On coclosed triappings
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By Yosio MuTd

Let N be an n-dimensional compact orientable Riemannian manifold and
M be an m-dimensional compact Riemannian manifold. We use local coor-
dinates #° and x* to represent points of N and M respectively where indices
such as &, 4, &, -~ run the range {1,---,n#} and the indices such as h,4,j,
run the range {1,---,m}. The fundamental tensors of N and M are respec-
tively denoted by a, and g; and the summation convention is used.

Let us assume n=m. The purpose of the present paper is to study
mappings p¢: N—M satisfying a certain condition by which we shall call
them coclosed mappings. :

§1. Coclosed mappings
If p: N->M is a differentiable mapping, a field of connecting tensor

(1.1) B*=dx", 0,=20/0u

is defined. From this connecting tensor we get another connecting tensor
(1. 2) Bixiim = Bis... Bim

and from this connecting tensor we can deﬁne on N an m-form

(1. 3) Gletha, =Bl g
where g=det (g )."

DerFINITION. If the form ¢[g]; .., is a coclosed form, the mapping is
called a coclosed mapping. If ¢[gl; .., vanishes everywhere, p is called a
trivial coclosed mapping. If, for a non-trivial coclosed mapping, there exist
points of N at which ¢[g],., vanishes, such points are called singular

points of the mapping.
Then we have the following proposition.

ProrosiTiON 1.1. Let p be a non-trivial coclosed mapping and p, be
a trivial coclosed mapping. Then p is not homotopic to p,.

Proor. Let ¢; ., be an m-form on M such that ¢,.,=+4¢. Let a*
and ¢[p]»?*» be defined by

1) [ ] means the bracket symbol of Bach and represents the alternating part.
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apa™ =0, Pl = G} mar. arm.

Then
@1, 7*0) = olut Bl tzp, (@),

where B? is the connecting tensor of a mapping &z and 7(a) means the volume
element of N, is a homotopy invariant of the mapping # since ¢[g]; .., is
a coclosed form on N and ¢;,.,, is a closed form on M [2]. As ¢[gl;,.s,
is defined by (1.3), we see

@l wro)=m! | glatglul,, @

and this integral is non-negative. (¢[p],1*¢p) vanishes only when ¢[p], ..., =0
at every point of N, but, if this is true, ¢ is not a non-trivial coclosed
mapping. Hence (¢[z], #*¢)>0. On the other hand we have (¢[g], pFo)=0
since we have §['§;ZZZ§;:]=O if =y, Hence p is not homotopic to .

We give here some examples of coclosed mappings. For short we
write ¢, ..., for ¢ [gl; ..., if there is no possibility of confusion.

ExamMpPLE 1. If N=M and g is an identity mapping, g is a coclosed
mapping, because ¢, ., is a coclosed form by virtue of

1 — _
¢’1~--m=——|_'\/g =—1"N/a .

ExaMPLE 2. Let N=M=S" If a and B are arguments respectively
on N and M, a mapping g is represented by a function f=p(a) such that
Bla+2x)=p(a)+2kr where % is an integer. Taking the natural metric on
S! we have y g =4a=1. pis a coclosed mapping if and only if d?8/d*a=0.
Hence we have

B=ka+6 (%0, # is a constant)

for a coclosed mapping.

ExampLE 3. Let N be a compact orientable Riemannian manifold of
dimension #=2 and M be E'. If fis a suitable coordinate on M, we have
g=1 and ¢,=3df/ou’. If pis a coclosed mapping, f must satisfy 4f=0 where
4 is the Laplacian in N. Hence f(u) is constant and g is a trivial coclosed
mapping. _

ExAMPLE 4. Let N be the same as in Example 3, but M be S®. Let
us consider a covering of M by coordinate neighborhoods U,, a€{a}, and
let £, be the local coordinate on the coordinate neighborhood U,, for each
a€{a}, such that g=1 and f,(u)=f;(u)+const on U,NU, where a, f€{a).
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¢ is a coclosed mapping if f, satisfies 4f,=0 in U,. An example of such
coclosed mappings which is not trivial is the projection =: S'x S'-S'.
Let us consider covariant differentiation of the connecting tensor B

Let {]’i} and ,{;2} be the Christoffel symbols respectively in (M, g) and

in (N, a). The van der Waerden-Bortolotti operator V, is a differential
operator such that

o= - (£]72),

;
= s ()20)- (o)
or

I 4 £ { (] w 4
V,,Tz = a,‘Tz + {#w} Tl - {#2} Tw
according as 7T is a tensor in M, a connecting tensor or a tensor in N.

