A NOTE ON PRIMITIVE EXTENSIONS OF RANK 3 OF ALTERNATING GROUPS

 $\mathbf{B}\mathbf{y}$

Shiro IWASAKI

1. T. Tsuzuku determined (the degrees of) the primitive extensions of rank 3 of symmetric groups ([4]). In this note we take up alternating groups instead of symmetric groups and prove the following theorem.

Theorem 1. Let A_n be the alternating group of degree n. If A_n has a primitive extension of rank 3, then n=1, 3, 5 or 7.

Since our proof is quite simlar to Tsuzuku's paper [4], we use the same notations as those in [4] and give a proof in outline only.

 S_n : The symmetric group of degree n.

 A_n : The alternating group of degree n (on a set Γ).

G: A primitive extension of rank 3 of A_n on a set $\Omega = \{0, 1, 2, \dots, n, \tilde{1}, \tilde{2}, \dots, \tilde{m}\}$ which consists of 1 + n + m letters.

H: The stabilizer G_0 of a letter, say 0, of Ω . The orbits of H are denoted by $\Delta_0 = \{0\}$, $\Delta_1 = \{1, 2, \dots, n\}$ and $\Delta_2 = \{\tilde{1}, \tilde{2}, \dots, \tilde{m}\}$ and the group (H, Δ_1) is isomorphic to (A_n, Γ) .

L: The stabilizer of the subset $\{0, \tilde{1}\}$ of Ω .

|X|: The number of elements in a set X.

2. Proof of Theorem 1. Clearly A_2 does not have a primitive extension of rank 3 and so $n \neq 2$. In the following we assume that $n \neq 1$, 3, 5 and 7. By assumption, the group (A_n, Γ) is isomorphic to (H, Δ_1) and |L| is equal to $\frac{n!}{2m}$. According to a theorem of Manning ([4], 2. Prop. 1), |L| is

divisible by
$$\frac{(n-2)!}{2}$$
 and $\frac{(n-1)!}{2} > |L| \ge \frac{(n-2)!}{2}$.

I. The case $|L| > \frac{(n-2)!}{2}$ and L is transitive on Δ_1 .

If L is a primitive subgroup of (H, Δ_1) , then, in the same way as 3. I in [4], $2n(n-1) > \left[\frac{n+1}{2}\right]!$ and so we have n=10, 9, 8, 6, or 4. In case n=10, 9 or 8, by a theorem of Jordan ([5], th. 13. 9), L is either A_n or S_n and this is a contradiction. For the cases n=6 or 4, and also for the case

L is imprimitive on Δ_1 , in the same way as 3. I in [4], we obtain contradictions.

II. The case
$$|L| > \frac{(n-2)!}{2}$$
 and L is intransitive on Δ_1 .

Since L is a subgroup of $S_r \times S_{n-r} \cap A_n$ with a positive integer r, $\frac{(n-2)!}{2}$ must be a proper divisor of r!(n-r)!. Hence we have the following cases (we may assume $r \le n-r$): r=1, 2 or 3.

- (i) r=1: Since L is a subgroup of $S_1 \times S_{n-1} \cap A_n = S_1 \times A_{n-1}$, we may regard L as a subgroup of A_{n-1} (and so S_{n-1}) and we have $|L| = \frac{(n-2)!}{2}t$ where t is a proper divisor of n-1. If $t \ge 3$, then $\frac{(n-1)!}{2} > |L| > (n-2)!$ and so 2 < the index of L in $S_{n-1} < n-1$, which is impossible. If t=2, then the index of L in A_{n-1} is equal to $\frac{n-1}{2}$, which is a contradiction.
- (ii) r=2: In this case, we have a relation $\frac{(n-2)!}{2} < |L| \leq |S_2 \times S_{n-2} \cap A_n| = (n-2)!$ and hence $L=S_2 \times S_{n-2} \cap A_n$. In the following, for a group Y and a subgroup X of Y, let $\eta|_X$ be the restriction to X of a character η of Y and let θ^Y be the character of Y induced by a character θ of X. Moreover, let 1_X be the principal character of X. Here we remark that, if $Y=X_1X_2$ where X_1 , X_2 are subgroups of a group Y and θ is a character of X_1 , then $\theta^Y|_{X_2}=(\theta|_{X_1\cap X_2})^{X_2}$. By the structure of G, 1_H^a is equal to $1_G+\varphi_1+\varphi_2$, where $\varphi_t(i=1,2)$ is an irreducible character of G with degree f_t , and $1_{H|H}^a$ is equal to $1_H+1_{A_{n-1}}^{A_n}+1_{L^n}^{A_n}$. Since $S_n=(S_2\times S_{n-2})$ A_n ,

$$\begin{split} \mathbf{1}_{L}^{A_{n}} &= \mathbf{1}_{S_{2} \times S_{n-2} \cap A_{n}}^{A_{n}} = \mathbf{1}_{S_{2} \times S_{n-2} \mid A_{n}}^{S_{n}} \\ &= \mathbf{1}_{A_{n}} + \chi_{0 \mid A_{n}}^{0 \cdots 0} + \chi_{00 \mid A_{n}}^{0 \cdots 0} \; . \\ & \text{(cf. [4], 2. Prop. 5 or [3], 3. 3)} \end{split}$$

