PARTIALLY ORDERED ABELIAN SEMIGROUPS

I. ON THE EXTENSION OF THE STRONG PARTIAL
ORDER DEFINED ON ABELIAN SEMIGROUPS

By

Osamu NAKADA

Definition 1. A set S is said to be a partially ordered abeliaxn semi-
group (p.o. semigroup), when in S are satisfied the following conditions :
I) S is an abelian semigroup under the multiplication, that is:
1) A single-valued product ab is defined in S for any pair a,
b of S,
2) ab =ba for any a,b of S,
3) (ab)c = a(bc) for any a, b, ¢ of S.
II) S is a partially ordered set under the relation =, that is:
1) az=Za,
2) azb, b=a imply a=05b,
3) a=b, b=c imply a=c.
III) Homogeneity: a=0b implies ac =bc for any c of S.
A partial order which satisfies the condition III) iIs called a partial
order defined on an abelian semigroup.
If S is an abelian group, then S is said to be a partially ordered
abelian group (p.o. group).
Moreover, if a partial order defined on an abelian semigroup (group)
S is a linear order, then S is said to be a linearly ordered abelian semi-
group (group) (l.o. semigroup (l.o. group)).
We write a > b for a = b and a = b.

Definition 2. A partial order defined on an abelian semigroup S
(or a p.o. semigroup S) is called strong, when the following condition
is satisfied : a¢ =bc implies a =b.

Theorem 1. A partial order defined on an abelian group G is always
strong. . ‘
Proof. Since G is a group, there exists an inverse element ¢~ of c.

By the homogeneity ac = bc implies (ac) ¢ = (be) ¢'. Therefore a = b.
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Theorem 2. In the strong p. o. semigroup S the following pro-
perties are held: . o

1) ac = bc implies a =1b (product cancellation law).

2) ac >be implies @ >b (order cancellation law).

8) a>b implies ac > bc for any ¢ of S.

Proof. 1): If ac = bc, or, what is the same, if ac = bc and bc = ac,
then a = b and b = a, that is, a = b. ’

2): If ac > bc implies @ = b, then ac = bc, which is absurd.

8): If a > b implies ac = bc for some ¢ of S, then by 1) we have
a = b which contradicts the hypothesis a > b.

Theorem 3. In the 1. 0. semigroup S the following properties are
held :

"~ 1) ac>bc implies a >b,

2) a* >b" for some positive integer n implies a > b.

Proof. 1): 1If, under the hypothesis ac > bc, @ }>b, then by the
linearity of S, b = a. By the homogeneity we have bc = ac, this con-
tradicts the hypothesis. 2): Similarly,if a® > " implies a 3}>b, then
we have b" = a™ ‘

Theorem 4. In the l. 0. semigroup S the following conditions are
equivalent to each other: ‘

1) ac=bc implies a = b (strong),

2) ac=bc implies a=2b,

8) a>b implies ac>bc for all ¢ of S.

Proof. 1)—2): See Theorem 2,1). 2)— 3): Suppose that a > b
implies ac = bc for some c of S.. By 2) we havea =b. 3)—1): Suppose
that ac = bc implies @ 2= b. By the linearity we have b > a, therefore
we have bc > ac by 3). | :

Definition 3. Two p. o. semigroups S and S’ will be called order-
isomorphic if there exists an algebraic isomorphism = <« z’ between them
which preserves order : if a «>a’/, b<«-> b, then ¢ = b if and only if
a =0 v
A p. o. semigroup S will be said to be order-embedded in a p. o.
semigroup S’, if there exists an order-isomorphism of S into S’

Theorem 5. A p.o. semigroup S can be order-embedded in a p. o.
group if and onmnly if S is strong. .

Proof. Necessity: By Theorem 1. ,

Sufficiency : By Theorem 2, the product cancellation law is held in
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S. Let G be the set of all symbols (a,a’), ¢, @’ € S. We introduce the
equality of the elements of G as follows: (a, a’) is equal to (b, ¥’) if and
only if ab’=a’b. As we can then prove, the above-defined equality fulfils
“the equivalence relation. In particular (ar, a’x) = (@, a’) for any « of
S. Next, we define the multiplication of the elements in G as follows:
(@, a’) (b, b") = (ab, a'd’). If (a,a) = (¢c,¢) and (b, b") = (d, d’), then (ab,
a’d’) = (ed, ¢’d’). One can easily verify the commutative and associative
laws of multiplication. Moreover, (z, z) is the unit element of G and
(¢/, @) is an inverse element of (a, /). Therefore G is an abelian group
under the multiplication introduced above. -

Now let us define an order in G as follows: (a,a’) = (b, ¥’) if and
only if a¥’ = &/bin S. By the strongness of, S it follows immediately that
if (a,a’) = (¢, ¢), (b, ) = (d,d") and (@, &’) = (b, b’), then (¢, ¢) = (d, d).
Moreover, it is easy to see that the above-defined order = fulfils the
conditions II) 1), 2), 3) and III). Therefore G becomes a p. o. group.
The correspondence a <« (ar, x) is the order-isomorphism of S into G.

