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Definition 1. A set $S$ is said to be a partially ordered abelinn semi-
group ( $p$ . $0$ . semigroup), when in $S$ are satisfied the following conditions:

I) $S$ is an abelian semigroup under the multiplication, that is:
1) A single-valued product $ab$ is defined in $S$ for any pair $a$,

$bofS$,
2) $ab=ba$ for any $a,b$ of $S$ ,
3) (ab) $c=a(bc)$ for any $a,$ $b,$ $c$ of $S$ .

II) $S$ is a partially ordered set under the relation ), that is:
1) $a\geqq a$ ,
2) $a\geqq b$ , $b\geqq a$ imply $a=b$ ,
3) $a\geqq b$ , $b\geqq c$ imply $a\geqq c$ .

III) Homogeneity: $a\geqq b$ implies $ac\geqq bc$ for any $c$ of $S$ .
A partial order which satisfies the condition III) ts called a $\mu rtid$

crder defined on an abelian semigroup.
If $S$ is an abelian group, then $S$ is said to be a partiauy $\alpha rdered$

abelian group ( $p$ . $0$ . group).
Moreover, if a partial order defined on an abelian semigroup (group)

$S$ is a linear order, then $S$ is said to be a linearly ordered abelian semi-
group (group)(1. $0$. semigroup (1. $0$ . group)).

We write $a>b$ for $a\geqq b$ and $a\neq b$ .
Definition 2. A partial order defined on an abelian semigroup $S$

(or a $p.0$ . semigroup $S$) is called strong, when the following condition
is satisfied: $aa\geqq bc$ implies $a\geqq b$.

Theorem 1. A partial order defined on an abelian group $G$ is always
strong.

Proof. Since $G$ is a group, there exists an inverse element $c^{-1}$ of $c$.
By the homogeneity $ ac\geqq b\sigma$ implies $(ac)c^{-1}\geqq(bc)c^{-l}$ . Therefore $a\geqq b$.
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Theorem 2. In the strong $p$ . $0$ . semigroup $S$ the following pro-
perties are held:

1) $ac=bc$ implies $a=b$ (product cancellation law).
2) $aa>b_{\backslash }^{\rho}$, implies $a>b$ (order cancellation law).
3) $a>b$ implies $ac>bc$ for any $c$ of $S$ .
Proof. 1): If $ac=b^{n}$ , or, what is the same, if $ar*J\geqq bc$ and $bc\geqq a,r*$

then $a\geqq b$ and $b\geqq a$ , that is, $a=b$ .
2): If $a\sigma>bc$ implies $a=b$ , then $ac=bc$ , which is absurd.
3): If $a>b$ implies $ac=bc$ for some $c$ of $S$ , then by 1) we have

$a=b$ which contradicts the hypothesis $a>b$ .
Theorem 3. In the 1. $0$ . semigroup $S$ the following properties are

held:
1) $ac>bc$ implies $a>b$ ,
2) $a^{n}>b^{n}$ for some positive integer $n$ implies $a>b$ .
Proof. 1): If, under the hypothesis $a\zeta j>bc,$ $a$ } $b$ , then by the

linearity of $S,$ $b\geqq a$ . By the homogeneity we have $bc\geqq ac$ , this con-
tradicts the hypothesis. 2): Similarly,if $a^{n}>b^{n}$ implies $a$ } $b$, then
we have $b^{n}\geqq a^{n}$.

Theorem 4. In the 1. $0$ . semigroup $S$ the following conditions are
equivalent to each other:

1) $ac\geqq bc$ implies $a\geqq b$ (strong),
2) $ac=bc$ implies $a=b$ ,
3) $a>b$ implies $ac>bc$ for all $c$ of $S$ .
Proof. $1$) $\rightarrow 2$): See Theorem 2, 1). $2$) $\rightarrow 3$): Suppose that $a>b$

implies $ac=bc$ for some $c$ of S., By 2) we have $a=b$ . $3$) $\rightarrow 1$): Suppose
that $a\sigma\geqq bc$ implies $a$ lli $b$ . By the linearity we have $b>a$ , therefore
we have $bc>ac$ by 3).

