ON THE THEORY OF SCHLICHT FUNCTIONS

By

Kiyoshi NOSHIRO

Let us denote by k& a certain positive integer. If
f@R) =z4+ec12" '+ 2 ..o Cn 2L

is regular and schlicht in the unit circle, then we may say, for con-
venience, that f(z) is a function of the class k. If f(2) is a function
of the class £ and maps the,uni't circle on a starshaped domain with
centre at the origin, then we may say, for brevity, that Jfz) is a
starshaped function of the class k. Similarly, if f(z) is a function
of the class ¥ and maps the unit circle on a convex domain, we
may call f(z) a convex function of the class k. Our main object in
this paper is to state some theorems concerning a starshaped resp.
convex function of the class £, which are known when k=1 or 2.
First we will obtain some results on the coefficients, using an easy
lemma. Next, some extensions of STROHHACKER’s theorems® will
be mentioned. Applying the above results, we can extend SZEGO’s
theorem® on the polynomial sections of a starshaped resp. convex
function.

It is well known that under the condition that f(2) is regular in

D and that f’(2) never vanishes there, we cannot necessarily assert
f(2) to be schlicht in D. In §V, imposing a further condition on

(1) Recently Mr. CHEN has obtained some results concerning a (schlicht) function of
the class k. See Kien Kwong CHEN: Proc. Imp. Acad. Japan, 1933, vol. 9,
p. 465-467.

(2) E. STROHHACKER: Math. Zeits., Bd. 87, 1933, p. 350-380.

(38) G. SzEG6: Math. Ann., Bd. 100, 1928, p. 188-211. See also S. TAKAHASHI: Proc.
Physico-Math. Soc. Japan, 8rd ser., vol. 16, 1934, p. 7-156; L. BIEBERBACH:
Bulletin, Calcutta Math. Soc., vol. 20, 1980, p. 17-20; and also A. KOBORI:
Memoires, College of Science, Kyoto Imp. Univ., ser. A, vol. 16, 1933, p. 127-136.
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F(2), we will study the univalency (Schlichtheit) of f(z). In the last
paragraph we will state a theorem on a schlicht meromorphic fune-
tion in the unit circle, which is of some interest in itself.

§1I. AN IMPORTANT LEMMA.
Suppose that
(1) D(2) =z+01zk+1+02z2"’+1+....+cnznk«+1+.. .

is a starshaﬁed function ot" ‘the class k. If we put ¢ = 2 and define
a function '

JQ) = [(P(z)]"

then f(¢) is regular and starshaped® for |{|<(1. For the proof,
since f(§) = .. is regular and does not vanish for 0<| ¢ <1,
we have only to show‘Z)

1€\
&R(cm)w ,-for. lc]<1.

But this inequality follows from

D'(2) -
R(zG)>0 for |zI<1,

since we easily get

£ _ OD e
R0 TFew €T

_Thus we obtain

(1) We say that f(2) is starshé.ped for [ z]| <p, If f(2) is regular‘ and schlicht and
maps | 2| <p on a starshaped domain with centre at the origin.
(2) Here we use a well known theorem : Suppose that f(z) = 2+.... isregular in
the unit circle. Then f (z) is starshaped for |z| <1, if and only if

TS@ %0 for 0<|2|<1 and (2 }Ez;)>o for |z|<1.
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Lemma. If @(2) is a starshaped function of the class ‘k, then
(2) f@Q) = [2R)F., . (=72

18 a starshaped function of the class 1.

§1I. ON THE COEFFICIENTS OF A STARSHAPED
RESP. CONVEX FUNCTION. |

In this paragraph we will enunciate a theorem on the coeflicients

of a starshaped resp. convex function of the class k.

Theorem 1. If @) = z+c12¥ 1 +ce2®* 1+, ... +c, 21+, ... 18

a starshaped function of the class k, then

(3) lcnlg (k+1)(k+z> (—+(n—1))

mm=1,23,....).

The right hand side of (3) eannot be replaced by any smaller number.

This extremal case can be given by the function

_2 —2k
(4) (po(z)=——L—2—=ze 7 log @ )
1—2z)*% ?
taking a branch of log such that log 1 = 0. |
Proof. Consider the function f({) = [@(x)}, (£ = 2*). Since the_

function Cf}((g is regular for IC|<1 thls can be expanded in a

power series :

Cf(L’) 1+kC 1+20C+ . ... +nea ...,
J© l+cC+eli+. ...+ 4. ...

