PARTIALLY ORDERED ABELIAN SEMIGROUPS

I. ON THE EXTENSION OF THE STRONG PARTIAL ORDER DEFINED ON ABELIAN SEMIGROUPS

By

Osamu NAKADA

Definition 1. A set S is said to be a partially ordered abelian semigroup (p.o. semigroup), when in S are satisfied the following conditions:
I) S is an abelian semigroup under the multiplication, that is :

1) A single-valued product $a b$ is defined in S for any pair a, b of S,
2) $a b=b a$ for any a, b of S,
3) $(a b) c=a(b c) \quad$ for any a, b, c of S.
II) S is a partially ordered set under the relation \geqq, that is:
4) $a \geqq a$,
5) $a \geqq b, \quad b \geqq a$ imply $a=b$,
6) $\quad a \geqq b, \quad b \geqq c \quad$ imply $\quad a \geqq c$.
III) Homogeneity: $a \geqq b$ implies $a c \geqq b c$ for any c of S.

A partial order which satisfies the condition III) is called a partial order defined on an abelian semigroup.

If S is an abelian group, then S is said to be a partially ordered abelian group (p. o. group).

Moreover, if a partial order defined on an abelian semigroup (group) S is a linear order, then S is said to be a linearly ordered abelian semigroup (group) (l. o. semigroup (l. o. group)).

We write $a>b$ for $a \geqq b$ and $a \neq b$.
Definition 2. A partial order defined on an abelian semigroup S (or a p.o. semigroup S) is called strong, when the following condition is satisfied : $a c \geqq b c$ implies $a \geqq b$.

Theorem 1. A partial order defined on an abelian group G is always strong.

Proof. Since G is a group, there exists an inverse element c^{-1} of c. By the homogeneity $a c \geqq b c$ implies (ac) $c^{-1} \geqq(b c) c^{-1}$. Therefore $a \geqq b$.

Theorem 2. In the strong p. o. semigroup S the following properties are held:

1) $a c=b c$ implies $a=b$ (product cancellation law).
2) $a c>b$. implies $a>b$ (order cancellation law).
3) $a>b$ implies $a c>b c$ for any c of S.

Proof. 1): If $a c=b c$, or, what is the same, if $a c \geqq b c$ and $b c \geqq a c$, then $a \geqq b$ and $b \geqq a$, that is, $a=b$.
2): If $a c>b c$ implies $a=b$, then $a c=b c$, which is absurd.
3): If $a>b$ implies $a c=b c$ for some c of S, then by 1) we have $a=b$. which contradicts the hypothesis $a>b$.

Theorem 3. In the l. o. semigroup S the following properties are held :

1) $a c>b c$ implies $a>b$,
2) $a^{n}>b^{n}$ for some positive integer n implies $a>b$.

Proof. 1): If, under the hypothesis $a c>b c, a \ngtr b$, then by the linearity of $S, b \geqq a$. By the homogeneity we have $b c \geqq a c$, this contradicts the hypothesis. 2): Similarly, if $a^{n}>b^{n}$ implies $a \ngtr b$, then we have $b^{n} \geqq a^{n}$.

Theorem 4. In the l. o. semigroup S the following conditions are equivalent to each other :

1) $a c \geqq b c \quad$ implies $a \geqq b$ (strong),
2) $a c=b c$ implies $a=b$,
3) $a>b$ implies $a c>b c$ for all c of S.

Proof. 1) \rightarrow 2): See Theorem 2, 1). 2) $\rightarrow 3$): Suppose that $a>b$ implies $a c=b c$ for some c of S., By 2) we have $a=b$. 3) $\rightarrow 1$): Suppose that $a c \geqq b c$ implies $a \geqq b$. By the linearity we have $b>a$, therefore we have $b c>a c$ by 3).

Definition 3. Two p. o. semigroups S and S^{\prime} will be called orderisomorphic if there exists an algebraic isomorphism $x \leftrightarrow x^{\prime}$ between them which preserves order : if $a \longleftrightarrow a^{\prime}, b \longleftrightarrow b^{\prime}$, then $a \geqq b$ if and only if $a^{\prime} \geqq b^{\prime}$.

A p. o. semigroup S will be said to be order-embedled in a p. o. semigroup S^{\prime}, if there exists an order-isomorphism of S into S^{\prime}.

Theorem 5. A p. o. semigroup S can be order-embedded in a p. o. group if and only if S is strong.

