, 4\Lambda A<\oplus_{A}\Omega_{A} .

(1. 2) Let \Lambda be an H-separable extmsion of \Gamma
- Then, for any B\in \mathfrak{B}_{l} ,

V_{A}(B)\in \mathfrak{D}_{l} , and for any D\in \mathfrak{D}_{l} , V_{4}(lD)\in \mathfrak{B}_{l} (Prop. 2 [16]).
Now we can obtain more general results than Theorem 2. 1 [15] and

Theorem 1 [18].

(1. 3) THEOREM. Let \Lambda be an H-separable extmsion of \Gamma, and con-
sider the correspondmce V:A-arrow V_{A}(A) for subring A of \Lambda . Then we
have;

(1) V yields a one to one correspondence between \mathfrak{B}_{l} and \mathfrak{D}_{l} (resp. \mathfrak{B}_{r}

and \mathfrak{D}_{r}) such that V^{2}=identity .
(2) V yields a one to one correspondence betwem \mathfrak{B} and \mathfrak{D} such that

V^{2}=idmtity .
PROOF. (1). By (0.5) we have V_{A}(V_{\Lambda}(B))=B for B\in \mathfrak{B}_{l} . Thus by

(1.2) we need only to prove V_{\Lambda}(V_{\Lambda}(D))=D for every D\in \mathfrak{D}_{l} . Let B=V_{\Lambda}(D)

and D’=V_{A}(B) . Then we have

D’\otimes_{D}\Delta\cong Hom(_{B}\Lambda_{4}\Lambda_{A})\otimes_{D}\Delta\cong Hom({}_{B}Hom(_{DD}\Delta,\Lambda)_{A}, B\Lambda A)

\cong Hom(_{B}B\otimes_{\Gamma}\Lambda_{A}\Lambda_{A}) (By(0.5))

\cong Hom(_{\Gamma}\Lambda_{A},{}_{r}Hom(_{B}B_{ B},\Lambda)_{\Lambda})\cong Hom(_{I},\Lambda_{A,\Gamma}\Lambda_{\Lambda})\cong\Delta

The composition of the above map is given by d’\otimes darrow d’d for d’\in l\mathcal{Y} and
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d\in\Delta. Since B\otimes_{\Gamma}\Lambdaarrow\Lambda splits by (1. 2), D’ D’<\oplus_{D’}\Delta by (1. 2). Hence D’\otimes

DD’\subset D’\otimes_{p}\Delta\cong\Delta, and we have D’\otimes_{D}D’\cong D’ . Then since DD<\oplus_{D}D’ , we
have D=V_{D’}(V_{D’}(D))=V_{D’} (the center of D’) =D’ by (0. 4)

(2). For any B\in \mathfrak{B}(\subset \mathfrak{B}_{l}) , \Lambda is an H-separable extension of B with
BBB<\oplus_{B}\Lambda_{B} by (0. 8), hence V_{\Lambda}(B)\in \mathfrak{D} by (0. 6) and V_{A}(V_{A}(B))=B by (0. 4).
Since \mathfrak{D}\subset \mathfrak{D}_{l} by (1. 1), for any D\in \mathfrak{D}, V_{A}(V_{\Lambda}(D))=D by (1), and V_{A}(D)=B\in \mathfrak{B}_{l}

by (1.2). Since BBB<\oplus_{B}\Lambda_{B} by (0.7), we need only to prove the next lemma.
(1. 4) Let \Lambda , B and \Gamma be rings such that \Gamma\subset B\subset\Lambda . Thm if B\otimes_{\Gamma}\Lambdaarrow\Lambda

splits and BBB<\oplus_{B}\Lambda_{B} , B is a s\varphi arable extmsion of \Gamma

PROOF. Let \Lambda=B\oplus M as B-B-module. Since B\otimes_{\Gamma}\Lambdaarrow\Lambda splits, there
exists \sum b_{i}\otimes x_{i}\in(B\otimes_{\Gamma}\Lambda)^{B} such that \sum b_{i}x_{i}=1 . Let x_{i}=a_{\dot{\iota}}+m_{i} with a_{i}\in B,
m_{i}\in M. Then M \ni\sum b_{i}m_{i}=1-\sum b_{i}a_{i}\in B, and \sum b_{i}a_{i}=1 . On the other hand,
since \sum b_{i}\otimes x_{i}\in(B\otimes_{\Gamma}\Lambda)^{B}, \sum b_{i}\otimes a_{i}\in(B\otimes_{\Gamma}B)^{B} . Thus B is separable over \Gamma

We end this section by giving a remark on a separable extension of
simple ring. Here, simple ring means simple artinean ring. The next
proposition almost depends on the classical fundamental theorem on simple
rings.

