A NOTE ON PRIMITIVE EXTENSIONS OF
RANK 3 OF ALTERNATING GROUPS

By

Shiro IWASAKI

1. T. Tsuzuku determined (the degrees of) the primitive extensions of
rank 3 of symmetric groups ([4]). In this note we take up alternating groups
instead of symmetric groups and prove the following theorem.

Theorem 1. Let A, be the alternating group of degree n. If A, has
a primitive extension of rank 3, then n=1, 3, 5 or 7.

Since our proof is quite simlar to Tsuzuku’s paper [4], we use the same
notations as those in [4] and give a proof in outline only.

S,: The symmetric group of degree n.

A, : The alternating group of degree n (on a set I').

G: A primitive extension of rank 3 of A, on a set 2={0, 1, 2, ---,
n, 1,2, ---, @} which consists of 1+n+m letters.

H: The stabilizer G, of a letter, say 0, of 2. The orbits of H are
denoted by 4,={0), 4,={1,2, ---, n} and 4,={1, 2, ---, m} and the group
(H, 4,) is isomorphic to (A,, I).

L: The stabilizer of the subset {0, 1} of .

|X]: The number of elements in a set X.

2. Proof of Theorem 1. Clearly A, does not have a primitive exten-
sion of rank 3 and so n#2. In the following we assume that n#1, 3, 5
and 7. By assumption, the group (A,, I') is isomorphic to (H, 4,) and |L| is

!
equal to -ZL. According to a theorem of Manning ([4], 2. Prop. 1), |L] is
m

divisible by l”—;'z)l and lﬁgixug.@;g)!.

P4

—2\1
1. The case |L|><n—22>~ and L is transitive on 4.

If L is a primitive subgroup of (H, 4,), then, in the same way as 3. 1
in [4], 2n<n—1>>[ﬂi1

n=10, 9 or 8, by a theorem of Jordan ([5], th. 13. 9), L is either A, or .S,
and this is a contradiction. For the cases #=6 or 4, and also for the case

]‘ and so we have n=10, 9, 8 6, or 4. In case
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L is imprimitive on 4,, in the same way as 3. I in [4], we obtain contradic-
tions.

— 2\
II. The case IL]>~<ZZ— ;L and L is intransitive on 4,.

«

Since L is a subgroup of S,xS,_.,NA, with a positive integer 7,
— 2\
(n 22)— must be a proper divisor of r!(n—7)!. Hence we have the follow-
ing cases (we may assume r<n—r): r=1, 2 or 3.
(i) r=1: Since L is a subgroup of S;x.S, NA,=S xA,., we may
7(71:‘21 t

2
—1)!
where ¢ is a proper divisor of n—1. If #=3, then »~(—7i§—1—)4>]L|>(n—2)!

regard L as a subgroup of A, , (and so S,.;) and we have |L|=

and so 2<the index of L in S,_,<n—1, which is impossible. If z=2,

then the index of L in A, ; is equal to —ﬁ;, which is a contradiction.

—2\1
(ii) r=2: In this case, we have a relation (n 2—2)—'<|L|§|S2><S,,,zﬂ

A,|=(n—2)! and hence L=S,%xS, ,NA,. In the following, for a group Y
and a subgroup X of Y, let 7|, be the restriction to X of a character 7 of
Y and let 6" be the character of Y induced by a character # of X. Moreo-
ver, let 1y be the principal character of X. Here we remark that, if Y=
X, X, where X,, X, are subgroups of a group Y and @ is a character of X,
then 6|, =(A]xrx)* By the structure of G, 1% is equal to lg+¢,+ ¢,
where ¢;(i=1, 2) is an irreducible character of G with degree f;, and 1%
is equal to 1,+14: +17= Since S,=(5,xS, ,) A,,

S,
1= 13, na,= Ldis, ia,
=1, + 130, +Xooi%, -
(cf. [4], 2. Prop. 5 or [3], 3.3)

Similarly
Vo =15, = Lo, + 2004,
Therefore we have

1 =3 1,4, +2X57 + X%, -
If n=5, then all the characters appeared in the right-hand side are irredu-
cible and hence we can obtain a contradiction in the same way as 3. IL

(ii) in [4]). If n=4, then X8, is decomposed into two irreducible characters
each of which has degree 1 and so 1§, is decomposed into 7 irreducible
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characters which have degrees 1, 1, 1, 1, 1, 3 and 3 respectively. But f;
and f, must be partial sums of these integers, which is impossible by a
theorem of Frame ([4], 2. Prop. 2).

(iii)) r=3: In this case n=8 or 6 and hence |L|=3!5! or 3! 3! res-
pectively. This is impossible since L is a subgroup of S;x.S;N As or S;x
S;N Ag respectively.

2)!

1. The case |L|= (n_zr As in 3. III of [4], we have n=57. Since

!
L is intransitive on 4, and |L]| :%, L must be S, xS, x As;. On the other

hand, since S;;=(S) x.5| x Ss) As; and (S; x.S; X Sg5) N Az =S, XS, x Ags, we have

S57
1257 = 1Sl'\’ 8y 855145,
00
= 1A57+2xg<'~;4(157+x85;°,,57+Xg|A . (cf. [3], 3.3)

In the same way as 3. III in [4], decomposing 1, + 14414 into irredu-
cible characters and considering these degrees, we have a desired contradic-
tion.

Thus Theorem 1 is proved.

3. Now we can easily obtain

Theorem 2. Let G be a primitive extension with degree t of rank 3
of A,. Then, one of the féllowing holds.

(1) n=1, t=3 and G is isomorphic to the cyclic group of order 3.

(i1) n=3, t=7 and G 1is isomorphic to the Frobenius group of order
21.

(i) n=>b, t=16 and G is isomorphic to the semidirect product AN,
where N is an elementary abelian group of order 16. (see 4. (iv) in [4])

(iv) n=7, t=50 and G is isomorphic to U,(5) (the 3-dimensional pro-
Jective special unitary group over the finite field consisting of 5° elements.

In fact, in the case n=7, m must be 7-2, 7-3 or 7-6 by a theorem of
Manning ([4], 2. Prop. 1). But it is impossible that m is equal to 7-2 by
a theorem of Wielandt ([5], Th. 31. 2.) According to a theorem of Higman
([2], 3. Th.), m cannot be 7-3 and hence m must be 7-6 and G is isomor-
phic to U;(5) (see also (6.1) Th. in [2]).

Remark. By a theorem of Higman ([2], 3. Th.), The primitive exten-
sions of rank 3 of S, are exhausted by the groups listed in 4 of [4].
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