Proof. Necessity: By Theorem 1.
Sufficiency: By Theorem 2, the product cancellation law is held in
S. Let G be the set of all symbols (a, a^{\prime}), $a, a^{\prime} \in S$. We introduce the equality of the elements of G as follows: (a, a^{\prime}) is equal to (b, b^{\prime}) if and only if $a b^{\prime}=a^{\prime} b$. As we can then prove, the above-defined equality fulfils the equivalence relation. In particular $\left(a x, a^{\prime} x\right)=\left(a, a^{\prime}\right)$ for any x of S. Next, we define the multiplication of the elements in G as follows: $\left(a, a^{\prime}\right)\left(b, b^{\prime}\right)=\left(a b, a^{\prime} b^{\prime}\right)$. If $\left(a, a^{\prime}\right)=\left(c, c^{\prime}\right)$ and $\left(b, b^{\prime}\right)=\left(d, d^{\prime}\right)$, then ($a b$, $\left.a^{\prime} b^{\prime}\right)=\left(c d, c^{\prime} d^{\prime}\right)$. One can easily verify the commutative and associative laws of multiplication. Moreover, (x, x) is the unit element of G and (a^{\prime}, a) is an inverse element of (a, a^{\prime}). Therefore G is an abelian group under the multiplication introduced above.

Now let us define an order in G as follows: $\left(a, a^{\prime}\right) \geqq\left(b, b^{\prime}\right)$ if and only if $a b^{\prime} \geqq a^{\prime} b$ in S. By the strongness of. S it follows immediately that if $\left(a, a^{\prime}\right)=\left(c, c^{\prime}\right),\left(b, b^{\prime}\right)=\left(d, d^{\prime}\right)$ and $\left(a, a^{\prime}\right) \geqq\left(b, b^{\prime}\right)$, then $\left(c, c^{\prime}\right) \geqq\left(d, d^{\prime}\right)$. Moreover, it is easy to see that the above-defined order \geqq fulfils the conditions II) 1), 2), 3) and III). Therefore G becomes a p. o. group. The correspondence $a \longleftrightarrow(a x, x)$ is the order-isomorphism of S into G.

Such an obtained group $G=Q(S)$, which is the minimal p. o. group containing S and uniquely determined by S apart from its orderisomorphism, will be called the quotient group of the p. o. semigroup S.

Corollary. A l. o. semigroup S can be order-embedded in a l. o. group if and only if S is strong.

Theorem 6. Let S be a p. o. semigroup with the unit element e. $e \geqq a$ for any a of S if and only if $a \geqq a b$ for any a, b of S.

Proof. Necessity: $e \geqq b$ for any b of S implies $a e=a \geqq a b$ for any a, b of S.

Sufficiency: If $a \geqq a b$ for any a, b of S, then we put $a=e$. Thus we have $e \geqq b$ for any b of S. Moreover, if S has the zero element, i. e., the element 0 such that $0 a=0$ for any a of S, then $a \geqq 0$ for any a of S.

Corollary. Let S be a p. o. semigroup order-embedded in a p. o. group G. $\quad e \geqq a$ for any a of S, where e is the unit element of G, if and only if $a \geqq a b$ for any a, b of S.

Theorem 7. Let S be a strong p. o. semigroup, G be the quotient group of S and e the unit element of G. $e \geqq a$ for any a of S and $e>a$ $(a \in G)$ implies $a \in S$ if and only if $a \geqq a b$ for any a, b of S and if $a>b$, then there exists an element c of S such that $b=a c$.

Proof. Necessity : By Corollary of. Theorem 6, $a \geqq a b$ for any a, b of S. If $a>b$, then $e>a^{-1} b$, and hence $a^{-1} b=c \in S$. Therefore $b=a c$.

Sufficiency: It is clear that $e \geqq a$ for any a of S. Moreover, let x be any element of G such that $e>x$. We can put $x=a^{-1} b, a, b \in S$. Thus we obtain $a>b$. Hence there exists an element c of S such that $b=a c$, therefore $x=a^{-1} b=c \in S$.

Definiton 4. Let S be a p.osemigroup. An element a of S is called positive or negative, when $a^{2} \geqq a$ or $a \geqq a^{2}$ respectively. In a p. o. group these coincide with the usual definition.

A partial order defined on S is called directed, when to any a, b of S there exists an element c of S such that $a \geqq c$ and $b \geqq c$.

Theorem 8. Let G be a p. o. group and S be the p. o. semigroup of all negative elements of G. Then $G=Q(S)$ if and only if G is directed. ${ }^{(1)}$

Proof. Necessity : By Theorem 7, $a \geqq a b$ for any a, b of S. Therefore S is directed. Let x, y be any elements of G. One can write x $=a c^{-1}, y=b c^{-1}, a, b, c \in S$. Since S is directed, there exists an element d of S such that $a \geqq d$ and $b \geqq d$. And hence if we put $z=d \rho^{-1}$, we have $x \geqq z$ and $y \geqq z$. Therefore G is directed.