(1. 5) THEOREM. Let \Gamma be a simple ring and \Lambda an H-separable
extmsion of \Gamma. Thm, we have;

(1) \Lambda is also a simple ring, and V_{A}(V_{A}(\Gamma))=\Gamma -

(2) \Delta is a simple C-algebra.
(3) [\Lambda:\Gamma]_{l}=[\Lambda:\Gamma]_{r}=[\Delta:C] .

Thus the correspondmce V provides a one to one correspondmce of the class
of simple subrings which contain \Gamma to the class of simple C-subalgebras of \Delta.

PROOF. (1). Since \Gamma is simple, \Gamma\Gamma<\oplus_{\Gamma}\Lambda . Thus C\subset V_{A}(V_{A}(\Gamma))=\Gamma-

Hence C contains no idempotent. On the other hand, \Lambda is a semisimple
ring, since \Lambda is a semisimple extension of a semisimple ring \Gamma (See Cor.
1. 7 and Prop. 2. 6 [8] ). Hence 41 is a simple ring.

(2). C is a field by (1), and \Delta is a C-algera with [\Delta:C]<\infty . Hence
\Lambda\otimes_{\Gamma}\Lambda\cong Hom(_{CC}\Delta,\Lambda)\cong(\Lambda\oplus\cdots\oplus\Lambda) as \Lambda-\Lambda-module. Let \Lambda=\sum_{a\in A}\oplus \mathfrak{l}_{a} with each
\mathfrak{l}_{\alpha} a simple \Gamma-submodule of \Lambda . Then \mathfrak{l}_{a}\cong \mathfrak{l}_{\beta} , since \Gamma is a simple ring, and
we see \Lambda\otimes_{\Gamma}\mathfrak{l}_{\alpha}\cong\Lambda\otimes_{\Gamma}\mathfrak{l}_{\beta}\neq 0 . Thus \sum\oplus\Lambda\otimes_{\Gamma}\mathfrak{l}_{a}\cong\Lambda\oplus\cdots\oplus\Lambda as left \Lambda-module.
This implies that |A|<\infty . Hence \Lambda is left \Gamma-finitely generated and similarly
\Lambda is right \Gamma-finitely generated. Since \Delta\otimes_{C}\Lambda^{0}\cong Hom(_{\Gamma}\Lambda_{ \Gamma},\Lambda) and \Lambda is a gen-
erator of \Gamma \mathfrak{M}, \Delta\otimes_{C}\Lambda_{0} is a simple ring by Morita Theorem. Then, \Delta is a
simple C-algebra.

(3). Since [\Delta:C]<\infty and V_{A}(\Delta)=\Gamma, we can apply the ‘fundamental
theorem on simple rings’ (See \S 16 [2], Theorem 16. 1).
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2. Semisimple subextensions in separable extension

In this section, we shall study the centralizers of semisimple extensions
in H-separable extension. Let \Lambda be an H-separable extension of \Gamma with
\Gamma\Gamma_{p}<\oplus_{\Gamma}\Lambda_{\Gamma} , and D be any right semisimple C-subalgebra of \Delta. Then D\in \mathfrak{D}_{r} ,
and V_{A}(D)\in \mathfrak{B}_{r} . Now we shall consider the semisimplicity of B\in \mathfrak{B} ,. over \Gamma

(2. 1) PROPOSITION. Let \Lambda be an H-separable extmsion of \Gamma_{-}

, and \sup-

pose that \Lambda is right \Gamma-f.g. projective. Then for any B in \mathfrak{B}_{r} , B is a left (resp.
right) smisimple extmsion of \Gamma if and only if \Lambda\otimes_{C}D^{0} is a left (resp. right)
semisimple extension of \Lambda , where D=V_{A}(B) .

PROOF. Since B\in \mathfrak{B}_{r} , we have D\in \mathfrak{D}_{r} , V_{A}(D)=B and End(\Lambda_{B})=\Lambda\otimes_{C}D^{0}.
Denote that P=\Lambda\otimes_{C}D^{0} and Q=\Lambda\otimes_{C}\Delta^{J}. First suppose that P is left semi-
simple over \Lambda , and lef M be any left P-module. Consider the next left
P-map

\pi_{(A,M)} : \Lambda\otimes_{\Gamma} Hom (_{PP}\Lambda,M)- M

defined by \pi_{(A,w}(x\otimes f)=xf for x\in\Lambda , f\in Hom(_{P}\Lambda, PM) . Since \Lambda is right
\Gamma- f.g . projective and Q\cong End(\Lambda_{l},) by (0.3), we have

\Lambda\otimes_{\Gamma} Hom (_{PP}\Lambda,M)\cong Hom(_{PHom}(\Lambda_{\Gamma}, \Lambda_{\Gamma}), PM)\cong Hom(_{P}Q, PM)