Similarly

$$1_{A_{n-1}}^{A_n} = 1_{S_{n-1}|A_n}^{S_n} = 1_{A_n} + \chi_{0|A_n}^{0\cdots 0} \, .$$

Therefore we have

$$1_{H|H}^{G} = 3 \ 1_{A_n} + 2\chi_{0|A_n}^{0\cdots 0} + \chi_{00|A_n}^{0\cdots 0}.$$

If $n \ge 5$, then all the characters appeared in the right-hand side are irreducible and hence we can obtain a contradiction in the same way as 3. II. (ii) in [4]. If n=4, then $\chi_{00|A_4}^{00}$ is decomposed into two irreducible characters each of which has degree 1 and so $1_{H|H}^{g}$ is decomposed into 7 irreducible

characters which have degrees 1, 1, 1, 1, 1, 3 and 3 respectively. But f_1 and f_2 must be partial sums of these integers, which is impossible by a theorem of Frame ([4], 2. Prop. 2).

(iii) r=3: In this case n=8 or 6 and hence |L|=3! 5! or 3! 3! respectively. This is impossible since L is a subgroup of $S_3 \times S_5 \cap A_8$ or $S_3 \times S_3 \cap A_6$ respectively.

III. The case $|L| = \frac{(n-2)!}{2}$. As in 3. III of [4], we have n=57. Since

L is intransitive on Δ_1 and $|L| = \frac{55!}{2}$, L must be $S_1 \times S_1 \times A_{55}$. On the other hand, since $S_{57} = (S_1 \times S_1 \times S_{55}) A_{57}$ and $(S_1 \times S_1 \times S_{55}) \cap A_{57} = S_1 \times S_1 \times A_{55}$, we have

$$\begin{split} 1_{L}^{A_{57}} &= 1_{S_{1} \times S_{1} \times S_{55} | A_{57}}^{S_{57}} \\ &= 1_{A_{57}} + 2\chi_{0|A_{57}}^{0\cdots0} + \chi_{00|A_{57}}^{0\cdots0} + \chi_{0|A_{57}}^{0\cdots0}. \quad \text{(cf. [3], 3. 3)} \end{split}$$

In the same way as 3. III in [4], decomposing $1_{A_{57}} + 1_{A_{56}}^{A_{57}} + 1_{L^{57}}^{A_{57}}$ into irreducible characters and considering these degrees, we have a desired contradiction.

Thus Theorem 1 is proved.

3. Now we can easily obtain

Theorem 2. Let G be a primitive extension with degree t of rank 3 of A_n . Then, one of the following holds.

- (i) n=1, t=3 and G is isomorphic to the cyclic group of order 3.
- (ii) n=3, t=7 and G is isomorphic to the Frobenius group of order 21.
- (iii) n=5, t=16 and G is isomorphic to the semidirect product A_5N , where N is an elementary abelian group of order 16. (see 4. (iv) in [4])
- (iv) n=7, t=50 and G is isomorphic to $U_3(5)$ (the 3-dimensional projective special unitary group over the finite field consisting of 5^2 elements.

In fact, in the case n=7, m must be $7 \cdot 2$, $7 \cdot 3$ or $7 \cdot 6$ by a theorem of Manning ([4], 2. Prop. 1). But it is impossible that m is equal to $7 \cdot 2$ by a theorem of Wielandt ([5], Th. 31. 2.) According to a theorem of Higman ([2], 3. Th.), m cannot be $7 \cdot 3$ and hence m must be $7 \cdot 6$ and G is isomorphic to $U_3(5)$ (see also (6.1) Th. in [2]).

Remark. By a theorem of Higman ([2], 3. Th.), The primitive extensions of rank 3 of S_n are exhausted by the groups listed in 4 of [4].

References

[1] D. G. HIGMAN: Finite permutation groups of rank 3, Math. Z. 86 (1964), 145-156.

128 S. Iwasaki

- [2] D. G. HIGMAN: Primitive rank 3 groups with a prime subdegree, Math. Z. 91 (1966), 70-86.
- [3] G. DE B. ROBINSON: Representation theory of the symmetric group, University of Toronto Press, 1961.
- [4] T. TSUZUKU: On Primitive extensions of rank 3 of symmetric groups, Nagoya Math. J. 27 (1966), 171-177.
- [5] H. WIELANDT: Finite permutation groups, Academic Press, New York and London, 1964.

Department of Mathematics, Hokkaido University

(Received March 20, 1970)