Sufficiency: Let x be any element of G. If a be chosen such that $x \geqq a$ and $e \geqq a(e$ is the unit element of G), then

$$
x=a\left(a x^{-1}\right)^{-1}, \quad e \geqq a, \quad e \geqq a x^{-1} .
$$

Definition 5. An element of a semigroup S is said to be of infinite order if all its powers are different. If there exists a positive integer n such that $a^{i} \neq a^{j}$ for $1 \leqq i<j \leqq n$ and $a^{n}=a^{k}$ for all integers $k \geqq n$, then a is called quasi-idempotent and such positive integer n is called the length of a. If the length of a is 1 then a is idempotent in the usual sense.

Theorem 9. An element of a l. o. semigroup S is of infinite order or quasi-idempotent.

Proof. Let a be not of infinite order. There exist positive integers n, m such that $a^{n}=a^{m}, m>n$, and n is the least. Since S is a l. o. semigroup,

$$
a>a^{2}>\cdots>a^{n-1}>a^{n} \geqq a^{n+1} \geqq \cdots \geqq a^{m}=a^{n} \text { (or its dual). }
$$

Therefore $a^{n}=a^{k}$ for all $k \geqq n$.

[^0]Theorem 10. Let S be a strong 1. o. semigroup. Then $a^{n}=b^{n}$ implies $a=b$. And if there exists a quasi-idempotent element e, then e is the unit element.

Proof. Since S is strong, $a>b$ implies $a^{2}>a b>b^{2}$. Hence for all positive integers $n, a^{n}>b^{n}$. Next, the length of e must be 1 . Hence $e^{i}=e$. For every x of $S, e x=e^{2} x$ and hence $x=e x$, that is, e is the unit element. Therefore S has at most one quasi-idempotent element.

Definition 6. A partial order defined on an abelian semigroup S is called normal, when the following condition is satisfied :(2)

$$
a^{n} \geqq b^{n} \text { for some positive integer } n \text { implies } a \geqq b
$$

Theorem 11. A strong l. o. semigroup S is always normal.
Proof. Suppose that $a \geqq b$. Then we have, by the linearity of S, $b>a$, which implies $b^{n}>a^{n}$ for every positive integer n.

Corollary. A l. o. group G is always normal.
Theorem 12. In the normal p. o. semigroup the following properties are held: 1) $a^{n}>b^{n}$ implies $a>b$, 2) $a^{n}=b^{n}$ implies $a=b$.

Proof. 1): By the normality, $a^{n}>b^{n}$ implies $a \geqq b$. If $a=b$, then we have $a^{n}=b^{n}$. 2): The normality means that if $a^{n}=b^{n}$, or what is the same $a^{n} \geqq b^{n}$ and $b^{n} \geqq a^{n}$, then $a \geqq b$ as well as $b \geqq a$, that is, $a=b$.

Corollary. An element of a normal p. o. group has an infinite order, except the unit element.

Definition 7. Suppose that two partial orders P and Q are defined on the same semigroup S and that the relation $a>b$ in P implies $a>b$ in Q; then Q will be called an extension of P. An extension which defines a linear order on S will be called a linear extension.

In the set \mathfrak{P} of all partial orders defined on the same semigroup S, we put $Q>P$ if and only if Q is an extension of P. Then \mathfrak{S}_{β} is a partially ordered set under this relation $>$.

Theorem 13. Let P be a strong partial order defined on an abelian semigroup S and x and y are any two elements non-comparable in P. Then there exists an extension Q, which is strong, of P such that $x>y$ in Q if and only if P is normal. ${ }^{(3)}$

Proof. Sufficiency: Let P be a normal strong partial order defined

[^1]on S and the elements x and y are not comparable in P. Let us define a relation Q as follows:

We put $a>b$ in Q if and only if $a \neq b$ and there are two nonnegative integers n, m, such that not both zero and

$$
\begin{equation*}
a^{n} y^{m} \geqq b^{n} x^{m} \quad \text { in } \quad P \tag{§}
\end{equation*}
$$

where if $m=0$ or $n=0$ (§) means that $a^{n} \geqq b^{n}$ or $y^{m} \geqq x^{m}$ in P respectively.