Definition 3. Two $p$ . $0$ . semigroups $S$ and $S^{\prime}$ will be called ordor-
isomorphic if there exists an algebraic isomorphism $x\leftarrow->x^{\prime}$ between them
which preserves order: if $a\leftrightarrow a^{\prime},$ $b\leftarrow\rightarrow b^{\prime}$ , then $a\geqq b$ if and only if

$a^{\prime}\geqq b^{\prime}$.
A $p$ . $0$ . semigroup $S$ will be said to be order-embedded in a $p$ . $0$ .

semigroup $S^{\prime}$ , if there exists an order-isomorphism of $S$ into $S^{\prime}$ .
Theorem 5. A $p$ . $0$ . semigroup $S$ can be order-embedded in a $p$ . $0$ .

group if and only if $S$ is strong.

Proof. Necessity: By Theorem 1.
Sufficiency: By Theorem 2, the product cancellation law is held in
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$S$. Let $G$ be the 8et of all symbols $(a, a^{\prime}),$ $a,$ $a^{\prime}\in S$ . We introduce the
equality of the elements of $G$ as follows: $(a, a^{\prime})$ is equal to $(b, b^{\prime})$ if and
only if $ab^{\prime}=a^{\prime}b$ . As we can then prove, the above-defined equality fulfils
the equivalence relation. In particular $(ax, a^{\prime}x)=(a, a^{\prime})$ for any $x$ of
$S$. Next, we define the multiplication of the elements in $G$ as follows:
$(a, a^{\prime})(b, b^{\prime})=(ab, a^{\prime}b^{\prime})$ . If $(a, a^{\prime})=(c, c^{\prime})$ and $(b, b^{\prime})=(d, d^{\prime})$ , then (ab,
$a^{\prime}b^{\prime})=(cd, c^{\prime}d^{\prime})$ . One can easily verify the commutative and associative
laws of multiplication. Moreover, $(x, x)$ is the unit element of $G$ and
$(a^{\prime}, a)$ is an inverse element of $(a, a^{\prime})$ . Therefore $G$ is an abelian group
under the multiplication introduced above.

Now let us define an order in $G$ as follows: $(a, a^{\prime})\geqq(b, b^{\prime})$ if and
only if $ab^{\prime}$ li $a^{\prime}b$ in $S$ . By the strongness of. $S$ it follows immediately that
if $(a, a^{\prime})=(c, c^{\prime}),$ $(b, b^{\prime})=(d, d^{\prime})$ and $(a, a^{\prime})\geqq(b, b^{\prime})$ , then $(c, c^{\prime})\geqq(d, d^{\prime})$ .
Moreover, it is easy to see that the above-defined order $\geqq$ fulfils the
conditions II) 1), 2), 3) and III). Therefore $G$ becomes a $p$ . $0$ . group.
The correspondence $a\leftrightarrow(ax, x)$ is the order-isomorphism of $S$ into $G$ .

Such an obtained group $G=Q(S)$ , which is the minimal $p$ . $0$ . group
containing $S$ and uniquely determined by $S$ apart from its order-
isomorphism, will be called the quofienf group of the $p$ . $0$ . semigroup $S$ .

Corollary. A 1. $0$ . semigroup $S$ can be order-embedded in a 1. $0$ . group
if and only if $S$ is strong.

Theorem 6. Let $S$ be a $p$ . $0$ . semigroup with the unit element $e$ .
$e\geqq a$ for any $a$ of $S$ if and only if $a\geqq ab$ for any $a,$ $b$ of $S$.

Proof. Necessity: $e\geqq b$ for any $b$ of $S$ implies $a_{d}\circ=a\geqq ab$ for any
$a,$ $b$ of $S$ .

Sufficiency: If $a\geqq ab$ for any $a,$ $b$ of $S$, then we put $a=e$ . Thus
we have $e\geqq b$ for any $b$ of $S$. Moreover, if $S$ has the zero element, $i$ . $e.$ ,
the element $0$ such that $Oa=0$ for any $a$ of $S$, then $a\geqq 0$ for any $a$

of $S$.
Corollary. Let $S$ be a $p$ . (

$0$ . semigroup order-embedded in a $p$ . $0$ .
group G. $e\geqq a$ for any $a$ of $S$, where $e$ is the unit element of $G$, if
and only if $a\geqq ab$ for any $a,$ $b$ of $S$ .

Theorem 7. Let $S$ be a strong $p$ . $0$ . semigroup, $G$ be the quotient
group of $S$ and $e$ the unit element of G. $e\geqq a$ for any $a$ of $S$ and $e>a$
$(a\in G)$ implies $ a\in$ Sif and only if $a\geqq ab$ for any $a,$ $b$ of $S$ and if $a>b$,
then there exists an element $c$ of $S$ such that $b=a_{J}^{\rho}$ .

