PARTIALLY ORDERED ABELIAN SEMIGROUPS

I. ON THE EXTENSION OF THE STRONG PARTIAL ORDER DEFINED ON ABELIAN SEMIGROUPS

By

Osamu NAKADA

Definition 1. A set S is said to be a partially ordered abelian semigroup (p. o. semigroup), when in S are satisfied the following conditions:

- I) S is an abelian semigroup under the multiplication, that is:
 - 1) A single-valued product ab is defined in S for any pair a, b of S,
 - 2) ab = ba for any a,b of S,
 - 3) (ab) c = a (bc) for any a, b, c of S.
- II) S is a partially ordered set under the relation \geq , that is:
 - 1) $a \geq a$,
 - 2) $a \ge b$, $b \ge a$ imply a = b,
 - 3) $a \ge b$, $b \ge c$ imply $a \ge c$.
- III) Homogeneity: $a \ge b$ implies $ac \ge bc$ for any c of S.

A partial order which satisfies the condition III) is called a partial order defined on an abelian semigroup.

If S is an abelian group, then S is said to be a partially ordered abelian group (p. o. group).

Moreover, if a partial order defined on an abelian semigroup (group) S is a linear order, then S is said to be a *linearly ordered abelian semi-group* (group) (l. o. semigroup (l. o. group)).

We write a > b for $a \ge b$ and $a \ne b$.

Definition 2. A partial order defined on an abelian semigroup S (or a p.o. semigroup S) is called *strong*, when the following condition is satisfied: $ac \ge bc$ implies $a \ge b$.

Theorem 1. A partial order defined on an abelian group G is always strong.

Proof. Since G is a group, there exists an inverse element c^{-1} of c. By the homogeneity $ac \ge bc$ implies $(ac) c^{-1} \ge (bc) c^{-1}$. Therefore $a \ge b$.

Theorem 2. In the strong p. o. semigroup S the following properties are held:

- 1) ac = bc implies a = b (product cancellation law).
- 2) ac > bc implies a > b (order cancellation law).
- 3) a > b implies ac > bc for any c of S.

Proof. 1): If ac = bc, or, what is the same, if $ac \ge bc$ and $bc \ge ac$, then $a \ge b$ and $b \ge a$, that is, a = b.

- 2): If ac > bc implies a = b, then ac = bc, which is absurd.
- 3): If a > b implies ac = bc for some c of S, then by 1) we have a = b which contradicts the hypothesis a > b.

Theorem 3. In the l. o. semigroup S the following properties are held:

- 1) ac > bc implies a > b,
- 2) $a^n > b^n$ for some positive integer n implies a > b.

Proof. 1): If, under the hypothesis ac > bc, $a \gg b$, then by the linearity of S, $b \geq a$. By the homogeneity we have $bc \geq ac$, this contradicts the hypothesis. 2): Similarly, if $a^n > b^n$ implies $a \gg b$, then we have $b^n \geq a^n$.

Theorem 4. In the l. o. semigroup S the following conditions are equivalent to each other:

- 1) $ac \ge bc$ implies $a \ge b$ (strong),
- 2) ac = bc implies a = b,
- 3) a > b implies ac > bc for all c of S.

Proof. 1) \rightarrow 2): See Theorem 2, 1). 2) \rightarrow 3): Suppose that a > b implies ac = bc for some c of S. By 2) we have a = b. 3) \rightarrow 1): Suppose that $ac \ge bc$ implies $a \ge b$. By the linearity we have b > a, therefore we have bc > ac by 3).

Definition 3. Two p. o. semigroups S and S' will be called *order-isomorphic* if there exists an algebraic isomorphism $x \longleftrightarrow x'$ between them which preserves order: if $a \longleftrightarrow a'$, $b \longleftrightarrow b'$, then $a \ge b$ if and only if $a' \ge b'$.

A p. o. semigroup S will be said to be *order-embedded* in a p. o. semigroup S', if there exists an order-isomorphism of S into S'.

Theorem 5. A p. o. semigroup S can be order-embedded in a p. o. group if and only if S is strong.

