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Introduction. In the previous papers [1]"” the present author has
treated the theory of certain non-holonomic spaces of line-elements and of
the non-holonomic system depending on line-elements. The principal
purposes of the present paper are to generalize the concept *“non-
holonomic system” into a space of higher order and to find in the ge-
neralized non-holonomic system the structure of several operations of
extensors considered by Prof. A. Kawacucnar [2]. The former is stated
in §2 and the latter in §§4-9. As the preparation for these purposes,
§1 is devoted to the exposition of the notations employed and of the
definition of extensors introduced first by H. V. Craic [3] and in §3
we treat upon the transformations of the non-holonomic systems. Since
there are three kinds of the previous operations, any two of these
produce their products. In the last chapter, we discuss therefore the
commutativity of these products.

The present author wishes to express to Prof. A. KawacucHr her
very sincere appreciation for “his helpful guidance and his careful
criticisms.

§ 1. Notations and preliminaries: In the present paper we shall
employ at most two holonomic coordinate systems x and @ and so far
as the quantities that bear indices are concerned, we shall distinguish
them whenever feasible by restricting the choice of indicial letters.
Specifically, letters at the first of the alphabet a, b, ¢, d, ¢ shall serve to
denote the system @, while 4, 7, k, I, m, will be correlated to the system
2. Thus «* is the 7—th coordinate variable of the system x, while z*
is a variable of number @ of the system %. Differentiation with respect

(1) Number in brackets refer to the references at the end of the paper.
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to the parameter ¢ of a parameterized arc will be indicated by primes
and Greek 1ndlces To illustrate,

< { 7 P,
x’t - _dx_., x(“)t = iai' X'(’t — X(‘O)t = ﬂ.(_o_)f_ _Xa" poment .a.f__c:(j a_
di ’ dte ’ aa (ada e ’ et 'ax(ﬂﬁ ’

,f‘(a)t -_ gx(a)g ’ f(a)(s) - d{.ﬁ (Ox(aﬂ) f Ca)i _b;(a)t ( dtB ) °

Summation convention. Repeated lower case Latin indices call for
summation 1 to N, while the summations indicated by repeated lower
case Greek indices are from zero (unless the contrary is specified) to
some terminal value usually G or G + 1. Repeated Capital Greek indices
do not generate sums, thus (Z)X“;* with ¢ not summed would be
written ()X 4 - _ -

At last, we shall use indices with primes, i.e. o/, ¥, ¢, ---, ¥, 7, ¥,
- and o, B, 7y - , referred to non-holonomic systems. |

Extensor. . We shall consider a space of hne-elements of higher
order. For example, an element of the space of line-elements of order

M will be denoted with af, 2™, ......... , * and it is called an ex-
tended point (or expoint) following H. V. Crawc[3]. y
The coordinate transformation: %*=&*(z')(a,i=1,---, N ) which

is assumed to be of class M and regular [4], gives rise upon successive
differentiations with respect to the parameter ¢ of a parameterized arc
to the “coordinate transformation of extended point”:

-8 — = =1 duc® :
& =5t (at), @ = g,
1. 1) | e = _Q"E;_ e 98 e g ,
X Yy
o ]
e — i")ct_ Nt 4. M_?_{”f___ L8 =15 4 L
T or*or’

Then the last relationship suggests the formulas ([2], p. 17)

0B g1 (B—y)]  ome-Te

20 T gl (a )T x>

for o,f=y >0, and for y =p

gmen DG P R P S N I
(1. 2) —zer = (8) o7 e gxc) .
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o<

—(a’a TG . ; : i
Jz = 2% for ea= 3, and W=O for a< B.

Especially 5P = oat

The notion of extensor is merely that of tensor relative to this ex-
tended transformation. Its components will be denoted by means of
symbols bearing Greek-Latin doublet indices such as pi or o2, i.e., if

‘A . B o
(G, + 1) [T (G, + 1) NA*¥ quantities T7:% 74 (i) dn =1,
A =1 A=l 3471>*3p i

, N;7:=0,1,---,G;;8,=0,1,---, G,) are related to the quan-

titles & ®a% 1,)Bbelonging‘ to any other coordinate system %
171 )

according to the transformation equation

(ada, i ) j
T % %a%4 = A *TT 1% " Ta'a _U X Bl
B, 0, " Bpbp 8,4 3pip i= (TA)‘A HX‘B;L)”

where the symbol 4 denotes the determinant ‘——— , then we shall

speak of these quantities as the components of a mixed extensor of
order A + B, range G and weight ¥ —excontravariant. of order A, ex-
covariant of order B. If the quantities 7' are functions of the sets of
variables z, , ..., 2% (M < P), then we shall employ the term ex-
tensor fleld of function order M. In case that the Greek indices have
dliferent ranges, the range of the extensor will be said to be G, the
maximum of separate ranges. Following Prof. A. Kawaeuchar ([2], p.
21) this extensor will be called to be of characteristic (A+2B, k, G, M).

§2. The concept of non—holonomic system in a space of line-
elements of order M. Let us consider a space K{” of line-elements
of order M and a set of (G+1) N excovarlant extensors %% (z, 20,

, ) (/ =0,1, ,G; ¥ =1,-.., Ny of characteristic (1, 0, G, M)
(where G = M), associated with each expoint x¢*>* of the space of line-
elements of order M: K%, and put the conditions that
(2. 1) 2wy = for o« <a
and that (G +1) N-rowed determinant A constructed from Ai%% with
respect to the pairs (¢/%), (a?) does not vanish in the considered domain
of K¢». This determinant 1 becomes as follows:

(2. 2) A= x A x e x |2&1
here we can define uniquely the reciprocal excontravariant exte‘nsors A%
of the excovariant extensors 1%{ such that they satisfy 2 A% 1%.5 =

a; 5% , where symbol § denotes the Kronecker’s delta.
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 Remark. Let @ be a certain positive integer less than G, and con-
sider the (Q + 1) N excovariant extensors 43¢ (/! =0,---,Q:% =1, :--,N)
that are a part of the set of (G + 1) N excovariant extensors /1“"' (o
=0,---, G; v =1, » IN), then their reciprocal excontravariant ex-
tensors A*W (B = O -+, Q; 4=1,-:, N) will be obtain from the

equations 22“"’ ket =680 (@, =0,-,Q;%,5=1,--, N); It is

verified w1thout dlfﬁculty from (2 2) that such quantities 1*%.} coincide
with 235 (/. =0,---, Q; § , N ) which are a part of the set of
the (G+ 1)N quantities ZB.J. (,8’ = O -y G; 3 =1,--, N).
Definition. Under “non—holonomlc system” in the extensor space
consisted of all extensors at any expoint of K@ with range not greater
than G, we understand two sets of N(G + 1) mutually independent ex-
covariant extensors A%¥ and excontravariant extensors A%; which are
called the base extensors of the non-holonomic system. Then we shall
define the components of the extensor T7i% " Ta‘a , ; .. of the

characteristic (A + B, k, R, D) in the non-holonomic system, under the
restriction R < G and P= D = M, as follows:

3p .7'3

5}373 3853

T e T 2, T [N o
171 A4 * -k 1% A YA
(2. 3) T .81"7.1, e ’ » — ]TA o T 3 _1‘1...

7t

A
xlniﬂ 2’ IIRS}L

‘2 'f»

where the symbol 4§ indicates the N—rowed determinants constructed

from 2!} (not summing on 6) and Zk,, is equal to k.