= .1+blc+b2c2+ coee +bn‘:".+»-,....
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Using CARATHEODORY’s theorem® and the lemma, we obtain

lbn|§2 (n=1’ 29 31‘,'0!')"
whence follows that

o, 2

S -—C
that is,
a+2cL+....+nc,l* 1+ <_2_L
1+01C+62C2+ eesFCnl"+ k1—¢’
consequently

log A+c&+el%+ e +e. "+ ... .)'<'—'%log 1-0,

taking a branch of 'lo‘g such that log 1 =O Froni,_

1+el+elP+....+cl+.... <1

: Z
(1"‘5_)""
follows the inequality (3). Our theorem is completely proved, con-

sidering the function
Dol2) = —* =2+ 1' 2| —+ 1). .. .<—+('n—1))z""“1
(1—28)% n=1n! k

which is a starshaped function of the class &k, because

m(z_g:% 1+"*)>o Cfor |z <1.

Remark. w = @(z) maps the umt clrcle on a Whole w-plane cut

-i@2v+)m

from W= 1/_e Tk to w= oo along each ray which starts from
,7 ‘ 2(Qv+1)=.

v = O and passes through w == k"}z’e' ‘ , where »=10,1,2, ....,
k——l . ’

(1) CARATHEODORY’S theorem states that if o(z) = 1+2 bn g is regular and R(e(®)) >0
for || < 1 thenlbnl/z o

(2) Let A(z) = 2 anzn, B(z) = %} bnra'rz be two power series and let all the coefficients
bn of B(z) be non-negative. .Then A(z) « B(z) means that | an | < by for every n.
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Theorem 2. Suppose that p(z) = z+c12° 1+ 2224414 ... +c, 2%+
+.... 18 a convex function of the class k. Then

() lel< nk+1 = k(——+1)(—+2>....(—~+(n—1))
n=1,23....).

The right hand side of (5) cannot be replaced by any smaller numbe’r
This extremal case can be given by the function

0 —2z) K

- Proof. By 'ALEXANDER’s theorem®
D) = 29'(2) = 2 +§ (nk+1)cn 2"

is a starshaped function of the class k. Hence, applymg theore'nl
we have

1 2/2 2 2 -
STIL SOME EXTENSIONS OF STROHHACKER'S
- -~ THEOREMS. o

Here some extenswns of STROHHACKER s theorems will be men-
tloned : : :

Theorem 3. If @(z) is a starshaped function of the class k- and
i |zl =r<<1, then the point -M'belongs to the closed domain D,

which is the zmage -of the circle’ Icl <% by - 1 .
Toa-oF

Proof. Since, by the lemma, the function £(¢) = [@R)F, (=7 isa
starshaped function of the class 1, the point f (C") [(p(z")] , (Co=2F)

(1) The followmg theorem is due to Mr. J. ALEXANDER Let %(z) ——z+ . be
‘regular’in the unit circle. ‘' Then ¢(2) maps |z| <1 on a convex domain, 1f and
only if ®(z) = 29/(z) maps |z| <1 on a starshaped domain with centre at the
origin, Cf. J. ALEXANDER : Ann of Math., 2. ser., vol. 17, 1915-16, p. 12-22.
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belongs, by STROHHACKER’S theorem(”, to the domain D’, which is the

1 (D(Zo)
=0 Therefore the pomt o~

belongs to-the domain. D, which is: the image of the circle (]| < r*
1 .
by T, Lz
Y oa-o* ~
Remark. D cannot be replaced by any smaller domain, for the

function @(z) gives the extremal case; more precisely, the set of
9o(2) for
z

image of the circle IC | < 7r* by

values taken by |z]| =~ is identical with the domain D. .

As an immediate result of the above theorem, we have
Theorem 4. If &(2) is a stairshaped function of the class k, then

(7) 1 <

L+r¥)e

o) | <
P

<1 _ (u<r<y).
A1—r¥F ,

Proof. The circle | {| < r* ean be mapped by s = 1—}_— on a circle
| 1 1

1478 """ 1—ok .
domain D (in theorem 3) is the image of K by w= sk, it is clear

that D lies on the ring: ,——————Slwls-———— . Therefore
A +r¥)* (l—r")k
our assertion is true, by theorem 3.

K, which has the segment ‘as diameter. Since the

Remark. The 11m1ts of (7) can be also attamed by the function
@o(2).

Theorem 5. If &(2) i3 a starshaped functzon of the class k, ‘dnd"

if 20| <r<<1, then the poiﬁt %QL((._?%) lies on the circular domam

1% 1+7~"

which has the segmmt 1F 'r" 1%

(1) Mr. STROHHACKER has proved tha\t if f(z) is starshaped for |z| <1 and it
lzolsr/ 1, then the point . ‘f ( lies in the closed . domam, whlch is the'

Cf E Smommcxan loc. clt.

1
_ mage of the circle l‘zls.r‘by dA—zp"
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Proof. Since

?'(2)

= 1+ keiz*+
D(z)

9R) =z

is regular and R(gz)) >0 for [z]| <1, the function

=1 1 1——g(z)
) z" 1+g(2)

is regular and [4(2) | <1 for |[z] <1. Hence

jl 9@ | iz (2]<1),

1+g()

whence follows our assertion.