Proof. Necessity: By Theorem 1.

Sufficiency: By Theorem 2, the product cancellation law is held in

S. Let G be the set of all symbols (a, a'), $a, a' \in S$. We introduce the equality of the elements of G as follows: (a, a') is equal to (b, b') if and only if ab' = a'b. As we can then prove, the above-defined equality fulfils the equivalence relation. In particular (ax, a'x) = (a, a') for any x of S. Next, we define the multiplication of the elements in G as follows: (a, a') (b, b') = (ab, a'b'). If (a, a') = (c, c') and (b, b') = (d, d'), then (ab, a'b') = (cd, c'd'). One can easily verify the commutative and associative laws of multiplication. Moreover, (x, x) is the unit element of G and (a', a) is an inverse element of (a, a'). Therefore G is an abelian group under the multiplication introduced above.

Now let us define an order in G as follows: $(a, a') \ge (b, b')$ if and only if $ab' \ge a'b$ in S. By the strongness of S it follows immediately that if (a, a') = (c, c'), (b, b') = (d, d') and $(a, a') \ge (b, b')$, then $(c, c') \ge (d, d')$. Moreover, it is easy to see that the above-defined order \ge fulfils the conditions II) 1), 2), 3) and III). Therefore G becomes a p. o. group. The correspondence $a \longleftrightarrow (ax, x)$ is the order-isomorphism of S into G.

Such an obtained group G = Q(S), which is the minimal p. o. group containing S and uniquely determined by S apart from its order-isomorphism, will be called the *quotient group* of the p. o. semigroup S.

Corollary. A l. o. semigroup S can be order-embedded in a l. o. group if and only if S is strong.

Theorem 6. Let S be a p. o. semigroup with the unit element e. $e \ge a$ for any a of S if and only if $a \ge ab$ for any a, b of S.

Proof. Necessity: $e \ge b$ for any b of S implies $ae = a \ge ab$ for any a, b of S.

Sufficiency: If $a \ge ab$ for any a, b of S, then we put a = e. Thus we have $e \ge b$ for any b of S. Moreover, if S has the zero element, i. e., the element 0 such that 0a = 0 for any a of S, then $a \ge 0$ for any a of S.

Corollary. Let S be a p. o. semigroup order-embedded in a p. o. group G. $e \ge a$ for any a of S, where e is the unit element of G, if and only if $a \ge ab$ for any a, b of S.

Theorem 7. Let S be a strong p. o. semigroup, G be the quotient group of S and e the unit element of G. $e \ge a$ for any a of S and e > a $(a \in G)$ implies $a \in S$ if and only if $a \ge ab$ for any a, b of S and if a > b, then there exists an element c of S such that b = ac.

Proof. Necessity: By Corollary of Theorem 6, $a \ge ab$ for any a, b of S. If a > b, then $e > a^{-1}b$, and hence $a^{-1}b = c \in S$. Therefore b = ac.

Sufficiency: It is clear that $e \ge a$ for any a of S. Moreover, let x be any element of G such that e > x. We can put $x = a^{-1}b$, $a, b \in S$. Thus we obtain a > b. Hence there exists an element c of S such that b = ac, therefore $x = a^{-1}b = c \in S$.

Definition 4. Let S be a p.o.semigroup. An element a of S is called *positive* or *negative*, when $a^2 \ge a$ or $a \ge a^2$ respectively. In a p. o. group these coincide with the usual definition.

A partial order defined on S is called directed, when to any a, b of S there exists an element c of S such that $a \ge c$ and $b \ge c$.

Theorem 8. Let G be a p. o. group and S be the p. o. semigroup of all negative elements of G. Then G = Q(S) if and only if G is directed.

Proof. Necessity: By Theorem 7, $a \ge ab$ for any a, b of S. Therefore S is directed. Let x, y be any elements of G. One can write $x = ac^{-1}$, $y = bc^{-1}$, a, b, $c \in S$. Since S is directed, there exists an element d of S such that $a \ge d$ and $b \ge d$. And hence if we put $z = dc^{-1}$, we have $x \ge z$ and $y \ge z$. Therefore G is directed.