§ 3. Non-holonomic transformations of non-holonomic systems.
Now, we consider infinite collection of the set of base extensors A%
(or 2%%), and between two sets of base extensors the following relation
is assumed to exist: '

(8. 1) Ve = N e ATE
where the quantities N7.. satisfy the conditions that
(8. 2) , NTE =0 . for ' <o,

and that (G + 1) N-rowed determinant N constructed from N7 with
respect to the pairs (;'?'), («/@’) does not vanish in considered domain
of Kg°. When (3.1) is considered as a transformation of the base ex-
tensors, these transformations form the group, that depends on % (G + 1)
x (G + 2)N* arbitrary functions of variables =, @, ..., x>, Then we
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shall call such transformations:(3.1) as the non-holonomic transformations
of the non-holonomic system and such a transformation group as the non-
fwolonomic transformation group. The determinant N is written by

_N:l ‘g:’,l ¢ seenvenes P% [ g‘l‘:l

from (3.2) and the functions N2 corresponding to the inverse trans-
formation of (3 1) are obtained as the solutions satisfying the equations
NT5 N9 = 65,0, where concerning with these functions N§jJ we
should remember the same remark as that for 1%.5 in §2.

Deﬁmtlon. If there is at a certain point of a parameterized arc

of class P in our space one set of II (R 2t 1) 17 (R,L + 1) N4*% quantities

which are functions of the set of Varlables x x“’ e, PP (MEZDZXP):
Ty T,y 3,73 e 3p7ip’ (7,"1 , .7;1. — 1, ceey N; T’l — O, 1’ ceey _R‘1 : 6;,\ —
0,1,.--, B, R;, R, = G) for each non-holonomic system and if the

/tA/

_ . TES e
quantities 7" * ! 4 30y

5 ig associated with any one system are

related to the quantities TV * "™ ““""“"B{ oy - 840, belonging to any
other system according to the transformation equation

&, @, 0 &, Q T8 i St
(3.3) T11 474 . _]]A*kaTll AAS/f"

By Bplp ™ 7, e 3'pi’p

a/a/ 8/7,1

XUerlil-l[NB p’ bu’

where the symbol 45, denotes the N-rowed determinant constructed from

R
N 8% (not summing on ¢’) and X k,, = k£, then we shall speak of these

87=0

quantities as the non-holonomic components of a mixed extensors of

order A + B, range R and weight f‘_, ky» =k, R being the maximum of

9’=0

R % and R, , and shall denote their characteristic with the symBol (A+ B,
Z‘ka. =k, R, D). In virtue of this definition, it will be seen easily

v’=0
that the characteristic of the extensor is not changed by the non-
holonomic transformations. Henceforth, we shall go to show that non-
holonomic components of various extensors obtained from extensors by
differential operations can be expressed in terms of non-holonomie com-
ponents of the original extensor. :

It is well known that if +* is a contravariant vector of functional
order M and its necessary derivatives exist, then quantities v (y =
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0,1,---, L; M+ LZP) are the components of an extensor of charac-
teristic (1, 0, L, M+ L) ([2], p. 22). At first we seek the structure
of components ( in our system) of this extensor v™* . |

In accordance with the definition (2.3), the components (in'our system)
of the vector v* and of the extensor v*™* are given by v¥ = A% ¢! and v
=AF7 v'"* respectively. Multiplying the first equation by A% , summing
and then differentiating the both members of the resulted equation 7
times with respect to ¢, we have v = 5‘: (T) A6 70, where (%)

L?=0

is a binomial coefficient. If we put
T’ -
B4 By = O SO
. T=0’ frcadh
‘ =0 for ' <
then the quantities v™'* will be written as follows:
T’ o
(8. 5) . VY = 3 O v e,
o= ; SRR
Thus the structure of v is obtained by the right member of the last
equation. . Here, such the new quantities C}) in the non-holonomic
system are called extended cocfficients of a wvector in the non-holonomic
system. Consequently, we have 1;he following
Theorem 1: If 'Y are compsnents in the non-holonomic system of a
vector of the characteristic (1, 0, 0, M) and their necessary derivatives exist,
then the quantities
(4 .
V7Y — » CE:.;: P’ <o , : T’ =0, , L
07=0
are the components in the non-holonomic system of an extensor of characteristic
1,0, L, M+ L(ZP)).
Next we shall find properties of the new quantltles Ccrio.
Theorem 2: If our system is a holonomic system, then it follows that
P'roof In a holonomic system, the quantltles A¥Y must be indicated
by X%, accordingly (38.4) become as followsr -
™ T’ ’ ’ ’ ’
o = 2 (o) AE AT700 = 33 Xt X oy = 000 5.
Theorem 3: The quantities C%'% are invariant under trans, fwmatwns
of holonomic coordinate systems of the base space K{P . ’
Proof. Consider a holonomic coordinate transformation of expoints
(1.1), then the relations between these quantities A%7¥ and 2%¥, and
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between A% and A%, ean be put in the forms AT'¢ = 2 X932 A7 and
H j )

Ay = X4 A respectively. Consequently, we have

'r:;; — 2 ( ) 'r ¢' Rot r—-0"

T' »rl __0' :
. -8 ECr—ur-3§* 20y 0D ’
=3 33 () (T3 X XS0 AT AR en
T=0’ &=7T 3’=0
-rl_p' 'rl

p'+a' (a)a ¢ T 306 (3’
B' 0a=3’+0’ T 8'+.<z’( ) ot Xu”‘a’)bx 207’

2 (p') 27‘:‘- Aoa(u on ‘ - Q. E. D.

&=y’

Theorem 4: The quantities C%% are given by

. T’ ol N
(8. 6) Cor= 2 2 (&) NT& NG # -0 Cy
B’=08" a’=f§"’
under non-holonomic transformations (3.1).
Proof. By virtue 'of the non-holonomic transformation of the non-

AT

holonomic systems: A¥¢ = 2 NTE 22’ and A, = Ny Ay, it follows that

T’
e T TH 208 (7=
0’5’ —7‘2%'( ') z’l" ¢ 101’

B A S Y
% % H G N N gt Ao
=0’ a’m7T 3'=0

T?=-8’ R4
i — 2 Z (D’;’B') If:: N‘(’)g:(a’) 2 (8'+p) a'a’xot("r‘ 0’-3"

C 3’=0 ar-a:_'_@r V=0’
T’
— 3 3 (8) NTE N -e»0es  (putting & + o = )
B/=0’ a’=p’ ;

Remark. If we confine ourselves to consider functions NI¢ of ex-

points with same properties as functions X{2¥ induced from (1.1), i.e.,
T8 = (%) Nis'—* etc., then, because of
A,
Y = Bgy ag}B'NZigi NEL Cs's

we can see that the quantities C3% (7,0’ =0, ---, G) are the com-
ponents of a non-holonomic extensor of charactemstlc 2,0, G M+G)
(that is, one supercript, one subscrlpt Welght zero, rang G and funec-
tional order M + G).

§4. The ©Z-operation of an excontravariant extensors in a non-
holonomic system. The ©€%—operation of the excontravariant extensor
v7* is defined by
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. . S Hyyrt —1)H-R (HY T+ R ECH-2) y=0,:-, R—H,
S —KZ_O( DTt @v > H=0,--, R ([2],13 28).

By virtue of definition (2.3), the components of the extensor €% are
given in a non-holonomic system by

@;ﬂvr'v zoxwt' eyt 7 =0, iy R—H.
& - .
- . . . T+2 ) ’4 M B .
Differentiating the equation v™*4 = > 2%}*¢*v"¥ and following the Lg-
T’ =0 : .
1BNITZ'S rule for differentiation of products, we observe the equations
THRE =D el R) ATHASH=R =07 7 0
v D = - —A-00y
'r'z-o 0= o(, ) .