Proof. Necessity: By Corollary of. Theorem 6, $a\geqq ab$ for any $a,$ $b$

of $S$. If $a>b$, then $e>a^{-l}b$, and hence $a^{-l}b=c\in S$. Therefore $b=ac$.
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Sufficiency: It is clear that $e\geqq a$ for any $a$ of $S$. Moreover, let $x$

be any element of $G$ such that $e>x$ . We can put $x=a^{-1}b,$ $a,$ $b\in S$.
Thus we obtain $a>b$ . Hence there exists an element $c$ of $S$ such that
$b=ac$, therefore $x=a^{-1}b=c\in S$.

Definiton 4. Let $S$ be a p.o.semigroup. An element $a$ of $S$ is called
post,tive or negaiw$e$ , when $a’\cdot\geqq a$ or $ a\geqq\alpha$. respectively. In a $p$ . $0$ . group
these coincide with the usual definition.

A partial order defined on $S$ is called directed, when to any $a,$ $b$ of
$S$ there exists an element $c$ of $S$ such that $a\geqq c$ and $b\geqq c$.

Theorem 8. Let $G$ be a $p$ . $0$ . group and $S$ be the $p$ . $0$ . semigroup
of all negative elements of $G$ . Then $G=Q(S)$ if and only if $G$ is
directed.(1)

Proof. Necessity: By Theorem 7, $a\geqq ab$ for any $a,$ $b$ of $S$. There-
fore $S$ is directed. Let $x,$ $y$ be any elements of $G$ . One can write $x$

$=ac^{-1},$ $y=bc^{-1},$ $a,$ $b,$ $c\in S$ . Since $S$ is directed, there exists an element
$d$ of $S$ such that $a\geqq d$ and $b\geqq d$ . And hence if we put $z=d^{\rho^{-l}},$ , we
have $x\geqq z$ and $y\geqq z$. Therefore $G$ is directed.

Sufficiency: Let $x$ be any element of $G$ . If $a$ be chosen such that
$x\geqq a$ and $e\geqq a$ ($e$ is the unit element of $G$), then

$x=a(ax^{-l})^{-1}$ , $e\geqq a$, $e\geqq ax^{-1}$ .
Definition 5. An element of asemigroup $S$ is said to be of $in\hslash nite$

crder if all its powers are different. If there exists a positive integer
$n$ such that $a^{i}\neq a^{j}$ for $1\leqq i<i\leqq n$ and $a^{n}=a^{k}$ for all integers $k\geqq n,$ $\cdot$

then $a$ is called $quwi- id_{d}\rho m\mu tent$ and such positive integer $n$ is called
the length of $a$ . If the length of $a$ is 1 then $a$ is idempotent in the
usual sense.

Theorem 9. An element of a 1. $0$ . semigroup $S$ is of infinite order
or quasi-idempotent.

Proof. Let $a$ be not of infinite order. There exist positive integers
$n,$ $m$ such that $a^{n}=a^{m},$ $m>n$, and $n$ is the least. Since $S$ is a 1. $0$ .
semigroup,

$a>a^{2}>\ldots>a^{n-1}>a^{n}\geqq a\cdot+l\geqq\cdots\geqq a^{n*}=a^{n}$ (or its dual).

Therefore $a^{\prime 1}=a^{k}$ for all $k\geqq n$ .
(1) Cf. A. H. CmFFORD: Partially ordered abelian groups, Ann. Math., vol. 41 (1940),

pp. 465-473.
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Theorem 10. Let $S$ be a strong 1. $c$ . semigroup. Then $a^{n}=b^{n}$

implies $a=b$. And if there exists a quasi-idempotent element $e$, then
$e$ is the unit element.

Proof. Since $S$ is strong, $a>b$ implies $ a’\cdot>ab>b\rightarrow$ . Hence for all
positive integers $n,$ $a^{n}>b^{n}$. Next, the length of $e$ must be 1. Hence
$e=e$ . For every $x$ of $S,$ $ex=e^{9}\cdot x$ and hence $x=ex$, that is, $e$ is the
unit element. Therefore $S$ has at most one quasi-idempotent element.