Such an obtained group G = Q (S), which is the minimal p. o. group
containing S and uniquely determined by S apart from its order-
‘isomorphism, will be called the quotient group of the p.o. semigroup S.

Corollary. A 1. o. semigroup S can be order-embedded in a 1. 0. group
if and only if S is strong.

Theorem 6. Let S be a p. o. semigroup with the unit element e.
e=a for any a of S if and only if a = ab for any a, b of S.
. Proof. Necessity: e =b for any b of S implies a¢ = a = ab for any
a, b of S. ’

Sufficiency: If @ = ab for any a, b of S, then we put @ —=e. Thus
we have e = b for any b of S. Moreover, if S has the zero element, i. e.,
the element 0 such that 0a = 0 for any @ of S, then ¢« = 0 for any a
of S. : : :

Corollury. Let S be a p.o. semigroup order-embedded in a p. o.
group G. e = a for any a of S, where ¢ is the unit element of G, if
and only if ¢ = ab for any a, b of S.

Theorem 7. Let S be a strong p. o. semigroup, G be the quotient
group of S and e the unit element of G. e = a for any a of S and e > a
(@ € G) implies a € S if and only if @ = ab for any a, b of S and if a >b,
then there exists an element ¢ of S such that b = ac.

Proof. Necessity : By Corollary of. Theorem 6, a = ab for any a, b
of S. Ifa > b, thene > a'b, and hence a™'6 = c € S. Therefore b = ac.
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Sufficiency: It isclear that e = a for any a of S. Moreover, let
be any element of G such that e >x. We can put z=a"b, a,b &€ S.
Thus we obtain @ > b. Hence there exists an element ¢ of S such that
b = ac, therefore x = a6 =c &€ S.

Definiton 4. Let S be a p.o.semigroup. An element a of S is called
positive or negative, when a* = a or a = a* respectively. In a p. o. group
these coincide with the usual definition. . ‘ |

A partial order defined on S is called directed, when to any a, b of
S there exists an element ¢ of S such that a = ¢ and b = c.

Theorem 8. Let G be a p.o. group and S be the p. o. semigroup
of all negative elements of G. Then G = Q(S) if and only if G is
directed.®® .

Proof. Necessity: By Theorem 7, a = ab for any a, b of S. There-
fore S is directed. Let z, ¥ be any elements of G. One can write z
=ac', y=0bc"", a,b,c€S. Since S is directed, there exists an element
d of S such that a =d and b=d. And hence if we put z = dz~!, we
have x =z and y = 2. Therefore G is directed. ‘

Sufficiency : Let & be any element of G. If a be chosen such that
x=a and ¢ = a (e is the unit element of G), then

r=a(ax™), e=za, e=ar.

Definition 5. An element of a‘semigroup S is said to be of infinite
order if all its powers are different. If there exists a positive integer
n such that of xa’ for 1 <7< j<n and a* = a* for all integers & = m, -
then a is called ‘quasi—idzmpotent and such positive integer n is called
the length of a. If the length of @ is 1 then ¢ is idempotent in the
usual sense. '

Theorem 9. An element of a l. 0. semigroup S is of infinite order
or quasi-idempotent. o .

Proof. Let a be not of infinite order. There exist positive integers
n, m such that a" = a™, m >n, and n is the least. Since S is a l. o.
semigroup, ‘

a>a> - >av! >ar= ot = 2a™ = o (or its dual).

Therefore a® = a* for all £ = n.

(1) Cf. A.H. Crarrorp: Partially ordered abelian groups, Ann. Math., vol. 41 (1940),
Pp. 466-473. : ‘
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Theorem 10. Let S be a strong l. o. semigroup. Then a" = b"
implies @ = b. And if there exists a quasi-idempotent element ¢, then
e is the unit element.

Proof. Since S is strong, a > b implies a* > ab > 8. Hence for all
positive integers n, a™ > b". Next, the length of ¢ must be 1. Hence
e’ =e. For every x of S, ex = ¢x and hence z = ex, that is, e is the
unit element. Therefore S has at most one quasi-idempotent element.