We consider also ordinary covariant differentiation in M and in N and
denote it by F; or 'V,, so that we have

V#TithZVjTih, ’V#T1‘=VPTA‘.
This operator 'V, is also used when T is a connecting tensor, for example,
in the following way,

T = Bgaijz—'{ ;”2} T

From the connecting tensor B} we define a connecting tensor H,* as
follows:

| Jh
— — e
(1. 4) H,»=V,B}= V;,B?+sz{ji}~

A mapping p: N—>M where H,* vanishes identically is called a totally geo-
desic mapping.
We prove the following proposition..
ProPOSITION 1.2. A totally geodesic mapping is a coclosed mapping.
ProOOF. Since H,,*=0 we have
7B = —aBii{ 1:}.
Ji
We get by straightforward calculation
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2
.

— —ma™Big, {IE}I}BZ;:.‘.;:}«/?

+—~BE """ irly g a™Bld,log g

=0.
It has been proved by Eells and Sampson that, if the following two
conditions are satisfied, namely, ‘
a) the Ricci curvature of N 'iSi'-“ﬂ‘()ﬂ-ﬁéééfiV’é‘*" S
b) M has non-positive sectional curvature,
then any harmonic mapping N—M is a totally geodesic mapping. Then
we have the following corollary.

CorROLLARY. A harmomc mapping N—M is a coclosed mapping if a)
and b) are satisfied.

Since we have

because of
au,B }11::] = 0 , B[% """ B 2] = O

the m-form ¢, .., defined by (1.3) is always a closed form. If p is a coclosed
mapping, the m-form (1.3) is a harmonic form. Since we have

SN¢11..‘.XM¢11~-~1m77(a) >0

if g is a non-trivial coclosed mapping, we have the following proposition.

PROPOSITION 1.3. If there exists a non-trivial coclosed mapping p:
N—>M, the Betti numbers of N satisfy B, (N)*0, B,_,.(N)%0.
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Let K,,. denote the curvature tensor of N and K,, denote the Ricci
tensor of N. When §&,., is a skew tensor field, let us define a quadratic

form F(§,..,) by

—1 raovio
F(&,..) =K re™ ‘PE,,;Z...IP+%KM"E G

The following theorem has been proved by Yano [3]
In a compact Riemannian manifold N, there exists on harmonic tensor
field of order p which satisfies
F(Ell..%p) =0
unless we have
Vﬂ&‘;"“p = 0
and then automatically ,
F(sz'”zp) = O .

Thus we have also the following theorem which has been also proved
by Lichnerowicz, Mogi, Tomonaga and Yano [3]. '

If the quadratic form F(¢, ., ) is prositive definite and N is a compact
Riemannian manifold, there exists no harmonic tensor of order p other than
the trivial one. :

From these theorems we obtain the following theorems.

THEOREM 1. 4. If the quadratic form F(§, .,,) is positive definite, there
exists no non-trivial coclosed mapping p: N—M whatever M may be.

THEOREM 1.5. If the quadratic form F(, .. ) is non-negative, there
exists no non-trivial coclosed mapping p:N—M other than those which satisfy

" F(dya,) =0

and
V.ia, =0
and then automatically
@1y P *m = const.
If such a non-trivial coclosed mapping exists, this mappihg has no singular
point.
§ 2. A local property of a coclosed mapping

In §§2 and 3 we consider only surjective coclosed mappings.
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We assume m <7 and consider a mapping g: N—M and a neighborhood
in N where the rank of dp is m. Let the indices such as a, 8,7, --- run
the range {m+1,---,n} and let C* be such that the matrix of order # where
the elements are B and C: has the inverse matrix (B;, C5) so that

BiBi=d, GCi=3, BCi=0, GB!=0.
If p: N->M is a coclosed mapping, we have
(2. 1) TH(BEmY ) =

Using (1.4) we can write (2. 1) in the form

1D 20weee
maﬂzl ul2, L Blz Zm]J g

—ma’“‘B,,[zl{ [1 } 2---~-1-me/ g

As the second and the third terms in the left-hand member cancel one
another, we get

(2. 2) Hl![‘ [IBgz """ m% — 0 .
where H* = a*H >,
We get from (2.2)

(2. 3) HeB%: Z He/ B%:tm— Z He,'BY o
f iH‘“ "B {,; Ll = 0. |
As the transvectlon of the left hand member of (2.3)and (m—1)! Biim is
— S H"'B!B:+ 3 H*'BiB!
8=2 8=2
we get
He}!+(H"*B.—H"'B)B; = ?
As the transvection of the left-hand member of (2.3) and (m—1) Bizin is
- —H-**-H*'BB:+ H*’)B!B}
+ 3 (H*?B:B:— H**BB),
8=3
we get

He2y(HeBi—H*BYB; = 0
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In such a way we get
(2.4) He*+(H**B:—H"B.)B; = 0.
As the transveption of the left-hand member of (2.3) and C:B%:.m is

—H*C:B:+ H*’C.B,,

we get
(H*,*B,—H*,'B;)C; = 0

Similarly we get

(2.5) (H*'B:—H"B.)C, =0

Since the transvection of the left-hand member of (2.3) and Cj:}s iden-

tically vanishes, we can coclude that (2.4) and (2.5) together are equivalent
to (2.2).
If we define P** by

(2.6) P = B;(H*,'B;—H","B,),
we get

(2.7) He'B:—H*B. = B:P*
from (2.5) and

(2. 8) Hepr = — P

from (2. 4).
Conversely, if there exist Py* which satisfy (2.7) and (2.8), then we
get (2.4) and (2.5). Thus we obtain the following theorem.