Consequently, it follows that |
@HvT'i’ 2 RT’i’ (__ l)H— A (H)'rél Hik(ﬂ'-—'l) R"g;’- 'y :'(H- A-07) b&'j’(")

] 2 ZTIU 2 2 ( 1)01 (I{) va'J'(p')
D' 0 57m=0
X ,12."-0 (‘—1)11— A-07 '(H‘io.)lgfl,f(ﬂ“"ﬂﬁ .
As

H-Q’

5 (e (o) Aprigar-i-on — @ u-sr et

we get the following results

Sayre 0’5:_,; 8'2;'( 1)H—o' (&) p¥'5 H-8" Tz'{r's'@g'lr’j’ )
By putting
(t.2) R Fr ey =0ti©), k
we have 1 -
4.8 emr = F T (Caye gy v ovpg (), = T BB

The right member of the above equation shows the structure of
€%’ , where the quantities C*’§’%, (€) are called as &-operation coef-
ficients of excontravariant extemsors in the non-holonomic system. Hence
we shall get :

Theorem 5: If v™'" are components in the non-holonomic system of an
excontravariant extensor o f characteristic (Z, 0, R, M), whzlu the mecessary
derivatives exist, then the quantities :

@Hvrrt' 2 '20'( 1)2-0"(H,) 3" 9&E=-0" Co'T 't'(C)’ I,i-:_.—(())’, Ié H,

8’=0 3’m=)



198 ; : . Y. Katsurada .

are the companents of qn excontravariant extensor of chamctemstw (1,0, R
— H, M + H(Z P)).

C*’}'% (&) has the properties stated in following theorems 6-8.

Theorem 6: If Our system is a holonomic system, then it follows that

O"l" i’

3’5 (C) _88"0’31 .

Proof. Ina holonomlc system, the quantltles ATY must be indicated
by XG0, accordmgly (4.2) becomes as follows:

@ 4) E(©@) = AT e a3
T’ : 0’ ) ';
= 5 XE S (= 1)) (31 Ky
=0 A=0 ,
Also, by using the fact that :
- ‘()' . ‘ , Q‘, , , .‘ : .
B (- D@ () = (=D () (14 (putting o — 4 = )
=0 for & < p
’ = (BIED’) fOI‘ 6, > p’ P
then (4.4) becomes the following resultS' CoLh (&)= 0%_5.0. QE.D..
Theorem 7: The quantities.C?’'%5 (&) are invariant undsr transfor-
mations of holonomic coordinate systems of the basz space KGP .

Proof. For a holonomic coordinate transformation of expoint (1.1),
the relations between the quantities A%t and XI';’ , and between €°2%},

and €°435, are written in the forms ALY 2X&3‘,‘2“"' and ©°2%5 =

BE X &° 185, respectively, consequently we have-
T’ T

,.g:'i;' ( ) - R¥/2’ &0’ 2 8 j’ TZO 2’1" BZ E'?'?g ‘-K %E%g I’é' CD ABIJI
=0 &= =9
T’ [

;0 S 3 XERXPALES = Farreriss. QED.
rTheorem 8: The quantztzes C 08 (€) are given by
crpp@) =% EE Cor @) NoEN g o i@
under mon-holonomic tmnsformatzons (8.1).

Proof By virtue of the non- holonomlc transformatlon

XY = 2 N{,'.ii *'e" and ATHL = 2 Nsiﬁi i, we get as follows:

a’=7"

, o _ ’
@Dfl'g,j, = ?_:‘lo(..*]_)ﬂ'—l (g')xrg,zj_'(a -
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0"7"“1 I_

= 1)e’'-4 (0y(0'=-2 NB""(P-),ZT'FI'&(O’ A=
Db i S SV COIGRD
o’ G

=y Z’ (-—1)”"‘1-’#(0'-#)/11-“c(a'-a. B(—1)H(8) N &,

L= 05' 37 A=0
because '3 N4ZOATjhie=i-m = $ NEZOITEAL0-i-® by [y =
B'=5" B7=5"’ v
for /> + 2. Consequently, we have

C"’Ra, = 2 > (— DHE) N g e aph,

0B’ =3’
hence it follows that

T 0’ G
= £ 5 Coreownni o
T &’ a’— p‘; ] ) )
= 2 2 ( 1)6’(0')NT:Z:NB'I"(“') Cn —ﬂ'a"tz’ .

Xm0 § =0 s’

Theorem 9: For mm-holonomzc components of an e’cemtmvarzant ex-

tensor v*'Y of characteristic (1, 6, + ------ + 6z, R, M) and a scalar f of
weight 0, + - + Oz, the quantities @7V = fE" (v*"/f),
@.5)  Erayrv = @ryre 4 5USE (pyarewr (aopyn )(“)‘”"f“”

’ . Ri=y 27=0

C*H p’ l' 'l)TI"

are the components of an excontravama/mt extensor of characterzstw a, 6, +
------ + 0z, R—H, M + H(Z P)).

Proof. Since v**'/f are non-holonomic components of an excontra-
variant extensor of characteristic (1, 0, R, M), it follows that

e" v/ f) = f:“f:‘"( —1YE-0" (B) (03 £ COE(E)

H'f'+ or H— i H'Tp'H_D, 1 4% a;j,(’,_p;_p’) o' l‘l
_pgo = 0( 1) p');z,::g B )(7") Crvs A Co(©)

and.using the fact that
H-0’(H 34 @~-0" (0% = CHyr"’
g,oa.o( 1) (@) v Cosp(€) =&,
@) Py =) (), and (5) =0 if a<b,

4

then

£
H-p’
Gray — @ fE (e () (o e
x COTE(©).

Replacing the term »2®&-0’-1" in the right member of the last equatlon
with (v37/f x f)#-9-t> we ghall obtain (4.5). In fact,
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’

@*HvT't' :_.. @H,v‘(-'“t” - f% BEP (__, 1.)41’+P" (H—}*’) (H) (_1_ )(P')f(l')
- RPN ’ 1)\ f

B-}l-p’ ’+D' y ’ ’ ’_ 3’4 ’ ,
x (— 1)11 BI=R’'=p (H—» -1 )( Y- 87=p -mcp'r't (@)
07=0 a'-o
—_— CHUT"’ + 2 2 ( 1)41 + M2 (H'l" )(H )(,__)(ﬂ7)f(l')c*H =N l'v'r‘"&‘
Bl At

where we have used (%;*") (E-4#") = (B-Ei-4")y (B | |

Theorem 10: The &"—operation of an excont'ravamant extensor in a
non-holonontic system holds the commutative and linear associative law, i. e., for
two positive integers H and H' we have the followzng results :

SEEmT = GEGHYTY = Gy |
\ cH (v*"" + u'r't') = SHy 'V 4 ‘@Hu’("i’
'Proof. By virtue of the definition (2.3), we see
@H-&-H:v?qc’v —_ ZT'" SH+B T for y = 0 RETTPE , R — (H + H'),
‘ =TV SE (@) for y =0, ,(R—H) —H'
— AT"' SH(SHv™) for 3 =0, - > (R_H/) — H
According to the fact that €¥'€%v"* = P&y = €7**v™ in the holo-
nomic system ([2], p. 83), we obtain the relationship €¥'&€"" = EZ&H
x vV = SE*R'Y7'Y | Further, using that €7 (v + ™) = €™ + €Fu™
in the holonomic system ([2], p. 83), we can go on as follows:
SEW™? + ut'?) = AT &SZ (v 4+ ut) = ALYV EHYT + Y SHy
= @Hv'f’" + S2uTY . Q. E.D.

(4. 6)

§5. The ©”-operation of an excovariant extensors in a. non-holo-
nomic system. Under the CH—~operatlon of the excovariant extensor W
of characteristic (1, 0, B, M) we understand

(5. 1) @gw’t‘t = H! :AEO(_l)V (T;v) (5:5:3;) Wersy ey H=0,-- , R

: ([2], p. 81).
The non-holonomlc components of this extensor €2w.,, will be expressed
in terms of the non-holonomic quantities in the following way.