Theorem 6. Let &(z) be a starshaped function of the class k.
Then we have

A—rk_ | P(2) L+re . ‘
(8) 1+r’°§ % @) =1 Uzl=r<Y)
@)\ _ 1+t N
(9) 1+rk~ R(egg)=1tn  (slsr<y.

Proof. This theorem comes directly from the above.

Remark. The limits of (8) and (9) can be also attained by the

function @y(z) = —2_, for 2z Oiz) _ 1+2*

(1—2k)% Do(2) 1—2%°

Theoreﬁ 7. If <p(z) is a convex function of the class k and zf
Tz ]| <r<<1, then the point ¢'(z) belongs to D, where D denotes the

same domain as in theorem 3.

Proof.' Since &(z) = z¢'(2) is a starshaped‘function of the~cla‘ss k,

_wioz") = ¢'(20) lies, by theorem 38, on the domain D.
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§IV. AN EXTENSION OF SZEGO’S THEOREM.

Mr. G. Szeco® has proved that if

f@R) =z+a2+ e+ ... +cn2* ...

is regular and starshaped for |z| <1, then every section

fu® = 2+ a2+ 68+ ... +e 2!

is starshaped for |z] <% . Recently Mr. S. TAKAHASHI® has shown

that if f(2) is an odd function, then SzZEG)’s theorem can be mentioned

in the form: Every section f,.(z) is starshaped for | z| <71?. Now

we state a theorem which contains SzZEGG-TAKAHASHI’S theorem as its

special case.

Theorem 8. Let k be any positive integer and
D7) = z+a1*  + e L o2 4L
be a starshaped function of the class' k. Then every section

2412 et . L o2t

18 starshaped for
x k

1<V 2(k+1)

Kk

2(k+1) ,
And the extremal case can be given by the function Po(z) of (4).

where the number :/ cannot be replaced by any greater one.

Proof. For the proof we apply the elegant method which was
used by Mr. G. SzZEGO in the case k. =1. We put, for n =2,

1) G. SzEGH: loc. cit.
(2) S.TAKAHASHI: loc. cit.
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8a.(2) = 24 12 V2% 1 . . o L+ Cpg 2 VR
Pa(2) = cnzﬁk+‘1+c'n+]z("+l)k+l+ ....; thatis, @) = s.(2)+pPa(2),
and
Y
Y
2(k+1)

In order that 8.(2) should be starshaped for |z | < R, it is sufficient
that for 0 <{|z| <R |

(10) : 8p(2) =0
and |

$,(2) 2 (D) —PL(2)
11 = R( LRI TPZ)
an ( sn(2)/ D(z) — pa(?)

. . (p,(Z) ’

Pa(?) —Pn(2)
— ?'(2) ( ?(2) )
m(z ?(2) >+§R i P(z)—Pu(2) >0

Hence, for our object, it will suffice to show that for |z =

(12) | D(2) | > | pal?) |
and
(D(z)
(13) \ l—lzlk > || ,Pn(z)l 0@) + | Pn(2) |
: 1+[z[F = | @) | — Feal?) i
Pn(2) D'(z) ’
_ ” lz o) + | pa(2)]
() | _ | Pa(2)
2 4

In fact P ”((z)) is regular for [z] <1, sinece @(2)==0 for 0<|z,<1.

Hence, if we have (12) for |z] = R, then the same inequality holds
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for 0 <|z| <R, whence follows (10) for 0 <|z|<R. Consequently

z%% is regular for |[z]< R and if ER( :Ez;)go for lzl

then 2)%( s“(z) >> 0 for |2| << R. But the inequality ER( Sn (:DZ 0

for |z| = R follows from (13) for |z| = R, by (9) and (12).

We put

k

= R=gryy

2
d = — .
and a .

Thus we have obtained the following inequalities :

(3) fea| < a(e+1)(a+2)....(a+n—1)
n n'

(7) P(2) L (el=
z (1+p)’c
(P'(z) 1+p _

(8) oy | =1—p F1T

On the other hand,

(15) 2| < el
_S% a(a,+1)..;,'(a+v—1) o (z| =R) .
Similarly,

’)'

I. Let us consider the case where n=>4. First we prove the
inequality .(12) for {z| = R.. By (7) and (15),
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Pn\%) (Z)
z

(17) ‘wZ(Z) 1 S al@+l)....(a+r—1) 0"

—(1+P)"' v=n vl |

1 S ala+1)....(a+v—1) 0
T (I4+p)* V= vl

_{ 1__&alat))... =)

~|a—pe = vl

_{ 11 }
1—p)* A+p)*

] ¢
J

139

_ Bk+4)(k12) {(2k+2) (22 %}E A0,

3(k+1)? k+2 3k+2

2 2
Br+4)(k+2) d 2k +2\* _ (2k+2\F
3k+12 0 <k+2> (3k+2

tions of %k in the interval (1, o), it is elear that for % >>2

Since

(3k+4)(k+2)> @Brk+4)(k+2) _

3(k+1)? k> 3(k+1)%
and
GGyt
Henee

A(k)>1—%=%» for k>2.