Definition 6. A partial order defined on an abelian semigroup S
is called normal, when the following condition is satisfied :®

a” = b" for some positive integer n implies a = b.

Theorem 11. A strong l. 0. semigroup S is always normal.

Proof. Suppose that @ == b. Then we have, by the linearity of S
b > a, which implies 8" > q" for every positive integer n. »

Corollary. A 1. o. group G is always normal.

Theorem 12. In the normal p. 0. semigroup the following properties
are held: 1) a” >b" implies a >b, 2) a" =b" implies a = b.

Proof. 1): By the normality, o > b* implies ¢ = b. If a = b, then
we have a”" =d". 2): The normality means that if a” = b*, or what is
the same a" = b” and " = a*, then ¢ = b as well as b = a, that is, ¢ = b.

Corollary. An element of a normal p. o. group has an infinite order,
except the unit element. :

' Definition 7. Suppose that two partial orders P and Q are defined
on the same semigroup S and that the relation @ > b in P implies ¢ > b
in Q; then Q will be called an extension of P. An extension which de-
fines a linear order on S will be called a linear extension.

In the set B of all partial orders defined on the same semigroup S,
we put Q >P if and only if @ is an extension of P. Then 0 is a partially
ordered set under this relation .

Theorem 13. Let P be a strong partial order defined on an abelian
semigroup S and z and y are any two elements non-comparable in P.
Then there exists an extension @, which is strong, of P such that ¢ >y
in Q if and only if P is normal.®

Proof. Sufficiency: Let P be a normal strong partial order defined

(2) Cf. L. Fucas: On the extension of the partial order of groups, Amer. Journ. Math.,
vol. 72 (1950), pp. 191-194. '
3) Cf. L. Fuems: L e
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E

on S and the elements x and y are not comparable in P. Let us deﬁhe

a relation Q as follows:
We put @ >b in Q if and only if a=cb and there are two non-
negative integers n, m, such that not both zero and .

) a*y™ = b"z" | in P,
where if m =0 or » =0 (§) means that a" = b" or y» =Za™ in P re-
spectively.

First, we note that » is never zero, for otherwise we should have
y* = x™ in P, whence (by the normality) we have y = « in P against
the hypothesis.

i) We begin with verifying that ¢ >b and b >a in Q are con-
tradictory. Suppose that ¢ > b and b > a, namely a"y™ = brx™ and by
= &'z’ in P for some non-negative integers n, m, ¢, . By multiplying ¢
times the first, » times the second inequality, one obtains (ab)"y™"*"™ =
(ab)** z™+" in P. By the strongness of P we have y™**™ =g™+% in P.
If mi + nj does not vanish, by the normality we have y = =, this con-
tradicts the hypothesis. On the other hand, if mi + nJj is zero, i. e., both
.m and j vanish, then a" Z 5" and & = o' in P. Therefore we have a = b
and b =a in P, that is, @ = b which is absurd. |

ii) We show the transitivity of Q. Assume that a > band b >c
in @, i. e., for some non-negative integers n, m, , j, a"y" = b*x™ and
biy = ¢x’ in P. By multiplying asin i) we get amty™itni > M gmitiin P,
Here i is not zero, and a = ¢ is by i) impossible, so that a > ¢ in Q.

iii) We prove next the homogeneity of Q. a ¢ b implies ac 2z be for
any ¢ of S, since P is strong. Henceif ¢ >b in Q, namely, if @ > b and
a*y® = b*z™ in P for some n, m, then ac = be and (ac)”y™ = (be)*«™ in P.
Therefore a > b implies az > bc in Q for any ¢ of S. ’

iv) Q is an extension of P, for if ¢ >b in P, then ay’ > bz’ in P,
therefore a > b in Q.

v) It is clear that x >y in Q. In fact, 2y = yx in P.

vi) We may prove the normality and the strongness of Q. Indeed,
supposing a® > b" in @ for some positive integer 7, i.e., (@™ = (b™)%2 in
P, we see at once that a >b in Q. Suppose that ac>bc in Q, ie.,
(ac)"y™ = (bc)*a™ in P for some n, m. Then by the strongness of P we
are led to the result a > b in Q.

Necessity : Let us assume that there exist elements ¢ and b such
that @ = 5" and @ 2 b in P. Then a and b can not be comparable in
P by the strongness of P. And hence there exists a strong extension
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Q of P in which b > a. Tﬁis is however absurd, since by the strong-
ness of Q this would imply 5" > a" in Q, contrary to the hypothesis a®
= b® in P. :

Definition 8. If P,, P,, ---, P,, --- is a well-ordered chain of partial
orders defined on the same abelian semigroup S such that each of them
is some extension of the preceding ones, then the union of the chain
may be defined to be a partial order P defined on S such that a = b in
P if and only if ¢ = b in P, holds for some one and hence for all sub-
sequent subscripts a.