Sufficiency: Let x be any element of G. If a be chosen such that $x \ge a$ and $e \ge a$ (e is the unit element of G), then

$$x = a (ax^{-1})^{-1}, e \ge a, e \ge ax^{-1}.$$

Definition 5. An element of a semigroup S is said to be of *infinite* order if all its powers are different. If there exists a positive integer n such that $a^i
ightharpoonup a^j$ for $1
ightharpoonup i
ightharpoonup and <math>a^n = a^k$ for all integers k
ightharpoonup n, then a is called quasi-idempotent and such positive integer n is called the length of a. If the length of a is 1 then a is idempotent in the usual sense.

Theorem 9. An element of a l. o. semigroup S is of infinite order or quasi-idempotent.

Proof. Let a be not of infinite order. There exist positive integers n, m such that $a^n = a^m$, m > n, and n is the least. Since S is a l. o. semigroup,

$$a>a^2>\cdots>a^{n-1}>a^n\geqq a^{n+1}\geqq\cdots\geqq a^m=a^n$$
 (or its dual).

Therefore $a^n = a^k$ for all $k \ge n$.

⁽¹⁾ Cf. A. H. CLIFFORD: Partially ordered abelian groups, Ann. Math., vol. 41 (1940), pp. 465-473.

Theorem 10. Let S be a strong l.o. semigroup. Then $a^n = b^n$ implies a = b. And if there exists a quasi-idempotent element e, then e is the unit element.

Proof. Since S is strong, a > b implies $a^2 > ab > b^2$. Hence for all positive integers n, $a^n > b^n$. Next, the length of e must be 1. Hence $e^2 = e$. For every x of S, $ex = e^2x$ and hence x = ex, that is, e is the unit element. Therefore S has at most one quasi-idempotent element.

Definition 6. A partial order defined on an abelian semigroup S is called *normal*, when the following condition is satisfied:⁽²⁾

 $a^n \ge b^n$ for some positive integer n implies $a \ge b$.

Theorem 11. A strong l. o. semigroup S is always normal.

Proof. Suppose that $a \ge b$. Then we have, by the linearity of S, b > a, which implies $b^n > a^n$ for every positive integer n.

Corollary. A l. o. group G is always normal.

Theorem 12. In the normal p.o. semigroup the following properties are held: 1) $a^n > b^n$ implies a > b, 2) $a^n = b^n$ implies a = b.

Proof. 1): By the normality, $a^n > b^n$ implies $a \ge b$. If a = b, then we have $a^n = b^n$. 2): The normality means that if $a^n = b^n$, or what is the same $a^n \ge b^n$ and $b^n \ge a^n$, then $a \ge b$ as well as $b \ge a$, that is, a = b.

Corollary. An element of a normal p. o. group has an infinite order, except the unit element.

Definition 7. Suppose that two partial orders P and Q are defined on the same semigroup S and that the relation a > b in P implies a > b in Q; then Q will be called an extension of P. An extension which defines a linear order on S will be called a linear extension.

In the set \mathfrak{P} of all partial orders defined on the same semigroup S, we put Q > P if and only if Q is an extension of P. Then \mathfrak{P} is a partially ordered set under this relation >.

Theorem 13. Let P be a strong partial order defined on an abelian semigroup S and x and y are any two elements non-comparable in P. Then there exists an extension Q, which is strong, of P such that x > y in Q if and only if P is normal. (3)

Proof. Sufficiency: Let P be a normal strong partial order defined

⁽²⁾ Cf. L. Fuchs: On the extension of the partial order of groups, Amer. Journ. Math., vol. 72 (1950), pp. 191-194.

⁽³⁾ Cf. L. Fuchs: l. c.

on S and the elements x and y are not comparable in P. Let us define a relation Q as follows:

We put a > b in Q if and only if $a \neq b$ and there are two non-negative integers n, m, such that not both zero and

$$a^n y^m \ge b^n x^m \quad \text{in} \quad P,$$

where if m=0 or n=0 (§) means that $a^n \ge b^n$ or $y^m \ge x^m$ in P respectively.