On the other hand,

) = 3-(19)>o0.

1 1.2 a(a+1) (a+v—1)
Q—p)a 1+§1 V'

o)

= 1+a9+—— a(a+1) 2+ -—a(a+1)(a+2) e+ 2

V!

a(a+1)....(a+v—1) ov

are decreasing func-
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Here we prove the inequality (133 for |z] = R. For this purpose,
it will suffice to show that, by (7), (8), (15) and (16), |

1—p
18) ——
( ’) 1tp |
i-}-p i a(afl). . .'(a+u-1) p“+i(vk+1) a(a+1).. .'(a+u—1) o
2 -—-p Vmpn Y. Van | Y.
= 1 _i a(a+1)...(a+v-1) o
2
A+p)* " 4
or that
1—p
19) ——
a9 17
1+p ij a(a+1).. ;(a+v-—1) p“+i4(vk+1) a(a+1). ',',(a+p_1)P”
—p v= yl v=d v! .
= - — ,
1 — a(a+1)...(a+v-1) Pv , ‘

2
@+ v

since the right hand side of (18) increases as n decreases for
4<n< . In (17) we have shown that

1 - >§: a(a+1)..,.'.(a+_u—1) o .
A+p)*® v

Hence (19) is equivaleht to

(20) 1_P. 1 2;% [1 +P+1—P+pk+11 a(a+1).. .(a+v—1)#y.
l —p 1l+p J . v!

Kk
| 2(k+1)
increasing function of &# for 2<%k < o and the values taken by p

At first we prove (20) for k=2. Obviously p= is an

belongs to the interval —%_S_p<%. k and a can be written, as

functions of p, such that k£ = 2p and a = l—~2 for l_S_P<l».‘
1—2p P 3 2

Hence, for the proof of (20), it suffices to show that for —lf_S_P < %
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1+p (1+P)? v=a\l—p 1+P 1—-2p

« 1—2p)A—p)A +p)....A+p(—38)

vl

or
A+pF 1=F
x A+p)....A+p>—3)
p! )
Put ' — 4
Q) = 32— +P—20-+1)p* . =),
1—p N\g=P=
3 2
Then
(1—pPQ () = (2v—38)+2p— (6v+ )P*+4(v+1)p* >0
for % e, —;—a.) Consequently the right hand side of (22) (say

= B(p)) is an increasing function of p for —13- <pr< % . Hence, for

1 1
*_S_P<—2‘

(141, (14258
vl

(23) Bp<B(1)=5%.

3
o

On the other hand,

(24)

1_1_—'2> 11 3-2 2% for L_§.P<%;
(L+p)* (1+g

(1) Put @) = (1—p)2Q/(¢). Then () = 2(1-—p)1—6(v+1)p) <0 for %spg%.

Consequently X(p) =1* (é— = v——3—% = % >0 for —3—§_ P
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1
A2
(1+p)* |
(23) and (24) follows the required inequality (22). Thus, for k=2

our proof of (20) is’ completed.
But there remains the case £k = 1. If k=1, then, by (14), p = %
and @ = 2; in this case, | |

because is increasing in the interval % <p<L %— . From

- ]_ ; ,
: 4 _ 48 _ 1
The left hand side of (20) = > =
1+1 (1 )y T4
4 4
- (1+1 11
The right hand side of (20) = Z f ‘11 +u+1ie+D (1)

e Nﬁ+vww3“

_ 49 1, 53 _1
15 36 2716<

Therefore the inequality (20) is also true for £ = 1.
Thus it is completely proved that every section
84(R) = 2412+ 22 ... HCpg VR

18 starshaped for

R
‘z|<R"~/2(k+1) ’

as long as m is greater than or equal to 4.

II. Let us consider the section s,(2) when n = 2; that is, s8x(?)
= z+e¢ 2%*l. If ¢1 =0, then sx(z) = z. Next suppose that ¢; ==0.

(1) Here we use the equalities: S_‘, Gv+Dpv = a— 1 _ )2 —(1+2p+3p2+43) ,

S+ e = g fpp)z—(w+epﬂ+1zp3) :
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$2) _ 1+F+Dez® _ 1+(k+1)E

w =z
8:2(2) - 14+az* - 1+4€¢

’

putting & = ¢ 7%.