Definition 6. A partial order defined on an abelian semigroup $S$

is called normal, when the following condition is satisfied:(2)

$a^{n}\geqq b^{n}$ for some positive integer $n$ implies $a\geqq b$ .
Theorem 11. A strong 1. $0$ . semigroup $S$ is always normal.
Proof. Suppose that $a\not\leqq b$ . Then we have, by the linearity of $S$,

$b>a$, which implies $b^{n}>a^{n}$ for every positive integer $n$ .
Corokry. A 1. $0$ . group $G$ is always normal.
Theorem 12. In the normal $p$ . $0$ . semigroup the following Properties

are held: 1) $a^{n}>b^{n}$ implies $a>b$ , 2) $a^{n}=b^{n}$ implies $a=b$ .
Proof. 1): By the normality, $a^{n}>b^{n}$ implies $a\geqq b$ . If $a=b$, then.

we have $a^{n}=b^{n}$. 2): The normality means that if $a^{n}=b^{n}$. or what is
the same $a^{n}\geqq b^{n}$ and $b^{n}\geqq a^{n}$, then $a\geqq b$ as well as $b\geqq a$, that is, $a=b$ .

Cmlbry. An element of a normal $p$ . $0$ . group has an infinite order,
except the unit element.

$t$ Defrnition 7. Suppose that two partial orders $P$ and $Q$ are defined
on the same semigroup $S$ and that the relation $a>b$ in $P$ implies $a>b$
in $Q$ ; then $Q$ will be called an extenszon of $P$ . An extension which de-
fines a linear order on $S$ will be called a linear extenstion.

In the set as of all partial orders defined on the same semigroup $S$,
we put $Q\succ P$ if and only if $Q$ is an extension of $P$ . Then $\mathfrak{P}$ is a partially
ordered set under this relation $\succ$ .

Theorem 13. Let $P$ be a strong partial order defined on an abelian
semigroup $S$ and $x$ and $y$ are any two elements non-comparable in $P$.
Then there exists an extension $Q$, which is strong, of $P$ such that $x>y$
in $Q$ if and only if $P$ is normal.(3)

Proof. Sufficiency: Let $P$ be a normal strong partial order defined
(2) Cf. L. FUCHS: On the extension of the partial order of groups, Amer. Journ. Math.,

vol. 72 (1950), pp. 191-194.
(3) Cf. L. FUCHS: 1. $c$
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on $S$ and the elements $x$ and $y$ are not comparable in $P$ . Let us define
a relation $Q$ as follows:

We put $a>b$ in $Q$ if and only if $a\neq b$ and there are two non-
negative integers $n,$ $m$, such that not both zero and

(\S ) $a^{n}y^{m}\geqq b^{n}x^{m}$ in $P$,

where if $m=0$ or $n=0$ (\S ) means that $a^{n}\geqq b^{n}$ or $y^{m}\geqq x^{n}$ in $P$ re-
spectively.

First, we note that $n$ is never zero, for otherwise we should have
$y^{n}\geqq x^{m}$ in $P$, whence (by the normality) we have $y\geqq x$ in $P$ against

the hypothesis.
i) We begin with verifying that $a>b$ and $b>a$ in $Q$ are con-

tradictory. Suppose that $a>b$ and $b>a$, namely $a^{n}y^{m}\geqq b^{n}x^{m}$ and $by^{j}$

$\geqq a^{i}x^{j}$ in $P$ for some non-negative integers $n,$ $m,$ $i,$ $i$ . By multiplying $i$

times the first, $n$ times the second inequality, one obtains $(ab)^{ni}y^{nl+nj}\geqq$

$(ab)^{ni}x^{mt+nj}inP/$ . By the strongness of $P$ we have $y^{mi+nj}\geqq x^{m\dagger+nj}$ in $P$ .
If $mi+nj$ does not vanish, by the normality we have $y\geqq x$ , this con-
tradicts the hypothesis. On the other hand, if $mi+nj$ is zero, $i$ . $e.$ , both
$m$ and $j$ vanish, then $a^{n}\geqq b^{n}$ and $b^{i}\geqq a^{i}$ in $P$ . Therefore we have $a\geqq b$

and $b\geqq a$ in $P$ , that is, $a=b$ which is absurd.
ii) We show the transitivity of $Q$ . Assume that $a>b$ and $b>c$

in $Q,$ $i$ . $e.$ , for some non-negative integers $n,$ $m,$ $i,$ $j,$ $a^{n}y^{m}\geqq b^{n}x^{n}$ and
$b^{i}y^{j}\geqq c$