First, we note that n is never zero, for otherwise we should have $y^m \ge x^m$ in P, whence (by the normality) we have $y \ge x$ in P against the hypothesis.

- i) We begin with verifying that a>b and b>a in Q are contradictory. Suppose that a>b and b>a, namely $a^ny^m \ge b^nx^m$ and $b^iy^j \ge a^ix^j$ in P for some non-negative integers n, m, i, j. By multiplying i times the first, n times the second inequality, one obtains $(ab)^{ni}y^{mi+nj} \ge (ab)^{ni}x^{mi+nj}$ in P. By the strongness of P we have $y^{mi+nj} \ge x^{mi+nj}$ in P. If mi+nj does not vanish, by the normality we have $y \ge x$, this contradicts the hypothesis. On the other hand, if mi+nj is zero, i. e., both m and j vanish, then $a^n \ge b^n$ and $b^i \ge a^i$ in P. Therefore we have $a \ge b$ and $b \ge a$ in P, that is, a=b which is absurd.
- ii) We show the transitivity of Q. Assume that a>b and b>c in Q, i. e., for some non-negative integers n, m, i, j, $a^ny^m \ge b^nx^m$ and $b^iy^j \ge c^ix^j$ in P. By multiplying as in i) we get $a^{ni}y^{mi+nj} \ge c^{ni}x^{mi+nj}$ in P. Here ni is not zero, and a=c is by i) impossible, so that a>c in Q.
- iii) We prove next the homogeneity of Q. $a \neq b$ implies $ac \neq bc$ for any c of S, since P is strong. Hence if a > b in Q, namely, if $a \neq b$ and $a^n y^m \geq b^n x^m$ in P for some n, m, then $ac \neq bc$ and $(ac)^n y^m \geq (bc)^n x^m$ in P. Therefore a > b implies ac > bc in Q for any c of S.
- iv) Q is an extension of P, for if a > b in P, then $ay^0 > bx^0$ in P, therefore a > b in Q.
 - v) It is clear that x > y in Q. In fact, $xy \ge yx$ in P.
- vi) We may prove the normality and the strongness of Q. Indeed, supposing $a^n > b^n$ in Q for some positive integer n, i.e., $(a^n)^i y^j \ge (b^n)^i x^j$ in P, we see at once that a > b in Q. Suppose that ac > bc in Q, i.e., $(ac)^n y^m \ge (bc)^n x^m$ in P for some n, m. Then by the strongness of P we are led to the result a > b in Q.

Necessity: Let us assume that there exist elements a and b such that $a^n \geq b^n$ and $a \geq b$ in P. Then a and b can not be comparable in P by the strongness of P. And hence there exists a strong extension

Q of P in which b > a. This is however absurd, since by the strongness of Q this would imply $b^n > a^n$ in Q, contrary to the hypothesis $a^n \ge b^n$ in P.

Definition 8. If P_1 , P_2 , ..., P_a , ... is a well-ordered chain of partial orders defined on the same abelian semigroup S such that each of them is some extension of the preceding ones, then the *union* of the chain may be defined to be a partial order P defined on S such that $a \ge b$ in P if and only if $a \ge b$ in P_a holds for some one and hence for all subsequent subscripts a.

It is easy to see that P is normal or strong if all P_{α} are normal or strong respectively.

Theorem 14. For every normal strong partial order P defined on an abelian semigroup S and every two elements x, y non-comparable in P, there exists a normal strong linear extension L_{xy} with the property that x > y in L_{xy} .

Proof. By Theorem 13 there exists a normal strong extension Q of P such that x>y in Q. Let \mathfrak{P}' be a set of all normal strong partial orders defined on S which are extensions of Q. \mathfrak{P}' is a partially ordered set as a subset of \mathfrak{P} in Definition 7. By Zorn's lemma there exists a maximal linearly ordered subset \mathfrak{P}^* of \mathfrak{P}' . Let L_{xy} be an union of \mathfrak{P}^* . Then L_{xy} is a maximal order, that is, order which has no proper extension. By Theorem 13 this can happen only in case any two elements are comparable in L_{xy} , that is to say, L_{xy} is linear. Moreover, L_{xy} is strong and normal, and x>y in L_{xy} .