R v -
By using w, ., = X 2 (1) A3 Pw,y? which follows from
3'=T+V n-o

Wrays = ): XT+;,;w3.,, the equation of deﬁmtlon cB wm. = 2 AT &H

1 k ‘mr+V T=T’
X W (T’ =0, e , R— H) leads us, by virtue of (5.1), to

St Wy = 2 x-r't' {H' Z( 1)1/(1”—”)( II-T) Wy +v P )}
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v

- . B=-H - 14 Iy y y
=2 A0 {H] Z 2 2 (—DYED TP EETD ALY D w2}

=0 3'=0 Q=0
—Ri”z*,f{ H 3 3 (—1)P (50w (H—p) !
T’ ¢ (H p)' =0 §7=0 8%

H-p
X 12 (—1)* (T'Fle)(ﬁ-ggfgg_(n;o))3r+a+u ‘©} (putting v—p=2).

Since A¥'Y in the last member may be considered to be of range R, we
can put ‘

(5. 2) (H — .0)' ( DA (FE6Y (B2 EE+23-\1~+@>)1~.«+21~.1’:"“ = €7 !

following the deﬁnltlon of the &%-operation. Then it follows that

B ! o ’ g
6.3 @ =55 S (D R (TEOA €T Y
H R - ) wais -
=3 S H! (-1 () (3 wa$ CONE(©)
=0, e , R H; H= 0 g eeeee , R,
putting ‘

. . N R_H. . rer

6.4 AH—A)IG)EWI S (B L CI I g = COVL (€7 .

(5. 8) shows the structure of €©%w.,; and Co¥4 (€7) are called &=-
operation cozfficients of excovariant extensors having' range R in the non-
holonomic system. From this we have

Theorem 11: In the non-holonomic system the qucmtz’ties

Chwp = 3 3 HI(—1)” (3)(R=5) wasf Coat(€) I B, U R
p‘ =0 §' =0 - ’ ’

are the components of an excovariant extensor of characteristic (1, 0, R —
H, M+ H (< P)), while wy.. are components of an excovariant extefnsor of
characteristic (1, 0, R, M).

On the coefficients C*’ 27 (&"), we can state Theorems 12-14.

Theorem 12: For a holonomzr' system it follows that C?24 (&%) =
820" of,

Proof. In a holonomic system the quantltles 2, % must be X048 .
Hence it follows that ' :

< H-o! S ’ | » | ’ 4 .
CH-O Q0 =(H-p)' S (-—1)‘(720')(%3 HEGRTrr0n ) (AT XY @T-T=0D,
. A"O .
By reason of

’ R-o0’ ] ’ B R-'f -
(o) E, (D B B3l o) (7 570) = (1) (F5T50°) (F5E507)
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X ; ( 1)). (H 0)(3-—1‘-—0' l) ,

2 ( 1)1 (H o’ )(R T- g —-l) _le‘: ( 1)1(11-—0 )(R—T H+H—9’ K)

=0 for R — H +pf <
- g:;:gr_al) for R — H + p’ % o ’

we have the following results
€70 Aol = (H—p") ! (£300) (B3 XY@ -7-0D

Hence (5.4) gaes into .
REER = g 3 (T3 (H—p)!

D) (B3 X %4 X§ee- -0

R-H
— Z (8'—0 )X’f"l' XJ @-07-7 — 3 er Xa' e = 38 3‘, ,
‘f-’l"' T=7'
putting K = (H — o) ! G E3). . ‘
Theorem 13: The quantities C°'34 (&%) are invariant under trans-

fofmat'_ions of holonomic coordinate systems of the tase space K.
The method of proof is similar as that of Theorem 7.
Theorem 14: The quantitiss C*°'3: (&%) = (§)) (5237 C*' %L (&F) are

grven by
» gy p2 '
undor non-holonomw tmns'fc'rmatwm o.f non-holtmbm’ic systems (3.1).
. Proof. By virtue of the non-holonomic transformation of the non-

holonomic systems, we have
€20 2 Ao = (H—p))! 2. >
=0 B'=7T+0'+V’ p_l=0
' b (Y-

R=C¥+0N~V’ (p’ ’
x R—(E—-g’%—('f*-p’)) (B NZ4P )3r+sa ey

ST (=D (Y

consequently it follows that

CHREE™ = (gl 2, (B AT @10 12k
Rz}f i (THOY N &E N UEE AT5 ( 1'#? (THE+n 1
T a.:=-"r" a o’ e e a’a’ ) 7 (H—p — )}
H-0 ’
X ¥ 10 S'=§+p'+w Br= o(H P 'u,) ! ( 1)*/' I" ('f+.0'+0}1;++}1/’ -W)
x (%= E§+3:+”;3 M Run) Aeilgrayhe VY
. H-p0' VvV’ 'H-0’ 3’ ’ YT
Since we see > X = 2 3 and b NEEED 2 By bV 1D
V=0 /=0 P =0Yy’=prt B’=r+0'+V’

_BZO NP 2 B ip? &V 7P 88 A fr )V 7H7 =0 for f'<y+p'+V/; we have
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il s kY4 aa’ 54CR! 1 ’
C*” 3 j (CH) _ 2_:1_' 2 ) 3_: 2 (p +F )( 1);JL Nr ‘, %,n p) (H-—- L-_F/)!

THOILPY T GH-00 - b’
x (Mo )2 & Arsbranh

IS (e N NP O e

Al mr? Bl Mo

: Q. E. D.
Theorem 15: If w, are non-holonomic components of an excovdriont
extensor of characteristic (1,6, + ------ + 6z, R, M) and f is a séalar of

wesght 0y + ------ + 05, then the quantities ©* wy.. = f- Eo(wyrvf)

E* M wepry = €M W + fE Z H! (-1~ 23(")(-“)‘“%' or=an
x C*0'31 (&F)
are the componeits of an excovariant eatenscr of c‘karacteristzc (1, o,+0,+
------ + 0r, R—H, M+ H(Z P)). ' -

The theorem is proved without difficulty.

We know in the holonomic system that if w.,, is an excovarlant
extensor of characteristic (1, 0, R, M), then €%w;_ ;s (H=10, - , R)is
a vector ([2], p. 32), but this fact does not hold in the non-holonomlc
system: But between the quantities €7 wx_;¢ = AZ-2L E€%wp_p, and the
components At SFwy_z, (= E*Wx_pe) in the non-holonomic system of the
vector ©*wy_,,, the following relation holds good : .

(5. 5) : CPwr-go = S wy_py C* 14,
~ where C#-B{ = 3 212-4{ . Accordingly, we have

Theorem 16: If w,. are non-holonomic components of an excovaridnt
extensor of characteristic (1,0, R, M), then the quantities C*-7{ C We_g g
(= &%Wxr-n v) are non-holonomic components of a vector.

‘For example, from a scalar function F -of order M, we have the
oF (x,--- ,2P) (&

excovariant extensor w.,; = Y Sel

Synege K= (M— K)'( 1) GHEF e (K =0, - , M). In the noii-
holonomic system, vectors of SYNGE are then written in S

1 (—DFE Ty

=0,----+-, M)and vectors of

because of (5.5), where the quantltles F “x are the coniponents of Fm, in
the non-holonomic system, i.e. Fgp = }IRK,F(M

Theorem 17: If our system s h_olonomzc, then C K = ol .
As in a holonomic system, the quantities 1%} is equal to ax*/ox’,
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this theorem will follow. - ~ .
Theorem 18: The quantities CX are imariant under transformations
of holonomsic coordinate systems. T '
Theorem 193 The quantities CK’, are chcmged by
C% = N NECX B
zmder 7070- holonomzr' transformations of mon-holonomic systems .
~ Proof. The non-holonomic transformation of the non-holonomic sys-
tems A% = 8?,' % and A = Ni{ 2%’ shows that CX, = N Nz C=5.
' | Q. E. D.
Theorem 20: .The €F-operation of an excovariant extensor in o non-
holonomic system holds the commutative and linearly associative law.
The method of proof is essentially that of Theorem 10.