The circle [§] < p(<{1) can be mapped by

1-(k+1)p 1+(k+1)p
. . T i4p
lies on the half plane: HR(w) >0, provided that p <—1 . There-

1+ (k+1)¢
+&
as diameter, hence K

on a circle

K having the segment

s3(2) : 2
fore, ER( ol ))>0 for lzl<A/ Since Iclig iy by theorem

les] (k 1)’ . Z
1, it is easy to see that s»(2) is starshaped for [z|<<R = / 24D

Next consider the section sx(z) of @o(2) =——3—T=z+—%zk+1 +....
(1—2%)*% k
Then sx(2) = z+%z"ﬂ, si(z) = 1+~2—(k+ 1)2*¥. The section s:(z) =z

+ = z"“ cannot be starshaped for |z]| <R/, if R’_> R, because

—
2(k+1) °
Thus it is proved that every section s:(z) s starshaped for

sz(z) has zero-points on the circumference |z]= R = ~/

lz| << R = ';/z(k—’:_l)— and R cannot be replaced by any greater number,

provided that k is fixed, and the extremal case can be given by the
section s8:(2) of Do(z).

III. Lastly we must prove that

83(2) = z+c12F 1+ e 2%+t

18 starshaped for |z]| << R = ’;/2 (klj- o We willl prove for |2| <R

1+ (k+1)cl 2k 4 2k +1)c, 2%
25,
@5) R 14+c125+c2%* >0

The denominator does not vanish there, because

2 b5k+6
k+ 2k 2k — .
| 612% + cp 2% | g—_k (——+1)R A+ 1P <1
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Hence we can assume [z|=R. And, further, it suffices to show
this inequality for z = R. (Consider ®(ez) with proper ¢, |e| = 1).
Hence our assertion can be stated as follows: '

1+ e+ 1)01~L

| 2(k 1
26 R
1+e¢ ( )
2(k+1) 2(k+1)

+(2k+1)cz<2(k 1)) -

f we put £ = z", the function

—_ @(Z) —_ C1+202C+....
@0 FO zfﬂ() 1+ kc1+clc+czc2+ .....

= 1+2C’1C+202C2+. ces

has for |£] <1 a positive real part, so that by CARATHEODORY-
ToOEPLITZ’S theorem we have

(28) |1G]1<1, |C—CE | < 1—| G,
where
C = %Cl ’ Ce = ?CI zcz .

Hence the inequality (26) can be written as follows:

@h+D)(h+2) np, k@E+D) . o
(29) 9%1+Cl+ 1y Ot soriy " leI”)>_0

1 k+2 k
1+ Ci+ Ci+——_ % _.9.(1— 2
o1 2 O a7 T1GN
(21 L1).

When C; is fixed, the fraction of (29) can be considered as a regular
function of 5 for || <1, because the denominator never vanishes
there.® Hence we can assume In] = 1 Consequently, if we put,
for the sake of simplicity,

1 k+2 .,  k . 1, _k+2 k
k+1C,1+ 4(fe+1)2 G+ ak+1)r "7 =GP = k+1+ 4(k+1)2 + 4(k+1)2
3

= 2k +1) —Z<1-

6))
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©@k+1)wy = 1+ Cy+ EEEDEL2) oo

4(k+1)2
- — C k+2 2
(30) W2 1+k+1+ A+ 1) Ct,
Z= gy a1Gn (=1,

we have only to show that

mwl'*’z ~. 0
we+ 2 -
or
R(w+ Z)we+ Z) = Rwrwe+ R +w)Z+|Z]2>0,
or : '

CRuwwet[ZP> 1 Z] |witwe|,

which is equivalent to

|wi+we| 2 jwi—wef?
(81) (Lentl 7y Dozt
Since |
2k +2 8k+2  k+2
| wi+ = + Ci+———-=C}
Lk 12k+1 Ch+D(k+1) — 2(k+1)32

o 2%+2_ 8k+2 _ ki2
=ok+1 @k+1)(k+1) 2(k+1)

_2—D+k~ Kk
2(k-+1)F — 2(k+1)*

y

(31) is equivalent to
- (32) ’ wi+we | —|wr—we | >2|Z] .
If we put C;= ¢, then (82) can be written such that

(k+2)@k+1) | _ »e
(33) | 20e+1p+@h+2)0+ EED T cﬂ] lc]2(k+1)+CL.'

kCk+1) 4 . _
>§2(k+1) 1—ich (¢i<1)
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We write o
= —2(k+1)+& = —2(k+1)+re”;
it is geometrically cléar that 2k+1<r<2k+8 and
(34) —u(r) <o S ()
if = is fixed, where @o(r) can be determined from the equation

| —2(k+1)+7re?| =1 such that 0 <go(r) < :’ér— . The point —2(k+1)