Theorem 15. A strong linear order may be defined on an abelian semigroup S if and only if in S are satisfied the following conditons:

1) ax = bx implies a = b, 2) $a^n = b^n$ for some positive integer n implies a = b.

Proof. The necessity is obvious by Theorems 2 and 12. If we consider a vacuous partial order P of S in the sense of Tukey, then P is the partial order defined on S. And conditions 1) and 2) say that P is strong and normal. Therefore, by Theorem 14 for any x, y of S there exists a strong linear extension L_{xy} of P in which x > y.

Corollary. A linear order may be defined on an abelian group if and only if all its elements, except the unit element, are of infinite order. (4)

⁽⁴⁾ F. Levi: Arithmetische Gesetze im Gebiete diskreter Gruppen, Rendiconti Palermo, vol. 35 pp. (1913), 225-236.

G. Birkhoff: Lattice Theory, second edition, Theorem 14, p. 224.

Definition 9. Let $\mathfrak{S} = \{P_a\}$ be any set of partial orders, each defined on the same abelian semigroup S. We define the new partial order P on S as follows: For any two elements a, b we put $a \geq b$ in P if and only if $a \geq b$ in every P_a of the set \mathfrak{S} . Indeed, P is again a partial order defined on S, moreover P is normal or strong if all P_a of \mathfrak{S} are normal or strong respectively. The partial order P is said to be the *product* of the P_a or to be *realized* by the set \mathfrak{S} of partial orders, written $P = HP_a$.

Let $\mathfrak{G} = \{G_a\}$ be a set of l. o. groups and G the (restricted or complete) direct product of G_a . Then one can introduce a partial order defined on G as usual, so that G becomes a p. o. group. We shall call G a vector-group. It is clear that a vector-group is always strong and normal.

Theorem 16. A strong partial order P defined on an abelian semigroup S may be realized by a certain set of strong linear orders if and only if P is normal.

Proof. The necessity is obvious, since by Theorem 11 a strong linear order, and hence every product of strong linear orders, is normal. On the other hand, if P is not linear, then there exist to any pair of elements x, y non-comparable in P the corresponding linear extensions L_{xy} and L_{yx} described in Theorem 14. It is easy to see that these linear orders realize P.

Theorem 17. A p. o. semigroup S can be order-embedded in a vector-group if and only if S is normal and strong.

Proof. Let P be a partial order defined on S. If P is strong and normal, then by Theorem 16 P is realized by a certain set of strong linear orders, which are extensions of P, defined on the semigroup S; $P = IIP_{\alpha}$. Let S_{α} be the strong l. o. semigroup when we consider that P_{α} is the strong linear order defined on S. And let G_{α} be the quotient group of S_{α} . G_{α} is a l. o. group. Then S is order-embedded in the direct product G of G_{α} . The necessity is obvious.

Corollary. A p. o. group G can be order-embedded in a vector-group if and only if G is normal⁽⁵⁾.

Theorem 18. Let $\mathfrak{J} = \{S_{\alpha}\}$ be a set of strong l. o. semigroups and S the (restricted or complete) direct product of S_{α} . Then one can introduce a linear order defined on S, so that S becomes a strong l. o.

⁽⁵⁾ A. H. CLIFFORD: l.c., Theorem 1.

semigroup.(6)

Proof. We may consider that the S_{α} are well-ordered. Elements of S are then given by their components: $x=\{x_{\alpha}\}$, $x_{\alpha}\in S_{\alpha}$.

Let us define a relation P in S as follows:

We put x > y in P if and only if $x \rightleftharpoons y$ and

 $x_{a}=y_{a}$ for all lpha<eta and $x_{eta}>y_{eta}$.

We see readily that P is a strong linear order defined on S.

Mathematical Institute, Hokkaido University.

⁽⁶⁾ Cf. K. Iwasawa: On linearly ordered groups, Journ. Math. Soc. Japan, vol. 1 (1948), pp. 1-9.