‘ $x^{\dot{\rho}}$ in $P$. By multiplying as in i) we get $a^{nl}y^{mi+nf}\geqq c^{n}x^{m:+nj}$ in $P$.
Here $ni$ is not zero, and $a=c$ is by i) impossible, so that $a>c$. in $Q$ .

iii) We prove next the homogeneity of Q. $a\neq b$ implies $a^{\rho}\neq bc$ for
any $c$ of $S$, since $P$ is strong. Hence if $a>b$ in $Q$, namely, if $a\neq b$ and
$a^{n}y^{ll}\geqq b^{n}x^{m}$ in $P$ for some $n,$ $m$, then $ac$ \yen $bc$ and $(ac)^{n}y^{m}\geqq(bc)^{n}x^{n}$ in $P$ .
Therefore $a>b$ implies $a\prime j>bc$ in $Q$ for any $c$ of $S$ .

iv) $Q$ is an extension of $P$, for if $a>b$ in $P$, then $ay^{0}>bx^{0}$ in $P$,

therefore $a\geq b$ in $Q$.
v) It is clear that $x>y$ in $Q$ . In fact, $xy\geqq yx$ in $P$ .
vi) We may prove the normality and the strongness of $Q$. Indeed,

supposing $a^{n}>b^{n}$ in $Q$ for some positive integer. $n$ , i.e., $(a^{n})^{t}y^{j}\geqq(b^{n})x^{j}$ in
$P$, we see at once that $a>b$ in $Q$ . Suppose that $a(*>bc$ in $Q$ , i.e.,
$(a\sigma)^{n}y^{m}\geqq(bc)^{n}x^{m}$ in $P$ for some $n,$ $m$ . Then by the strongness of $P$ we
are led to the result $a>b$ in $Q$ .

Necessity: Let us assume that there exist elements $a$ and $b$ such
that $a^{n}\geqq b^{n}$ and $a\not\leqq b$ in $P$ . Then $a$ and $b$ can not be comparable in
$P$ by the strongness of $P$ . And hence there exists a strong extension
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$Q$ of $P$ in which $b>a$ . This is however absurd, since by the strong-
ness of $Q$ this would imply $b^{n}>a^{n}$ in $Q$, contrary to the hypothesis $a^{n}$

$\geqq b^{n}$ in $P$.
Definition 8. If $P_{1},$ $P_{2}$ , $P_{\alpha},$ $\cdots$ is a well-ordered chain of partial

orders defined on the same abelian semigroup $S$ such that each of them
is some extension of the preceding ones, then the union of the chain
may be defined to be a Partial order $P$ defined on $S$ such that $a\geqq b$ in
$P$ if and only if $a\geqq b$ in $P_{\alpha}$ holds for some one and hence for all sub-
sequent subscripts $a$ .

It is easy to see that $P$ is normal or strong if all $P_{\alpha}$ are normal or
strong respectively.

Theorem 14. For every normal strong partial order $P$ defined on
an abelian semigroup $S$ and every two elements $x,$ $y$ non-comparable in
$P$, there exists a normal strong linear extension $L_{xy}$ with the property
that $x>y$ in $L_{ny}$ .

Proof. By Theorem 13 there exists a normal strong extension $Q$ of
$P$ such that $x>y$ in $Q$ . Let $\mathfrak{P}^{\prime}$ be a set of all normal strong partial
orders defined on $S$ which are extensions of Q. $\mathfrak{P}^{\prime}$ is a partially ordered
set as a subset of $\mathfrak{P}$ in Definition 7. By ZORN’S lemma there exists a
maximal linearly ordered subset $\mathfrak{P}^{*}$ of $\mathfrak{P}^{\prime}$ . Let $L_{y}$ be an union of $\mathfrak{P}^{*}$ .
Then $L_{y}$ is a maximal order, that is, order which has no proper ex-
tension. By Theorem 13 this can happen only in case any two elements
are comparable in $L_{xy},$ that is to say, $L_{ry}$ is linear. Moreover, $L_{ny}$ is
str.ong and normal, and $x>y$ in $Loey$ .

Theorem 15. A strong linear order may be defined on an abelian
semigroup $S$ if and only if. in $S$ are satisfied the following conditons:
1) $ax=bx$ implies $a=b$ , 2) $a^{n}=b^{n}$ for some positive integer $n$ im-
plies $a=b$ .