THEOREM 2.1. Let p: N—M be a surjective mapping where rank dp
—m<n. Then a necessary and sufficient condition in order that p be a
coclosed mapping is that (2.7) and (2.8) be compatible.

§3. Geometric interpretation of coclosed mappings

Let us first consider a geometric interpretation of the condition (2. 7).

LetQ be a point of N and let P=p(Q). Then p'(P) is a submanifold
of N which contains Q. The subspace of N, perpendicular to the tangent
space (#"Y(P)) is spanned by the m vectors Bla*, -, Bra*. Thus we have
on N an m-dimensional distribution .# which is perpendicular to the con-
gruence of submanifolds g#*(P) where P moves freely in M.

A is involutive if and only if there exist C,? such that

(3.1) Bla”9,(Bla”)—Bia"9,(Bla*) = C,*Bla" .
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(3.1) is equivalent to
Bla'v,(Bia*)— Bia*"V ,(Bla) = C,**Bta™
and, as we have

7B = (7.B)a" = (H.'~{ f } Bt o,

we immediately see that (3.1) is equivalent to (2.7).
Thus we have the following lemma.

LEMMA 3.1. Let p: N—M be a surjective mapping where n>m and
let the rank of dp be m everywhere. Then the m-dimensional distribution
M which is perpendicular to the congruence of submanifolds p=(P), PeM,
is involutive if p is coclosed.

Assuming that the conditions stated in the beginning part of
3.1 and the condition (2.7) are satisfied, let us now examine the condition
(2. 8). ,

Let PeM and Q€N be such that P=p(Q). As A is involutive we
can take suitable neighborhoods V and U= p(V) respectively of Q and P
and choose local coordinates (2, ---, ™, uw™*, ..., ™) and (&, ---, ™) respectively
in V and U in such a way that p is represented by

1

(3' 2) 2 (xl’“.,xm’ ym+1’_“’yn)___)(x,_”,xm)

in Vx U and the submanifolds of V represented by #*=const and the sub-
manifolds of V represented by «*=const intersect perpendicularly.
Using such local coordinates we have

3.3 @0 ) =[G )

0 a 0 a*

where a,a’=0?, a,a*=0;. Since we have B} =47 because of (3.2), we get

(3. 4) 1 = {1 o= 1 et 0,00+ da,—3i,)
and
Hw ’iBh__Hw ILBi
= [akh { klj } —a* { kllj } +a”a"h(alajk—-akaﬂ)] 63 )
hence

(3.5) Pt = a""{ kz]} —a" { 27} +a¥a*(0,a;;— 0:a45) -
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Now we get from (3. 4) N
. He}r=a” {th} — %a”‘(a#au+ala,,,—ala,,z)a“‘
h..} 1

— 7alh(6’3ail + az-aﬂ - alaﬁ)aﬁ

+ —%—a"“aﬂ“alaﬁa
and from (3.5)
P/ckh - akh {kzi} - akj{khj } + auakh(alaik—'akau) .
Thus (2.8) is equivalent to
. ) 1
akh {kzi} —7akhaﬁak(lﬁ+ -é—amaﬂ"akdﬁa = O s

that is, to
gﬁakgﬂ + aﬂ“akaﬂa —aﬂakaﬂ = O .
This means that

(3.6) det (94) det (az)
det (as)

depends only upon the variables y™*!,---, y™.
This proves the following theorem.

THEOREM 3.2. Let p: N—M be a surjective mapping where n>m
and let the rank of dp be m everywhere. Then a necessary and sufficient
condition in order that p be a coclosed mapping is that the following con-
ditions be satisfied. |

(i) N is covered by a set of coordinate neighborhoods in each of which,
V, there exist local coordinates w* such that the system of subspaces repre-
sented by u"=const and the system of subspaces represented by u=-const
(namely, y*=const) intersect orthogonally and that u'=z" represents the
mapping which is the restriction of p in V, x* being the local coordinates
mn p(V).

(ii) The metric tensors of N and M are such that the function (3.6)
does not depend upon the variables x',---,x™ (namely u',---,u™) in the coor-
dinate neighborhood considered in (i). '
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