First, we note that n is never zero, for otherwise we should have $y^{m} \geqq x^{m}$ in P, whence (by the normality) we have $y \geqq x$ in P against the hypothesis.
i) We begin with verifying that $a>b$ and $b>a$ in Q are contradictory. Suppose that $a>b$ and $b>a$, namely $a^{n} y^{m} \geqq b^{n} x^{m}$ and $b^{i} y^{j}$ $\geqq a^{i} x^{j}$ in P for some non-negative integers n, m, i, j. By multiplying i times the first, n times the second inequality, one obtains $(a b)^{n i} y^{m i+n j} \geqq$ $(a b)^{n i} x^{m i+n j}$ in P. By the strongness of P we have $y^{m i+n j} \geqq x^{m i+n j}$ in \bar{P}. If $m i+n j$ does not vanish, by the normality we have $y \geqq x$, this contradicts the hypothesis. On the other hand, if $m i+n j$ is zero, i. e., both m and j vanish, then $a^{n} \geqq b^{n}$ and $b^{i} \geqq a^{i}$ in P. Therefore we have $a \geqq b$ and $b \geqq a$ in P, that is, $a=b$ which is absurd.
ii) We show the transitivity of Q. Assume that $a>b$ and $b>c$ in Q, i. e., for some non-negative integers $n, m, i, j, a^{n} y^{m} \geqq b^{n} x^{m}$ and $b^{i} y^{j} \geqq c^{i} x^{j}$ in P. By multiplying as in i) we get $a^{n i} y^{m i+n j} \geqq c^{n i} x^{m i+n j}$ in P. Here $n i$ is not zero, and $a=c$ is by i) impossible, so that $a>c$ in Q.
iii) We prove next the homogeneity of $Q . \quad a \neq b$ implies $a c \neq b c$ for any c of S, since P is strong. Hence if $a>b$ in Q, namely, if $a \neq b$ and $a^{n} y^{n c} \geqq b^{n} x^{m}$ in P for some n, m, then $a c \neq b c$ and $(a c)^{n} y^{m} \geqq(b c)^{n} x^{m}$ in P. Therefore $a>b$ implies $a c>b c$ in Q for any c of S.
iv) Q is an extension of P, for if $a>b$ in P, then $a y^{0}>b x^{0}$ in P, therefore $a>b$ in Q.
v) It is clear that $x>y$ in Q. In fact, $x y \geqq y x$ in P.
vi) We may prove the normality and the strongness of Q. Indeed, supposing $a^{n}>b^{n}$ in Q for some positive integer n, i.e., $\left(\alpha^{n}\right)^{t} y^{j} \geqq\left(b^{n}\right)^{d} x^{j}$ in P, we see at once that $a>b$ in Q. Suppose that $a c>b c$ in Q, i.e., $(a c)^{n} y^{m} \geqq(b c)^{n} x^{m}$ in P for some n, m. Then by the strongness of P we are led to the result $a>b$ in Q.

Necessity: Let us assume that there exist elements a and b such that $a^{n} \geqq b^{n}$ and $a \geqq b$ in P. Then a and b can not be comparable in P by the strongness of P. And hence there exists a strong extension
Q of P in which $b>a$. This is however absurd, since by the strongness of Q this would imply $b^{n}>a^{n}$ in Q, contrary to the hypothesis a^{n} $\geqq b^{n}$ in P.

Definition 8. If $P_{1}, P_{2}, \cdots, P_{\alpha}, \cdots$ is a well-ordered chain of partial orders defined on the same abelian semigroup S such that each of them is some extension of the preceding ones, then the union of the chain may be defined to be a partial order P defined on S such that $a \geqq b$ in P if and only if $a \geqq b$ in P_{α} holds for some one and hence for all subsequent subscripts α.

It is easy to see that P is normal or strong if all P_{α} are normal or strong respectively.

Theorem 14. For every normal strong partial order P defined on an abelian semigroup S and every two elements x, y non-comparable in P, there exists a normal strong linear extension $L_{x y}$ with the property that $x>y$ in $L_{x y}$.

Proof. By Theorem 13 there exists a normal strong extension Q of P such that $x>y$ in Q. Let \mathfrak{S}^{\prime} be a set of all normal strong partial orders defined on S which are extensions of Q. \mathfrak{F}^{\prime} is a partially ordered set as a subset of \mathfrak{F} in Definition 7. By Zorn's lemma there exists a maximal linearly ordered subset \mathfrak{S}^{*} of \mathfrak{S}^{\prime}. Let $L_{x y}$ be an union of \mathfrak{F}^{*}. Then $L_{x y}$ is a maximal order, that is, order which has no proper extension. By Theorem 13 this can happen only in case any two elements are comparable in $L_{x y}$, that is to say, $L_{x y}$ is linear. Moreover, $L_{x y}$ is strong and normal, and $x>y$ in $L_{x y}$.