§6. The 8”-operation of an excontravariant extensors in a non-
holonomlc system. The quantltles

(6. 1) gt = Z]("')ZH‘1 (1 —28)r- “v“‘"*“ H=0, - R
are the components of an excontravariant extensor, being vt an ex-
contravariant extensor ([2], .p. 87). Put ;

vu(r-—u = ( 2 AL5, p¥ Y- _8' M (r 1) 23,400 =2= 103"

T’ '
into (6.1), then the components of the extensor BT = 33 ATV 8B
T=0 :

(=0, , RB) in the non-holonomic system have the forms
Sﬂv-r't' — 2/17"' }.. 2 2 QHA (1 211)1' A ( )(1‘ ")/I" ¢ ('r A=1) 9878
A=0 a =0 »- '
T

— wav » 32 2 (2ER(1—E)T-E=R (TR
T =0 M=) 3" =0 R
' X ARELT=A=m> (1 2H)P(T)US'1'(F) .

Since we see, using the fact that N,,. =0 for 1 < &,

ri QHR (1 —QE)r—F-R (T7F) AR5 (r=A- »)_ ('r ) QHR (] —QH)T=1=2 236 (T=R=p>
"" = SH/WEsVFL y oo
the following result is obtained:
gror — £ 5 R v 8 arssd (1) A —2eyporren.
v g

= 2 Z " Z ('r) R'{"t' 81111‘ ;l (1_23);;, 38U .

Wm0 §7m0r=3'+1
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Here by putting
(6. 2) {2”5'(8 ")) 2 , (B A7 BEATy = CPET (B8
we can see the relatlon
(6. 3) 811?)1"’0 — 2 2 (6 p ) 235' (1 211)}“?)8'1'(}“) C}“T"‘ (811)
O Pr=0 §7=0 ‘
The quantities C %% (8%) in the non-holonomic system are said the
B2-operation coz ﬁicwnts of excontravariant extensors in the non-holonomlc
system,-and we can state
Theorem 21: Let v™" bz components of an excontmvam’ant extensor
0 f characteristic (1, 0, R, M) in the non-holonomic system, then the quantities
Hay¥?E’ 3’ +p., xS’ H\ 1 003§ (7 }LI r';: H
grom = 5T oy 2m (1—gmprorvan o g (8%
are the components of an excontravariant extensor of characteristic (1, 0, R,
M+ R=P).
Theorem 22: For a holonomic system C™Y.% (8%) = 8% ~* % .
Proof. Since in a holonomic system the quantities 1¥"¥ are equal to
X3P, (6.2) may be written in the form ’

T’ '
KC"y B = (G)are 8 arsy

T’ , | o _, .
:1’-02:+P-' 2 XE}”)); () (F2%) (3)284 (1—-2F)T=2=% X5, r=hr-3h

T’ i ~ o -
:f—az;w' zg:a' XE%): (F'+6 ) (ﬂ a")(rapa'a') 21“ (1—2H)T po-a Xﬁ»(f BI=5NH
:r,-sz'”), }l’+a )X'f’i’ X}L'+§'j' Z (1' }“—8 )ZHA (1 23)1' oy

-

p -
putting K = (3'3}!") 28%, Furthermore applying the relation Za (35380

x 274 (1—28)T-F'=2 = gui’ o

crTe = 1 (}1’ )X}"; X}L,”,j, 2H° = BP,J,S,B Q. E. D.

A .K o = 8 +p/

Theorem 23: The quantities C*'TL (8%) are invariant under trans-
Sormations of holonomic coordinate systems. _ -

Theorem 24: The quantities C**'%.% (8%) = 283" (3'1 1) CM'E'L (87) are
changed in the form

L RI=F =N at= 07—

CMIL@H = = T3 T3 (M) (1—20)0 NTE N§e”

R'=pr+ 3 0'=0 B’=§
x Crorsr (37)
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under mon-holonomic transformations of non-holonomic systems.
Proof. According to the non-holonomic transformation

LAdEE r4r ra’ ! 7Y . -
¢ = 3 NDLAYY and 245 = 2 Ns“ % Akt , we have

a’=r
BRIy = 32 2 (12T A (V) AT

TR R -

=52 1‘3 21 (1 —2HYT R4 (7o) (M) N YOO A4 TR =00

A=3’ BimB’
TP r-pr-Q’
= > @-=2%)(r) NE:'J:("')
51-8’ 0’ =0 S © ) -
% T,—pz’a QER (1 —QE)Y~H=0'=R (T-B'=0) QR LCF—p/=07 =1
A=B' .
N P-’ i l“'" H p, - }v\ ﬂ’b'(ﬁ') H ’]"-}1:' HC
=T TS A e N g
Consequently, the following relations are introduced :

e T T=pt r-p-p’ I ,
C*Te@BH= 2 X X 2 @EINTEART(=2%)°
T=G 41 dlmr B'=3  07=0
T-}L’)NB")'(O')SHRT lJ~’

L2 — d'-—}'-'

_— o'+ — 9QH\G’ T B0’ (0"
o a’-62'+P-' B'Z-a' 07= ( )(1 2) N“'“'NB'J' »
a, '
xS (T BEATE
T=0'+ P+ B’

Ll a’=pr 'G’—}L"B" ’ ’ 142 'y ’ ’ 71 rp?
—'—— “’-82'*'}‘" B‘;S' 0,2_0 (p ;F‘ )(1—*2H)0 I’:’ Ng‘g’(o ) C*D +P %Iz! (83) N
Theorem 25: For non-holonsmic components of an excontravariant

extensor v™'" of characteristic (1, 6; + +----- + 0z R, M) and a scalar f of
wetght 6, + +----- + 0z, the qucmtitz'es ATV = f. 8L (v7Y/ f) : '
8*H 'r t __817,01‘ € + f 20 XZO (1 2H)}L (;'*kL ‘r‘ (8?1) 2 (F )( )(P - »vZS J(V?
are the components of an excontravariant extensor of chamctemstw 1, 6,+
------ + 6z, R, M + R < P).

Remark. Take the non-holonomic components of x(r+dt (T =0, - ,

—1): &7 +* instead of v*'* in Theorem 21, then it follows that Sﬂx*'“"
—_— x‘l"'-l-l [ (T’ — 0 ...... , M).

§7. The 82-operation of an excovariant extensor in 'a non-
holonomic system. The quantities

. R-H~T )
(7' 1) ‘SH w'f" : vgo (_1)!/ (H;Il—.';y) 101'+H+V ‘(V) ’ T = 0! """ ’ R'_—H
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are the components of an excovariant extensor, being w,; an excovarlant
extensor ([2], p.40). Put

R R v
'w~r+H+th) = ( ‘ 2 21‘+2€+V{ 'wa'j')(") = ] Z (’/{)-27+H+y t -0 w& W
3/ =T+H+Y 8'-.f+12+v A=0

R-H
into (7.1), then the components of the extensor 82wy ., = 3 A%L%{ 82w,
=7

in the non-holonomic system have the form
ReH -7 R

8H w‘rl" — 'rg'r: RT"’ v;o % a'-§+g ( l)v (H ]+y) (V) '21"+H:|-v¢(y ") wa' $4
R-~H-v R
=5 ARy 20X (1) (” N wesh
Tm=r? A=0 F’'m=T+H+R v
' Bi=Cr i+ 15 Ved (H+ =14V =2 5 ' (v=-23)
° x u-?o (“1) ( B+1-1 )21'+H+41—(v-41)¢ ~ .