Hence \pi_{(\Lambda,M)} is factored through the map \psi of Hom (_{P}Q_{ P},M) to M such
that \psi(\alpha)=\alpha(1) for \alpha\in Hom(_{P}Q_{ P},M) . Since P is a P-\Lambda-direct summand
of Q, \psi splits as left \Lambda-map. Since P is a left semisimple extension of \Lambda ,
\psi splits as P-map. Thus for any left P-module M, \pi_{(A,M)} splits as left P-map
and \Lambda is left P-f.g. projective. Therefore, B=End(_{P}\Lambda) is a left semisimple
extension of \Gamma by Theorem 2 [17]. Next, suppose that P is right semisimple
extension of \Lambda , and let N be any right P-module, and consider the next
right P-map

\iota_{(A,N)} : N-Hom(\Lambda_{\Gamma}, \angle\backslash ^{f}\otimes_{P}\Lambda_{\Gamma})

defined by \iota_{(A,N)}(n)(x)=n\otimes x for n\in N, x\in\Lambda . Since \Lambda is right \Gamma-f.g. projec-
tive, we have a right P-isomorphism \sigma:N\otimes_{P} Hom (\Lambda_{\Gamma}, \Lambda_{\Gamma})arrow Hom(\Lambda_{\Gamma}, N\otimes_{P}\Lambda_{\Gamma})

such that \sigma(n\otimes g)(x)=n\otimes g(x) for x\in\Lambda , n\in N and q\in End(\Lambda_{\Gamma}) . (Let \{f_{i}, x_{i}\}

be a dual basis of \Lambda_{\Gamma} . Then h arrow\sum h(x_{i})\circ f_{i} for h\in Hom(\Lambda_{\Gamma}, N\otimes_{P}\Lambda_{\Gamma}) is the
inverse map of \sigma). Thus \iota_{(A,N)} is equivalent to \iota_{N} : Narrow N\otimes_{P}End(\Lambda_{\Gamma})\cong N\otimes_{P}Q

such that \iota_{N}(n)=n\otimes 1 for n\in N. Since PPA<\oplus_{P}Q_{A} , \iota_{N} (hence \iota_{(A,N)} ) splits
as right \Lambda-map. Then \iota_{N} (hence \iota_{(A,N)} ) splits as P-map, since P is a right
semisimple extension of \Lambda . Hence by Theorem 2 [17], B is a right semi-
simple extension of \Gamma .
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Thus we have proved the ‘if’ parts. Now we shall prove the ‘only if’
parts. Since B\in \mathfrak{B}_{r} and \Lambda is right \Gamma-f.g. projective by assumption, \Lambda is
right B-f.g. projective. Suppose that B is a right semisimple extension of
\Gamma. and let M be any right B-module. Consider the next map

\pi_{(A,M)}’ : Hom (\Lambda_{B}, M_{B})\otimes_{\Gamma}\Lambda_{B}arrow M_{B}

defined by \pi_{(A,M)}’(f\otimes x)=f(x) for x\in\Lambda , f\in Hom(\Lambda_{B}, M_{B}) . This map is equi-
valent to the map \psi of Hom(\Lambda_{B}, M_{B}) to M such that \psi(f)=f(1) . Since
rB_{B}<\oplus_{\Gamma}\Lambda_{B} , \psi and \pi_{(A,M)}’ splits as \Gamma-maps. Then since B is right semisimple
over \Gamma by assumption, \pi_{(A,M)}’ splits as B-map for any right B-module M.
Hence P=End(\Lambda_{B}) is a right semisimple extension of \Gamma by Theorem 2 [17].
Similarly we can prove that if B is a left semisimple extension of \Gamma,, P is
a left semisimple extension of \Lambda , since the map

\iota_{(A,N)}’ : Narrow Hom(_{AA}\Lambda,\Lambda\otimes_{B}N)

defined by \iota_{(A,N)}’(n)(x)=x\otimes n for x\in\Lambda , n\in N, splits as B-map under the given
conditions.

By this proposition and Proposition 2 [12], we obtain a partial extension
of Hattori’s theorem.

(2. 2) THEOREM. Let \Lambda be an H- s\epsilon parable extension of \Gamma such that \Lambda

is right \Gamma-f.g. projective and also a C-gmerator. Thm if B in \mathfrak{B}_{r} is a
left (resp. right) semisimple extension of \Gamma,\cdot D is a right (resp. left) smi-
simple extmsion of C.

PROOF. Since \Lambda\otimes_{C}D^{0} is left (resp. right) semisimple over \Lambda , and {}_{C}C<\oplus

c\Lambda , D^{0} is left (resp. right) semisimple over C by Prop. 2 [12]. Thus D is
right (resp. left) semi-simple over C.