Theorem 15. A strong linear order may be defined on an abelian semigroup S if and only if. in S are satisfied the following conditons: 1) $a x=b x$ implies $a=b, 2) a^{n}=b^{n}$ for some positive integer n implies $a=b$.

Proof. The necessity is obvious by Theorems 2 and 12. If we consider a vacuous partial order P of S in the sense of Tukey, then P is the partial order defined on S. And conditions 1) and 2) say that P is strong and normal. Therefore, by Theorem 14 for any x, y of S there exists a strong linear extension $L_{\text {wy }}$ of P in which $x>y$.

Corollary. A linear order may be defined on an abelian group if and only if all its elements, except the unit element, are of infinite order. ${ }^{(4)}$

[^2]Definition 9. Let $\mathbb{S}=\left\{P_{a}\right\}$ be any set of partial orders, each defined on the same abelian semigroup S. We define the new partial order P on S as follows: For any two elements a, b we put $a \geqq b$ in P if and only if $a \geqq b$ in every P_{α} of the set \mathbb{C}^{C}. Indeed, P is again a partial order defined on S, moreover P is normal or strong if all P_{a} of \mathcal{S} are normal or strong respectively. The partial order P is said to be the product of the P_{a} or to be realized by the set \mathbb{S} of partial orders, written $P=I I P_{\alpha}$.

Let $\mathbb{C 5}=\left\{G_{a}\right\}$ be a set of l. o. groups and G the (restricted or complete) direct product of G_{a}. Then one can introduce a partial order defined on G as usual, so that G becomes a p. o.group. We shall call G a vector-group. It is clear that a vector-group is always strong and normal.

Theorem 16. A strong partial order P defined on an abelian semigroup S may be realized by a certain set of strong linear orders if and only if P is normal.

Proof. The necessity is obvious, since by Theorem 11 a strong linear order, and hence every product of strong linear orders, is normal. On the other hand, if P is not linear, then there exist to any pair of elements x, y non-comparable in P the corresponding linear extensions $L_{x y}$ and $L_{y w}$ described in Theorem 14. It is easy to see that these linear orders realize P.

Theorem 17. A p.o.semigroup S can be order-embedded in a vector-group if and only if S is normal and strong.

Proof. Let P be a partial order defined on S. If P is strong and normal, then by Theorem $16 P$ is realized by a certain set of strong linear orders, which are extensions of P, defined on the semigroup S; $P=\Pi P_{\alpha}$. Let $S_{\dot{\alpha}}$ be the strong l.o.semigroup when we consider that P_{a} is the strong linear order defined on S. And let G_{a} be the quotient group of $S_{a} . \quad G_{a}$ is a l. o. group. Then S is order-embedded in the direct product G of G_{a}. The necessity is obvious.

Corollary. A p. o. group G can be order-embedded in a vector-group if and only if G is normal ${ }^{(5)}$.

Theorem 18. Let $\mathfrak{J}=\left\{S_{a}\right\}$ be a set of strong l. o. semigroups and S the (restricted or complete) direct product of S_{a}. Then one can introduce a linear order defined on S, so that S becomes a strong l.o.
(5) A. H. Clifford: l.c., Theorem 1.
semigroup. ${ }^{(6)}$
Proof. We may consider that the S_{a} are well-ordered. Elements of S are then given by their components: $x=\left\{x_{a}\right\}, x_{\alpha} \in S_{a}$.

Let us define a relation P in S as follows:
We put $x>y$ in P if and only if $x \neq y$ and
$x_{\alpha}=y_{\alpha}$ for all $\alpha<\beta$ and $x_{\beta}>y_{\beta}$.
We see readily that P is a strong linear order defined on S.

Mathematical Institute, Hokkaido University.
(6) Cf. K. Iwasawa : On linearly ordered groups, Journ. Math. Soc. Japan, vol. 1 (1948), pp. 1-9.

[^0]: (1) Cf. A. H. Ciafford: Partially ordered abelian groups, Ann. Math., vol. 41 (1940), pp. 465-473.

[^1]: (2) Cf. L. Fuchs : On the extension of the partial order of groups, Amer. Journ. Math., vol. 72 (1950), pp. 191-194.
 (3) Cf. L. Fuchs: 1. c.

[^2]: (4) F. Levi : Arithmetische Gesetze im Gebiete diskreter Gruppen, Rendiconti Palermo, vol. 35 pp . (1913), 225-236.
 G. Birkhoff : Lattice Theory, second edition, Theorem 14, p. 224.