From the fact that 20 =0 for w>6’, we have the equatlon
(1'+H) ’
(7. _2) v ( 1)” A(H+R—J+V l) ,Lf”““(u ;.)f(v FB |

a'-(~r+ D
— Y- H+l—1 u 3’ '(V=2) — H+L 3’4
- v l ( 1) 4 ( ¥ A) lr+11+x+(v D':? ¢ ’8 R’f‘ [4

from which we shall know that even if the range oj A3’y is either R
or ¢/, the corresponding 8Z-operations of the base extensors can not be
distinguished. @ Then it follows that

R-H R~-A-T R

8Hw1~¢' =3 o N (__1)1 (”E’_‘}“)wy,:“ x-rt 811“ A%y

T=7' Q=0 §*'=T+H+]

R-H-¥ R 8 H-R L ha -
- JZ':') sr-§+ﬂ+1(,_1)l (Falit) ws. 40 r?w Ao 8R4 ATY,
and by putting |
3'—H-2
(7. 3) ‘ 2 ~r'¢' 8H+A' 15"' c¥ 8," (819) ,
r=r

- R-A-r’ R
(7. 4) 8”@0,,,, = 3 S (=1 Hﬁi_-l;l‘)wa,jll') CVuf(8%).
R7=0 Ft=¥TrH+A’

The quantities C *'}:{ (87) in the last equation are called 87-operation
coefficients of excovariant extemsors in the non-holonomic system. Further-
more we can state : | : i

Theorem 26: The quantities '

R—H—T“ R x v
B2wep = 3 S (=D (E ) wy. S CVEL (BR)
A'=0 ' =r"+H+ Q'
are components of an excovariant extensor of characteristic (1,0, R— H, M+

R — H (£ P)), when w... are components of an excovariant extensor of charac-



208 : " Y. Katsurada

teristic (1, 0, R, M) in the mon-holonomic system.

Theorem 27: When our system is holonomsic, the 'relatzons C*ii (83) =
0%’ - 4.2 55 hold good. .

Proof. The quantities %% must be X{{3% in a holonomic system
Accordingly, (7.2) is calculated as follows: ‘ :

_ R-v-H-1 _ . v
Bty = B (LY ORI datin P

 ¥LRA- vV (H+ A—1 (3'—¥*-H- )
= VZ (—1) H+1—4iy)(r+li+g+u)Xi §'-v-H-1

=0

w e i S ., . ¥'=T-H-1
which becomes BH+2 87 = X #+bI  hecause x (—1)Y (Feiz”
s '

X (remdnsy) = ' F1). From it we can prove | _
Theorem 28: The quantities C* %1 (8%) are invariant under trans-
formations of holonomsic coordinate systems '
Theorem 29: The quantities C*' 3% (87) are given by

—A’-H 3'—a’=2'~H P4

EEEn = E Braa%ww(—l)’* By Lam =T N &% N Lo
' x CA+r 8 (37)

under a non-holonomic transformation of rnon-holonomic systems.
Proof. By virtue of the non-holonomic transformation of the non-

3’

-
holonomic systems %4 = NXLALL, Acgiiwd = 2 N §4%
. a’=7’ o B’=1’+H+A+v

X Ariafrsv i, Wwe have

. ¥-T-H-A 3’ v _ ) ven
By = X > > (—DYCETE) G N B Apanbaan ¥
V=0 B’=*+H+A+YVY p=I
_¥-REt 2\ BI-rs8-1 1 YR (B AER=1HY =R
= X P > (LA )
R=0 B’=T+H+A+V V=2
< 2T+H+A+V’i - }L)( 1)}jL (H+i~{)i—1)N§:gf(}L)
3'~T-H-2 3’ . ) N .
= X p (—1)’” (FRATET N R BH+arr 287,
K=0 B'=7T+H+A+]1 :
from which it follows that
Cla..,i, o R SRS : S 3'~¥—-r—-H 3’ a,ar 3757 1 n (H"‘A"‘
EBH= X X > 2 2o NP (—1)
T=7' a’'=v’ B=0 = A+HF R+

i u + ‘bt
'fa' 8 + R }L'zgi

3’'—A—-H 8'~-a’=-H 3’

VST S (1 (k) NEE NEe

&’ =7’ }L;’:O B/=a’+H+A+P ‘
< CI.+PB:g: (811) .
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Theorem 30: If Wy are non-holonomic components of an excovariant
extensor of characteristic (1, 6, + +----- + 0z, R, M) and f is a scalar of weight
O, + «---- + Or, then the quantities B3*Fw i, = f - 3” (W) s B*F Wy =

R-H-¥" B-(H+1M)~7’ . . ’
Sawr'z‘ + }?: 2 ( 1)#+V(H+ -1) H;}}:;’jfl) (*—)(P) f\U) 8*H+}L+V Woprer
= V=)

are components of an excova,mant extensor of cha'mctemstw 1,6, +-----+ 6z,
R—H, M+ R—H(ZP)).
The method of proof is essentially same as that of Theorem 9.
Theorem 31: A necessary and su fficient condition for that a fwwtwn
fdt of an expoint (x, x®,---, ") be invariant in functional form under
a transformation of parameter t is given by the equations referred to

a non-holonomic system : Bfyo 271 = f, B f 02" =0 for H= 2.
Proof. From the definition, we can observe the relations
) M-~ T’ o7 .
8Hf1‘"i' :.‘,2 -rw SHfLT)?: and x-r +14 32_9115; <3+ 7 (H =1, cce-- M) .

Consequently, we have
M—HM~-H

8Hf1’i’le+1 %’ _51 2 'r'z [r'z' 8Hf<f)i x(6+1)1 '

Yr=0T=7" a=
M-H M-H

=2 2 X L) By w07

T=3 (=07'=
M-H ) . '
— 2 3 f(ﬁ) x(a A2 DI S f for H —_— 1
=0 for H=2

from the similar theorem in a holonomic¢ system ([2], p. 41).
Remark. In a holonomic system, we have the following relation

(a) B wel s = SH-I Wy — (8” 'w-m')m ’

B) 8"wr-wi= 8 " Wr_pgi14 @2, p-. 42)

Next, we shall consider whether such the properties exist or not for
the 8B¥-operation of excovariant extensors in the non-holonomic system.

R—H .
(2). From the equations 8% w.., = 3 %% 8% w,,, we obtain the fol-
, =7
lowing results:

8 were — (B e )P = 3 AL BT
— 0T 8wy + AL (B wr )

— AB-HAE Ry 2 AT (B0 — (8H,wﬁ)<1>} _TE,(qu'ﬁ')(l)Sers
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~H,
= RR‘H”‘ 8H le H+1d +T21_' {/Lr'c' 8Hw'r-1 ¢ ('{;'g').(l) 8” ww}
= 2 X'rr:' ,BH Woe1¢ — 2 (2;:2:)0) -8H ’wﬁ
*=7’ T=T’

= 2 {/1;,“ s — (A1)} B was + m:, 8 werye (not summing ony).