+767 lies on the circumference || =1. We obtain

4+ 4k +1)2—1)

(35) cosgn(r) = dr D)r

Now (83) can be written in the form:

(33 la—BCi+yCE] > 5+Q
where
k(2k+1)
@ 2(c+1) ‘C 2("“)’

. - \._ k@k+1)
2k(k+1)(2k+ 1)+ (1+2(2k +1) cos p)r St

and

a = 2(k+1)’Q2k+1) , B =A4k*+Thk+2 ,

y = (k+2)(2k+1) s = F(k+1)
2k+1) ' 2(k+1)
Considering (34) and (35), we have
. » _k(2k+1)
(36) Q= —2k(k+1)(2k+1)+k(1+2(2k+1) cosgu(r) )r T

= —3+kr.

From (83)’

BN {(a+vr) cosp—Br} +(@—vr)(1—costp)—(5+QF > 0 .
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Put in (37)

cos 4 =@ + 2F(Fe + 1)(2k'+ 1)_k,,.'+ Sr2
4 2k(2k+1)r ’

‘

and consider the left hand side f(r, Q) of (87) as a function of 7 and
Q, where r varies in the interval 2k+1<r=<2k+8 and Q in a
certain interval @Q(r) < Q =< Q:(7), Q:(r) being equal to —3+kr. We
show that f(r, Q) is an increasing function of Q for Qi(r) < Q, when
r is fixed in the interval 2k+1 < r < 2k+3.

a.f(’r, Q) — a+'y’r2 {(a+')”r2) cos¢_Br} _M COS¢—2(8+ Q)

2Q @k +1)r kQk+1)r
WD S Rk ) +Q)
_ dav | Q+2k(k+1)(k+1)—kr+8r_ Llatrr)
EQ2k+1) 2k(2k+1) “ k(2k+1)
. 206+ Q),
?fr,Q) _  2ay o _ 6k+4
Q2 K22k +1)? 2 k2 >0

Hence ﬂ%‘_Q__Q_l is positive for Qi(r) < @, if it is positive for @ = Qu(r).

However, when Q = @Qi(r), by an easy calculation, we get

42
7%,
2(k+1)

of(r, Q) _ 1 (61811472 — Ol —
(38) ) k(6k +14k%+ 9k + 2)—2kr

which is positive for 2k+1 < r < 2k+38, as it is true® for r = 2k +3.

Therefore it is shown that f(r, Q is minimum for Q = @Qu(r),
that is, cosg = cosgu(r) or [{|=1, {=¢". Then our assertion
can be enunciated in the form:

, - (o+2)@k+1) "
B3 |2G+1re " +@k+2) + ELREED ¢ [> klz(k+1)+e

q) Q) _ G2y
0Q  2Kk(k+1)

>0 when @=Q() and 7=2k+3.



148 K. Noshiro

or
| ae'“+,8+vye“ iz__kZI 8+ei8 l2> O ’
putting : o
_ 5 : g (k+2) (2k+1) ’
a=2(k+1) 8k+2, v = 206+ 1) , & =2(k+1)
or
(33)" {8 —12+ (a—v)*— 126%} +2{B(a+v)— 125} cos 0

+4aycos?6>0 .
For the proof of (33)’"’, we have only to obtain®
(39) day{B—I+ (@—vP— K&} — {Ba+r)—8)° >0,

since a7 > 0. Denoting by D the left hand side of (39), we easily
have

D= (e+2)(2k + 1)2(16 15+ 80k* + 14713 + 126 k2 +52k + 8) >0
4(k+1)2 o
(Q E.D.)

Thus our therem is completely proved.

Applying ALEXANDER’S theorem® and theorem 8, we obtain at once
Theorem 9. Let

PR) = 2+ 12" e b L o2 4 L
be a convex function of the class k. Then every section

R Y ARl Y L AL S B RPL

18 convex® for

k k-

(1) Clearly a-+2bx+ca® is always positive, provided that ¢>> 0 and ca—b? > 0.

(2) J. ALEXANDER: loc. cit.

@B) If f(2) is regular for |z| <p and maps |z] <p¢ on a convex domam, then we
say that #(2) is convex for |z| <p.
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where ’;/‘Z_(Iﬁﬁ cannot be replaced by any greater number. The

extremal case can be given by the function ¢o(z) of (6).