It is easy to see that P is normal or strong if all P, are normal or

strong respectively.

Theorem 14. For every normal strong partial order P defined on
an abelian semigroup S and every two elements z, ¥ non-comparable in
P, there exists a normal strong linear extension Lx , with the property
that « > y in L,,.

Proof. By Theorem 13 there exists a normal strong extension @ of
P such that x > y in Q. Let B’ be a set of all normal strong partial
orders defined on S which are extensions of Q. ' is a partially ordered
set as a subset of S8 in Definition 7. By Zorn’s lemma there exists a
maximal linearly ordered subset 3* of $’. Let L,, be an union of Sf*.
Then L,, is a maximal order, that is, order which has no proper ex-
tension. By Theorem 13 this ean happen only in case any two elements
are comparable in L,,, that is to say, L,, is linear. Moreover, L,, is
strong and normal, and * > y in L,,.

Theorem 15. A strong linear order may be defined on an abelian
semigroup S if and only if. in S are satisfied the following conditons:
1) ar = br implies a =b, 2) a" =0b" for some positive integer n im-
plies a = b. «

Proof. The necessity is obvious by Theorems 2 and 12. If we con-
sider a vacuous partial order P of S in the sense of Tukey, then P is
the partial order defined on S. And conditions 1) and 2) say that P is
strong and normal. Therefore, by Theorem 14 for any z, y of S there
exists a strong linear extension Z,, of P in which z > y.

Corollary. A linear order may be defined on an abelian group if
and only if all its elements, except the unit element, are of infinite order.®

(4) F. Levi: Arithmetische Gesetze im Gebiete diskreter Gruppen, Rendiconti Palermo,
vol. 35 pp. (1913), 225-236.
G. Birgnorr: Lattice Theory, second edition, Theorem 14, p. 224.
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Definition 9. Let & = {P,} be any set of partial orders, each de-
fined on the same abelian semigroup S. We define the new partial
order P on S as follows: For any two elements a, b we put ¢ = b in
P if and only if ¢ = b in every P, of the set &€. Indeed, P is again a
partial order defined on S, moreover P is normal or strong if all P, of
S are normal or strong respectively. The partial order P is said to be
the product of the P, or to be realized by the set © of partial orders,
written P = I/P,.

Let & = {G.} be a set of 1. o.groups and G the (restricted or com-
plete) direct product of G,. Then one can introduce a partial order
defined on G as usual, so that G becomes a p.o.group. We shall call
G a vector-group. It is clear that a vector-group is always strong and
normal. :

Theorem 16. A strong partial order P defined on an abelian semi-
group S may be realized by a certain set of strong linear orders if and
only if P is normal.

Proof. The necessity is obvious, since by Theorem 11 a strong linear
order, and hence every product of strong linear orders, is normal. On
the other hand, if P is not ‘linear, then there exist to any pair of
elements z, ¥y non-comparable in P the corresponding linear extensions
L,, and L,, described in Theorem 14. It is easy to see that these linear
orders realize P.

Theorem 17. A p.o.semigroup S can be order-embedded in a
vector-group if and only if S is normal and strong. .

Proof. Let P be a partial order defined on S. If P is strong and
normal, then by Theorem 16 P is realized by a certain set of strong
linear orders, which are extensions of P, defined on the semigroup S;
P =1IP,. Let S; be the strong l.o.semigroup when we consider that
P, is the strong linear order defined on S. And let G, be the quotient
group of S;. G is al.o.group. Then S is order-embedded in the direct
product G of G,. The necessity is obvious.

Corollary. A p.o.group G can be order-embedded in a vector-group
if and only if G is normal®.

Theorem 18. Let ¥ = {S.} be a set of strong l. 0. semigroups and S
the (restricted or complete) direct product of S,. Then one can in-
troduce a linear order defined on S, so that S becomes a strong l.o.

(65) A.H. Currrorp: lLe., Theorem 1.
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semigroup.®
Proof. We may consider that the S, are well-ordered. Elements
of S are then given by their components: = = {z,}, z. € S..
Let us define a relation P in S as follows:
‘We put « >y in P if and only if z2cy and
Ze =Ya for all a<p and zz > y,.
We see readily that P is a strong linear order defined on S.

Mathematical Institute,
Hokkaido University.

(6) Cf. K. Iwasawa: On lineaﬂy ordered groups, Journ. Math. Soc. Japan, vol. 1 (1948),
pp. 1-9.