Using symbols p,"; :, and p%.214 for {ATH L — (A%LL)} and A%t respec-
tively, and puttlng 2 ;z.,._, 31 = C* 2% (= 6,864 in the case of

the holonomic system), we have

R-H
8 werw — @ wre)® = B CHILE BT we
Tunf? =1

(3). Also from that

B Weon o = AE44 8 wr_p, and B " Weepw v = ARZEN o B " Wa g1
it follows that ,

B*we_pe — B8 Wr-pri e = (AB=Ee — ARZHNY) B We-ne
and further putting (AE-E:L — AB-EIL)AE-EY =CE*#% (=0 in the
holonomic system), in the non-holonomlc' system, the following results
are obtained:

R—H —
@) B wer — (B we)® = B, CHILEB iy

#) B Wer¢ — 87 Wr-psser =C§_H L B8 we_g, -

Theorem 32: The B?—operation in the non-holonomic system holds the
commutative and linearly associative law.

§8. The Y)P-operation of an excontravariant extensors in a non-

holonomic system. The ¥)”-operation for an excontravariant extensor
is defined by

(8. 1) Y o7 = H | z(r) (B*5H;1) vTVEW for y = H, H+1,--, R*

= H! 2(1)(R*+H f)vr Vi for y=0, 1, e ceer’ H

(R*XR,H=1, 2,.-.-. , RB*) )
where v™* is an excontravariant extensor ([2], p. 44). We shall confine
ouselves to consider only R* and H satisfying the relation R*+ H < G
in this chapter. (8.1) can be written simply in an equation

—H! 3 *(;>(R*;,fz;f)v*-V*<V> for y = R¥* R*+1,., R*+H
V -
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(8. 1)/ Q)H VT = H! E(r) (R*+H—1‘> it Vz(l/) y = 0 , e -, ‘R* +.:H’
reading ( 1) for 0 <A< p or < 0 as zero. Using (8.1 and
v
T-ViQ) r , p37INYaH — v ~r ut(u 0) 23%i'CO
v (235'1” ) EAT--‘O;A-'_‘O(a)'1 v ,
it follows that .
Q)H ,v'f"' — ﬁ RT"’ Q)H rv'ffi ' | ’ (T, — 0 g eeeres , R* + H)

T =0

oy Yy ryr
— zxri'Hy 2(1')(12*;1-!1:1 T)Z z:o(g)lf vuv 0) 73’3'COS

— Ezr'i' H! é Ti ( )va ritcad
=0 (H )' 3'=0 Q=0

k i .
X ugp (H —P) ' ( (R*+prw(1'p§))) AT—DSSV—Q);’(V—Q) .

On the other hand, we can see, because of A7~ 73~} =0 for
v—p>yr—9&—p

T . , _ P _
(8.2) X (H—p)! (528) (i3 2Taf) 405800
— i (H—p) | (528) (P52 3255%30)A7=P5 (u 2 8,W-0) — QH-0 750,

which depends on the range R of 17;#{ . Consequently, we have

g})H v-rny — 2_:' ' -3’ r’. H' (T) A.{lm, ?)H o AT fi 'Ua’i, (0)

370 820 vSrar (H— H—p)!
By putting
L ad

(8.3) {(H—p)! (°:¥)(F:2" ) = BT ‘2)”’ AT P =C% % (‘3)")
T=0'+3
it follows that |

’

(8. 4) Yyt = 3 S HI(45) (BT 0d Y @0 C g ()

37=0 0'=0
where the quantities C®'%:% (9¥) are called the ¥“—operation cozfficients
of excontravariant extensors of the range R. Here we can see
Theorem 33: If v™'¥ are components in the non-holonomic system of an
excontravariant extensor of characteristic (1,0, R, M), then the quantities
DH TV = 2 2 H 1 (n'+a') (R*;r‘x_i ) pd'iee’ »C oL (YH) ’
3'=0 #’=0
(=0, , R*+H, H=1,2,---- , R*; R* < R)
are components of an excontravariant extensor of characteristic (1, 0,_ R* +
H, M+ H(Z P)).
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. Corollary. The Y)%—operation of an exco';zt'rqvaria,nt extensor v¥'Y in a
non-holonomic system has the p'rOpe'rty ) (PHvTY) = YE+ T

. - v i , ) T’ ’.l'
Since 9 (970™) = 3 47¥ (97 0*) and YT = Fary garior
. T=0

from the definition and also ¥ Y? v** = Y=+ y7¢ in the holonomic system
([2], ». 45), the corollary follows. .

Remark. When we replace v™¥ in Theorem 33 with the non-
holonomic components of ™+ (y =0, ..., M—1): ¥ +¥ G =0, M
— 1), it is established that ¥ x™'*1¢ = H! (M} H)x7'+% (=0, .-, M*
+H<M-—1, H=1,- - - M* ;. M* < M.

- Theorem 34: The quantities C°'L5 (Y¥) become 8,75 00, if our
system s holonomic.

Proof. In this case, (8. 3) may be ertten 1n the form
o'y 1’,'(;2)15{) — K -1 2 (7‘ ) (;;):
X 2 (H___pl)! (Ie*+g:g;:g—p{)) (T; p') X(f—a.a,'—w’.iy(u)

— -] r b a4 14
=K - p+a'( ) X&
r—-Q0’

X 2 (H— P')v(R*+H 0-Cr- p’)) (r- D’—ﬁ’)(’f‘ )X}c,(r-a'—w' .

putting K = (H—p’)! (°?) (R*;}‘i‘;?’) . Since
Y B¥+Ho 00 -Cr=87) (T~ 07~ BHTE- 003!
S0 (g () = ( ),

it follows

T’ ' .
TEEN = K7 5 () (58 (H—p) L () XL Xermer-an

’

. 754  _ ’ @ .
= 2 ot X Thng = 0075 05 Q. E. D.

T=p'+3’
Theorem 35:- The quantities C 5% (Y¥) are mvamant under trans-
SJormations of holonomzr coordinate systems.
Theorem 36: The qucmtztzos C*e'L5 (YN = (O3 ) (BHALT ) CP' 1 (YH)
are given by
crpi@m = 3 TET TS T em) NupNgpeo ooy @)
J e 377 g0

“‘l-pl.’_al }L'—O B'=8'

under non-holonomsic transformations of the non-holonomic systems.
Proof. From a non-holonomic transformation of the non-holonomic
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systems A%'Y = 2 N ff;i A8, 2" HY = 2 N 8o Aar -V, we can calcu-
. a’-’{ Bn-al

late as follows:

YU~ 17585, = };:Z(H__p)! (FX+H-8-r-) (v‘—aj AT-@-V 50
0-3" T8~V

= -2 2 é (H—p)! ("5 0)(R*+H =) (Y)N 8L J7-8rv 4 Wi

Voo gi=s’ k=
T-0-3" T—0-} !
= 3 (H ) -'
i 55 (H—p—p)!
From this, it follows that

(TRP) N BB Q-0-p jT-0-Pt

C*a:.f i H x’ ' r—8'—-§" - 0‘ T"l:' B'b'(}“) -0’ H 7 ni ;.]
W= B BT GNE N (EH-p -
. 2‘?,2; Q)H_p)_p,l RT‘_DB".;}L!;‘
. r’ al_al 3’ qt._p: ne ',+;u e rbr(}u) , , ’ »
= BRI ) NEE NG ((H—f ) 1)

&’ .
X 3 (pfw) ALy QE-T-R r-Ri-k g
L L ISy
<’ —-fi— 8' *’— po
= 2 (o +#’) N7T% Ng:?;(»') C*o'+p';;:; (q)u) .
a'_.p'*.a' }L'=0 Bl
Theorem 37: When v*" are non-holonomic components of an excon-
travariant extensor of characteristic (1, 6, + -----. + 0x, R, M) and f i a
scalar of weight 6, + «----- + 0z, the quantities Y*2 v7'¥ = fY* (v7V/f):
SD*H v"('l-,,' ‘I)HUT'@’ + f 2’ ia' 2— ( )("1?)(@—}1)”8'1'(}“) H! C*’{:i: (Q)H)
Q=0
(H:]-: 2, e , R*, R*éR)
are components of an excontravariant extensor of characteristic (1, 6y +-+----
+ 0r, R*+ H, M+ H(Z P)).