Proof. The necessity is obvious by Theorems 2 and 12. If we con-
sider a vacuous partial order $P$ of $S$ in the sense of TUKEY, then $P$ is
the partial order defined on $S$ . And conditions 1) and 2) say that $P$ is
strong and normal. Therefore, by Theorem 14 for any $x,$ $y$ of $S$ there
exists a strong linear extension $L_{ry}$ of $P$ in which $x>y$ .

Corollary. A linear order may be defined on an abelian group if
and only if all its elements, except the unit element, are of infinite order.(4)

(4) F. LEVI: Arithmetische Gesetze lm Gebiete diskreter Gruppen, Rendiconti Palermo,
vol. 35 pp. (1913), 225-236.

G. BIRKHOFF: Lattice Theory, second edition, Theorem 14, p. 224.
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Definition 9. Let $\mathfrak{S}=\{P_{a}\}$ be any set of partial orders, each de-
fined on the same abelian semigroup $S$. We defiIie the new partial
order $P$ on $S$ as follows: For any two elements $a,$ $b$ we put $a\geqq b$ in
$P$ if and only if $a\geqq b$ in every $P_{a}$ of the set $\mathfrak{S}$ . Indeed, $P$ is again a
partial order defined on $S$ , moreover $P$ is normal or strong if all $P_{\alpha}$ of
$\mathfrak{S}$ are normal or strong respectively. The partial order $P$ is said to be
the product of the $P_{\alpha}$ or to be realized by the set $\mathfrak{S}$ of partial orders,
written $P=IlP_{\alpha}$ .

Let $\mathfrak{G}=\{G_{\alpha}\}$ be a set of 1. $0$ . groups and $G$ the (restricted or com-
plete) direct product of $G_{a}$ . Then one can introduce a partial order
defined on $G$ as usual, so that $G$ becomes a $p$ . $0$ . group. We shall call
$G$ a $vect\alpha r- gr\sigma up$ . It is clear that a vector-group is always strong and
normal.

Theorem 16. A strong partial order $P$ defined on an abelian semi-
group $S$ may be $real\ddagger zed$ by a certain set of strong linear orders if and
only if $P$ is normal.

Proof. The necessity is obvious, since by Theorem 11 a strong linear
order, and hence every product of strong linear orders, i.s normal. On
the other hand, if $P$ is not linear, then there exist to any pair of
elements $x,$ $y$ non-comparable in $P$ the corresponding linear extensions
$L_{xy}$ and $L_{n}$ described in Theorem 14. It is easy to see that these linear
orders realize $P$ .

Theorem 17. A $p$ . $0$ . semigroup $S$ can be order-embedded in a
vector-group if and only if $S$ is normal and strong.

Proof. Let $P$ be a partial order defined on $S$ . If $P$ is strong and
normal, then by Theorem 16 $P$ is realized. by a certain set of strong
linear orders, which are exten8ions of $P$, defined on the semigroup $S$ ;
$P=\Pi P_{a}$ . Let $S_{a}$ be the strong 1. $0$ . semigroup when we consider that
$P_{a}$ is the strong linear order defined on $S$. And let $G_{\alpha}$ be the quotient
group of $S_{a}$ . $G_{a}$ is a 1. $0$ . group. Then $S$ is order-embedded in the direct
product $G$ of $G_{\alpha}$ . The necessity is obvious.

Coroflary. A $p.0$ . group $G$ can be order-embedded in a vector-group
if and only if $G$ is norma1.

Theorem 18. Let $T\iota=\{S_{\alpha}\}$ be a set of strong 1. $0$ . semigroups and $S$

the (restricted or complete) direct product of $S_{\alpha}$ . Then one can in-
troduce a linear order defined on $S$, so that $S$ becomes a strong 1. $0$ .

(5) A. H. $Cr_{\lrcorner}IFFORD$: Lc., Theorem 1.
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semigroup.(6)

Proof. We may consider that the $S_{a}$ are well-ordered. Elements
of $S$ are then given by their components: $x=\{x_{\alpha}\}$ , $x_{a}\in S_{a}$ .

Let us define a relation $P$ in $S$ as follows:
We put $x>y$ in $P$ if and only if $x\neq y$ and

$x_{a}=y_{a}$ for all $ a<\beta$ and $x_{\beta}>y_{\beta}$ .
We see readily that $P$ is a strong linear order defined on $S$ .

Mathematical Institute,
Hokkaido University.

(6) Cf. K. IWASAWA: On linearly ordered groups, Journ. Math. Soc. Japan, vol. 1 (1948),
pp. 1-9.