Remark. When &k =1 and k = 2, this theorem reduces to SZEGO-
TAKAHASH]’s.®"

Recently Mr. A. KOBORI? has given a éomplement to SzZEGO’s
theorem: Let f(z) =z+c122+ce?®+....+c,2»*1+.... be regular and
starshaped for |z|<(1l. Then every function g(z) = z+b122+b:2°
+o b2 ..., Wwith [0, [ Zen]l =1,2,8, ....), is starshaped
for |z] <R =0,1646 ...., where R is the root between 0 and 1 of
the equation 2(1—7r) = 1+r. "

KoBORI’s result can be extended in the following form:
Theorem 10. Let
PR) = z+ a2+ e+ . oo HCea L L
be a starshaped function of the class k. Then every function
G(2) = 2+ by 25 4 b2 2% b Lo+ D™ L,
such that |
[0 ] < |Cn | n=1,2,3, .-...),

is starshaped for |z| < R, where R is the root between 0 and 1 of
the equation

26(1—rkyer? = (1+1r%)% .

Proof. ‘It is well known that if +(2) =z+2:a,,z"*1 is regular

for |z| <1 and if i:] (n+1) ] a,|r™ <1, then +(z) is starshaped for
|z] <r<{1l. We have, applying theorem 1,

(1) G. SzeGo6: loc. cit.,, S. TAKAHASHI: loc. cit.
(2) A.KOBORI: loc. cit. And see also L. BIERBERBACH : loc. cit.
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z(nk+1)|b | pmk < ?(nk+1)lc [k
Sy i 2 .
é}:_.‘(nk+1)n! ( +1) (_+(n 1)>'r’°

= (p{)(r) —1 = ‘*_14_—7',:?_1 .

1—rF)*

Hence, if we denote by R the root between 0 and 1 of the equation
o(r) = 2 that is: 2¢(1—7r***2 = (1+r*)%, then every function G(z) is
starshaped for |z ]| <R.

Remark. The limit R can be attained by the function

Go(z) = 22— Py(2) = 2z————z————
1—2K)*% z

for G{(z) = 2— @{(z) has zero-points on the clrcumference lz] =

As an immediate result of the above

Theorem. 11.)  Let
P(2) = z+c1 2" F e L o gL,
be a convex function of the class k. Then every function

9R) = 2+b1 2K 1+ B 2% 4 L+ b2 L L,
such that | -
10,1 Z | enl =1,2,3,....),
ts convex for |z | < R, where R denotes the same quantity in theorem 10.

Remark. It is evident that the limit R can be attained by the
function

90(z) = jo Q’z@-dz = L (2—-2%?1) dz = 20— gn(2) .

(1) In the case k =1, this theorem reduces also to KOBORI’S. See, loc. cit.
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§ V. ON THE UNIVALENCY OF A FUNCTION WITH
- A NON-VANISHING DERIVATIVE.

Supposing that f(z) is a function which is regular in a certain
domain D and whose derivative f’ (?) never vanishes there, we cannot
necessarily assert f(z) to be schlicht in D. For example, J(z) = e* has
a non-vanishing derivative but is not schlicht in a circle of radius
greater than =. Here we shall give some results on the univalency
(Schlichtheit) of a function f(z) with a non-vanishing derivative.

Theorem 12.W Let f(z) be regular in a convexr domain D. Then
S(2) is schlicht, if the value-set of f'(z) in D lies in a half-plane 2
not containing the origin in its interior. '

Proof. Let 2z and 2z (s;9=22) be two arbitrary points in D.
Since D is a convex domain, the segment z 2z, joining z: and 22, lies
in D. Denote by M the set of values taken by J'(2) on the segment
2122, then it is clear that M is a bounded closed set lying in 2. Hence

in 2. If we denote by a the centre of C, then we have .
If'@)—a| <la],
for every z on the segment 7,2 .
Now
2o 29 2 , |
Fe)—f@) = | F@) de = | ade— e dz
1 2y 1 )

= ale—2)— (a—r")dz .

(1) When I read this paper at the annual meeting of the Physico-Math. Soc. of
Japan, held in April 1934, Prof. KAKEYA kindly remarked to me that this
theorem can be easily proved by a geometrical consideration.
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Taking the segment z;2: as the path of integration,

| 21—z |
ds=lal||z—=2
0

Clcnalaferiacio]
Hence |

=|al|lza—z|—

¥4
| G —f (e ‘(a—r 2|
291
>la|lzi—z|—la]|lai—2]=0.  (QE.D)
Remark. For this proof we owe much to Prof. K. KUNUGUL

As an immediate result

Theorem 13. If f(z) = Z+.... s regular and
R(f'e) >0 or |fRR)—1]|<1
for }z| <R, then f(z) is schlicht for |z| << R.

Next an ,app’\licé.tion of theorem 13 will be enunciated :

Theorem 14.% Iff(z)=coz+—02—1'z2+.... (cs, c1 given, co=F0) is

regular for iz|<1 and if |f@)| <1 for |z] <1, then f(z) is
schlicht for

@) 1zl <E=1[-lal@—la)+vViaPd-Te)+4lal],

where a = i—gllc—o—lé . This limit can be attained by the function
z - 10 1 ei® 22
41) _____S co+(co¢?oe +ao)z-|:e 2 i,
(41) fo(@) o 14 (a0 €% + ¢o a0)z + Co €° 22

where 0=2argc,—argc+= (mod. 27).