§9. The Y¥-operation of excovariant extensors in a non-holonomic
system. Next, we shall proceed to consider non-holonomic components
of an extensor ¥Y?w,; which is defined by

9-1) Yy = v)i(i‘)wf_yé”‘”’ " for y=H, H+1,+, R
= y%(’,f)wf_wcﬂ—w for =0, 1, «eceereene H | ’.

=v=§;k(’5)w,._,,,<ﬂ’"? for y =R, -oeeeee , R+ H

(H=1,2 -, R) (21, ». 46).

Let R and H considered satisfy the relation R+ H < G, if we assume
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that w,_y¢ =0 for T——v > R, (9. 1) is given by the equatlon
Y ww—Z‘( ) Weoy A7V, | r=0, ey, R4+ H,

therefore the components of the extensor ‘Z) We; in our system are
indicated by H W = 2 /11,.,, Y W (7- =0, eeee- R+H) . Since

B
W ucw .V) =( ,;_vzr vi 'wa'i')w v

& B H-VY (H-V ) ’ ¢
— 3’ p S 7
= ( ) Al 0 g 8
§'=71T-V ﬂ =0

1t w1ll be that

=2 i g BV u\im-v 3 4 H+v-p o
Y 'wr't' = ?T"z: rgr ?:0 B,Zr 20(1/)( 2”) A2y 1 Wy
" R+H R H r
=3 THY 2 ( Y Waryl® D (H;0) 2,3, ¥ H-V=0>
: Aerr 3= 8= cofm s VTV
On the other hand, we can write
. H-0 Z 3' f’ (H V o H+0 28 7'
0.2 Emn =9
consequently we have R
L H . - ’ar
©-3)  Ylwpe =33 (Dwp P CH0NE®)
by puttlng ‘ ' | h '
R+H - . y
9. 4) X AL QI Ay = CH (v)) ,
1"-?" .

where we shall call the quantities cH-e M? (9) the Y-operation co:fficients
of excovariant extemsors. That is, - .

Theorem 38: When w.,., are components in the non-holonomic system
of an-excovariant extemsor of characteristic (1, 0, R, M), the quantitics

Pwew = 3 3 B wey®Coop (@), =0 KA
3°=0 #=0 ‘ " H=1,2,---, R
are components of an excovariant extensor of cka'ractemstw (1, 0 R + H,
M+ H(S P)).
- Corollary. ‘2)?) Wy = VE w0y
The corollary is similarly proved as that of Theorem 33
Remark. Applying Theorem 38 to Sorr (T =, --neo —1), it fol-

A : i ‘ R+H
IOWS that Q)H f’r'i’ :fy-rru :Where fHafgr‘: - 2 '2;:»‘;: f%ﬁ;, .

T=T
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Theorem 39: Let w, be non-holonomic components of an excovariant
extensor of characteristic (1,6, + ------+ 0z, R, M) and f be a scalar of

weigh’t 0] +oeeeee. + o.Rs then the qua%t'l;t'l;es Q)*H Wy = f‘ Q)H (wr't’/f) :
‘2)* Wy = P! Wy + 2 2 ) (¥; n)(_)uz)fcw QYrE-2-V g,
(H=1, 2 ...... , R)
are components of an excovariant extensor of characteristic (L, 6, + ------ +

0z, R+ H, M+ H(= P)).
' Theorem 40: The Y¥-operation in a non-holonomsic system conserve
the commutative and linearly associative law.
Theorem 41: CZ-°%1(Y)) = 6%-2+% 5}, for the special case that our
system 1s holonomic. ’ L
Proof. (9. 2) will be denoted as follows

%H Dz.?.lzi (H a)a a, i' (H=-0~V
= 2<H;"> (,3,) Xt t=0+3'1> — Xau=grany
rom the reason that 2 (59 () = (787 Consequently, we obtain

on- 2@ = T 5 Xf,,,XH o+ _ gu- ors’ o - Q E.D.

Theorem 42 The quantities C” 033(9)- are mva'mant under tm'ns-
formations of holoromic coordinate systems.
Theorem 43: The quaniitiess CE-°2)}, (‘Z)) are chomged as follows
CE-o24 = %S 2 Py Hi (59 Ng;;c‘z, Nypw gu-e-rgy
almyp’ B'-o B=o :
under non-holonomic transformations of. the: von-holoromic systems.
Proof. According to a non-holonomic transformation of the non-

T 3’ )
holonomic systems A%% = 3 N&%4 ALt and. 42,7 =, ‘TJ x)N 360 L
almp? ? Y — /
3’
= > N¥{ 52, we have the followmg results |
B’=0 e
: NI
NH - H-~ ’ H-~ Vv )
(Z)H azr"_ yo( ")25 i( -0- )

=32 > (R0 (F=g7F) NRA 2,2 LR o-n- v
og=0 V=0

grmaf=0  v=
3’ H~p ,

=33 (TN > Q)H LRI
£7=0 j=o

Consequently, it follows that
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li*l a’+H—p T a’ H H ’a’ Ly ‘ ; ’I’
C“ ng,,‘, (V) = 2 3 a;ﬂ BZO 2 ( a) N&G NYLW T, qu-a-k 180
a'+ —a a H- B'+H-p N , '
= }_’f S Epey Nem Ny PS5 ans gu-e- ey
a’=0 B'-o M=9 T=a’
3'+H~0 3’ H-8 - s o
= 2 X T (ONFLNJL® CH-P-H (D) .
a’=) B'=0 =0
§10. The product operation of €H"-, 8%~ and ¥Y)*-operations in a
non-holonomic system. We shall at last consider properties concerning
to the product of any two of three kinds of the operations con51dered ,
in the previous chapters.
Theorem 44: For non-holonomw components of an excont'ravamant
extensor v of characteristic (1, 0, R, M ), the Sf)L—Operatzon 8 mterchangeable

with the &¥—operation and B¥—operation, <. e.
z)L @H ,U’r’t‘ — @H Q)L v'f"i' , (,z)H 81x /UT'V — 8A’Q)Hv1"i' ,
although the ©®%— and Z*—operations are not interehaﬁgeable but
cH BETY = QUK QEGH T
. Proof. In according to
-’
H T’ Ti’ L H T ¢ —H L oy7'8 __ T"&' S H NL T
D SH v 2/1 Q)Cv,CQ)v _gqa S" Pt v
and Y S¥ vt = C” YFv7* in the holonomic system ([2], p. 50), it follows
that 9* @B e — &8 PEVTY
The other statements in the theorem are proved in the same way.
Theorem 45: The ©¥—, 85— and Y operations for non-holonomic
components of an e:ccovafmant extensor of characteristic (1, 0, R, M) are
interchangeable with ea,ch other, i.e., :
ex 8‘ Wep = BEC M Werp, B¥Y Wy = Y BXWrr
gZ}‘L @H Woprgr = @H Q)L Weprgr l ‘
- The method of proof is essentially same as that of Theorem 44.
It may be possible to find many new interesting relations among
the derivatives of the new quantities C 24 (&), C*°%i (8% and
C?¥% (9 by virtue of Theorem 44, as well as Theorem 45.

~ Remark. In the present paper, the quantities 277¢ (z, 2°, ---, o)
Gy 7 = 0y +e-e-- , @) have been considered as functions of z, £, -..-.. , T30,
but if they depend on only z, 2, .-.... , *¥” where ‘"> means the ;-

th derivative of z, we can establish more concrete results which are
nearer to the holonomic case. But we shall put off treatments of these
relations for the present. (January, 1950)
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