3. A separable extension which is not a quasi-Frobenius extension
In [6], EndO-Watanabe proved that every separable R-algebra which is

a finitely generated projective R-module is a symmetric, hence a Frobenius
R-algebra. But in the case of ring extension of non commutative ring, we
can show this is not always true. More generally, we can give an example
of a separable extension which is not a left quasi-Frobenius extension. A
ring \Lambda is a left quasi-Frobenius extension of \Gamma if \Lambda\supset\Gamma, \Lambda is left \Gamma-f.g.
projective and A( \sum\oplus Hom(_{r}\Lambda, \Gamma\Gamma))_{r}\oplus>_{\Lambda}\Lambda_{\Gamma} . Right quasi-Frobenius extension
is similarly defined, and both left and right quasi-Frobenius extension is
called quasi-Frobenius extension (See [11]). The next lemma has been proved
in \S 3 [15].

(3. 1) Let \Lambda be a ring and \Gamma a subring of \Lambda . Thm the following
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conditions are equivalmt;
(1) \Lambda is a left quasi-Frobenius extension of \Gamma

(2) \Lambda is a left \Gamma-f.g. projective, and there exist \sum x_{i}^{(k)}\otimes y_{i}^{(k)}\in(\Lambda\otimes_{\Gamma}\Lambda)^{A}

and \alpha_{k}\in Hom(_{\Gamma}\Lambda_{\Gamma,\Gamma}\Gamma_{\Gamma}), k=1, \cdots , n, such that \sum_{k,i}x_{\dot{n}}^{(k)}.\alpha_{k}(y_{i}^{(k)})=1 . (See &mma

3. 1 [15] ).
(3. 2) THEOREM. Let \Lambda be a ring and \Gamma a subring of \Lambda such that

the map \pi:\Lambda\otimes_{\Gamma}\Lambdaarrow\Lambda defifined by \pi(x\otimes y)=xy(x, y\in\Lambda) is an isomorphism.
Thm if \Lambda is a left (or right) quasi-Frobenius extmsion of \Gamma. \Lambda=\Gamma.

PROOF. By (3. 1), there exist \sum x_{i}^{(k)}\otimes y_{i}^{(k)}\in(\Lambda\otimes_{\Gamma}\Lambda)^{A} and \alpha_{k}\in Hom(_{\Gamma}\Lambda_{\Gamma,\Gamma}\Gamma_{\Gamma})

with \sum_{i,k}x_{i}^{(k)}\alpha_{k}(y_{i}^{(k)})=1 . Since the map \pi is isomorphic, we have

V_{A}(\Gamma)\cong Hom(_{A}\Lambda\otimes_{\Gamma}\Lambda_{A,.4}\Lambda_{A})\cong Hom(_{\Lambda}\Lambda_{A,11}\Lambda_{A})\cong C

This implies V_{A}(\Gamma)=C. Then \pi induces also
C=V_{\Lambda}(\Gamma)\cong Hom(_{\Gamma}\Lambda_{\Lambda\Gamma},\Lambda_{A})\cong Hom(_{\Gamma}\Lambda\otimes_{\Gamma}\Lambda_{A,\Gamma}\Lambda_{A})

\cong Hom(_{\Gamma}\Lambda_{\Gamma},{}_{r}Hom(\Lambda_{\Lambda}, \Lambda_{A})_{I}\cdot)=Hom(_{\Gamma}\Lambda_{\Gamma,\Gamma}\Lambda_{I’})\supset Hom(_{\Gamma}\Lambda_{\Gamma,\Gamma}\Gamma_{\Gamma}) .
Hence each \alpha_{k} is given by the multiplication of some d_{k}\in C with d_{k}(\Lambda)\subset\Gamma.
Let c_{k}= \sum x_{i}^{(k)}y_{i}^{(k)}\in C . Then 1= \sum_{i,k}x_{i}^{(k)}d_{i}(y_{i}^{(k)})=\sum d_{i}c_{i} . Therefore, \Lambda=

\sum d_{k},(c_{k}\Lambda)\subset\sum d_{k}(\Lambda)\subset\Gamma Thus \Lambda=\Gamma.

Example. A ring extension \Lambda/\Gamma which satisfies the condition that \Lambda is
left \Gamma-f.g. projective and \Lambda\otimes_{\Gamma}\Lambda\cong\Lambda really exists. This condition is equivalent
to the condition that \Lambda is a finite left localization of \Gamma in the sence of L.
Silver [13]. The existance of Such a ring extension is shown in \S 2 and
\S 3 (See e.g. Prop. 3. 10) [13]. Clearly 11 is a separable extension of \Gamma but
not a left (nor right) quasi-Frobenius extension of \Gamma in this case.
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