(1) This is an extension of a theorem which I have already proved. See K. NOSHIRO :
Journ. Fac. Sci. Hokkaido Imperial Univ., ser. I, vol. 1, 1932, p. 157-161, esp.
p-160. And also K. NosHIRO : loc. cit., vol. 2, 1934, p. 89-101, esp. p. 98; Here
I considered the case when f(z) = ciz+¢122+.... (¢, €1 given, ¢, ¥ 0) is regular

and |f(2)| <1 for |z} <1.
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Proof. It is clear that

(42) 9R) == if (2;;(6") - —cllco B 24 ....

is regular and |[g()| <1 for |z|<¥. Hence

) | A=laP 9@ | - A—lcP)]9@)]
4 —C | = ’
(%) @) e L+200@) = 1=lal9@)]

Hence, by theorem 13, f(z) is schhcht for |z | <R prov1ded that
(44) lg(Z)l<ICol for [z2|<<R.,

Using a known inequality | g(z)lSrl—,_Ti‘“’—l""—lr for |z|Zr, it is

seen that the inequality (44) holds good, because R is the root be-
tween 0 and 1 of the equation rl—'_:—_"ill—'—*_-%‘
is proved, considering the function fy(z) whose derivative vanishes

at a point z, = Rem, where A = arg co—argc; + = (mod. 2x).

=|co]|. Thus our theorem

§ VI. A THEOREM ON A SCHLICHT MEROMORPHIC
FUNCTION IN THE UNIT CIRCLE.

_We will here enunciate a theorem analogous to FEJER’s™ on a
schlicht bounded function.

Theorem 15. Suppose that

\

@) = —:—+022+0322+ ceeetenZt 4L
is meromorphic and schlicht for |z| <<1. Then

|1+cz+c3+...+%l£2+J241 2,7469... n=2,3,...).

1) Mr. FEJER has proved that if J(@) =¢ey+e z+c, 22+....+cn2zn+.... is regular-
schlicht and bounded in the unit c1rcle Ifr@i<1, then

lco+01+- +Cn!§1+'/2 (’n—-O 1! y wo )0
Cf. Acta Mathematica, Bd. 49, 1926, p. 183-190; Acta, Szeged, Bd. 4, 1928 p. 14-24.
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Proof. We use two known results :

)  SE-DiaP<l  (Bmsmrsac)
NOIESE '+Tlé“l (LOWNER)
Since

F@) =2f@) = ataz+a+...+ee"+... (0=1, a=0)

is regular and bounded in the unit circle: |F(2)| <[z 24+1<2, we
have by LANDAU’s theorem® '

(46) (n+ De+nei+....+2¢4-1+¢n _3_.2 .
n+1 ’

On the other hand, using BIEBERBACH’s result,

. (47) lc;,+202+...+'nc-nl,§2|02|+.'.-+’n'c~n|

1/1 1/1|Czl+...+v,__ V'n—1|cnl

s/IEviar/SE < /5 F

By (46) and (47),

leo+er+e+...+c.] = l(”+1)00+”01+ . +c,.+cl+202+ . +ne,
| n+1 n+1

< m+1De+nei+...+cn
= " n+1

+—!—|cl+2c»z+ cootnC|
n+1

= (k+1)2
éz“/(n P &

(1) E. LANDAU: Darstellung und Begriindung einiger neuerer Ergebnisse der Funk-
tionentheorie, 2. Aufl., p. 22.



On the Theory of Schlicht Functions 156

Here remark that

_ 1 EEAD _ —Dee+d 1 il
@) ¢ =i iy % 2+ DE T

decreases as n increases for n=>5. To prove that P(n+1) < p(n)
for n =5, it suffices to show

2+420n+ 11n2—n?
(49) 2 > 2n@n+3) for n=>5.

But this inequality (49) holds good, because, for n =5,

n-1l1 25 24+20n+ 1102 —n
- .2 _— d L]
3% =1 on@n+8) 2

Consequently it is seen that
max d(n) = max ¢>(n) ,

whence it follows that

241
max ¢(n) = 33
Thus we obtain
i 241
® e oo n —=2’7469.ou0
[1+c+cs+ +e, <2+ 435
March, 1934.

Mathematical Institute,
Hokkaido Imperial University, Sapporo.

After I completed this paper, Mr. K. JoH kindly wrote to me to say that theorems
1 and 2 had been obtained by Mr. G. GOLUSIN in Recueil Math. Moscou 36, p. 1562-172.



