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In an earlier paper [1], one of the authors defined modulars on
linear spaces and discussed their properties: a functional $m(x)$ on a
linear space $R$ is said to be a $mod\iota dar$ on $R$ , if

1) $m(0)=0$ ;
2) $m(-a)=m(a)$ for every $a\in R$ ;
3) for any $a\in R$ we can find a positive number $a$ such that

$m$ (a $a$) $<+\infty$ ;

4) $m(\xi a)=0$ for every positive number $\xi$ implies $a=0$ ;
5) $a+\beta=1,$ $a,$ $\beta\geqq 0$ implies for every $a,$ $b\in R$

$m(aa+\beta b)\leqq am(a)+\beta m(b)$ ;

6) $m(a)=\sup_{0\leqq\xi<1}m(\xi a)$ for every $a\in R$.
For universally continuous semi-ordered linear spaces $R$ , modulars

were considered $w$ ith adding conditions: 7) $|a|\leqq|b|$ implies $m(a)\leqq m(b)$ ,
8) $|a|\leftrightarrow|b|=0$ implies $m(a+b)=m(a)+m(b)$ , and 9) $0\leqq a_{l}\uparrow\lambda\in 4a$ implies
$m(a)=\sup_{\lambda\in\Lambda}m(a_{l})$. (cf. [2])

In this paper we shall discuss modulars on lattice ordered linear
spaces only with adding condition 7).

\S 1. Modulars on linear spaces

Firstly we shall give a rough sketch of the properties of modulars
on linear spaces which are obtained in [1] and [3], and will be used
in this paper. Let $m(x)(x\in R)$ be a modular on a linear space $R$. A
linear functional $\sim x(x)(x\in R)$ on $R$ is said to be modular $b\sigma u?ded$, if we
can find positive numbers $a,$ $\beta$ such that

$a\sim x(x)\leqq\beta+\cdot m(x)$ for every $x\in R$ .
The totality of modular bounded linear functionals on $R$ also builds

a linear space which will be called the modular associated space of $R$ and
denoted by $\overline{R}$ . For each $\tilde{\alpha}\in\overline{R}$ , putting
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$\overline{m}(\tilde{\alpha})=\sup_{x\in R}\{\tilde{\alpha}(x)-m(x)\}$

we obtain a modular $\overline{m}$ on $\overline{R}$ , which will be called the conjugate $m\alpha luhr$

of $m$ . Then we have the reflexive relation:
$..\neq$

$-’\backslash \sim$

.
$\Re_{-}\sim\sim\overline{x}\in$ $(\backslash a\in R)$

Putting

(1) $\Vert|x\Vert(=\inf_{m(\text{\’{e}} x)\leqq 1}\frac{1}{\xi}$ $(x\in R)$

we obtain a norm on $R$ , which will be called the second norm of $m$.
Concerning the second norm, we have

$m(x)\leqq\Vert|x\Vert|$ if $\Vert|x\Vert|\leqq 1$ ,

$m(x)\geqq\Vert|x\Vert|$ if $\Vert|x\Vert|\geqq 1$ .
Putting

$||a||=\sup_{\overline{m}(\overline{x})\leqq 1}|_{X}^{\sim}(a)|$
$(a\in R)$ ,

we also obtain another norm on $R$, which will be called the first norm
of $m$ . Between the first and the second norms there is the relation:

$|11x\Vert|\leqq||x|I\leqq 2\Vert|x\Vert|$ $(x\in R)$ .
The first norm also may be defined as

(2) $||x||=\inf_{\xi>0}\frac{1+m(\xi x)}{\xi}$ $(x\in R)$ .
For the first and the second norm of the conjugate modular $\overline{m}$ we

have

$||x||=\sup_{||\overline{x})/|\leqq 1}|_{X}^{\sim}(x)|$ ,
$\Vert|x\Vert|=\sup_{||\overline{x})(\leqq 1}|\sim x(x)|$

$(x\in R, \sim x\in\overline{R}))$ .
$||\sim x||=\sup_{|||x((|\leqq 1}|\sim x(x)|$ , $\Vert|\sim x|\Vert=/|x|(<1\sup_{\Rightarrow}|\sim x(x)|$

A linear functional $\tilde{x}$ on $R$ is modular bounded if and only if hi is
norm bounded, taht is,

$\sup_{m(x1}|\tilde{x}(x)|<+\infty$ $(x\in R)$ .
A sequenee $x_{\nu}\in R(\nu=1,2,\cdots)$ is said to be mdular ccmvergent to $x\in R$ ,

if
$\lim_{\nu\rightarrow\infty}m(\xi(x_{\nu}-x))=0$ for every $\xi>0$ .
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With this definition we have that a sequence $x_{\nu}\in R(\nu=1,2,\cdots)$ is modular
convergent to $x\in R$ if and only if it is $n\sigma.rm$ convergent, that is,

$\lim_{\nu\rightarrow\infty}\Vert|x_{\nu}-x\Vert|=0$ .
A modular $m$ on $R$ is said to be complete, if

$\lim_{\nu.\mu\rightarrow\infty}m(\xi(x_{\nu}-x_{\mu}))=0$ for every $\xi>0$

implies the modular convergence of the sequence $x_{\nu}\in R(\nu=1,2, \cdots)$ .
With this definition, a modular $m$ on $R$ is complete if and only if the
first or second norm of $m$ is complete. The conjugate modular $\overline{m}$ of
any modular $m$ on $R$ is always complete on $\overline{R}$ .

From the postulate 5) we conclude easily for $0<\epsilon\leqq 1$

(3) $m(x)\leqq m(y)+\frac{\epsilon}{1+\epsilon}m((1+e)y)+\frac{\epsilon^{2}}{1+\epsilon}m(\frac{1+\epsilon}{\epsilon^{2}}(x-y))$ .

\S 2. Monotone modulars

Let $R$ be a lattice ordered linear space. A modular $m$ on $R$ is
said to be monoWne if $|x|\leqq|y|$ implies $m(x)\leqq m(y)$ . With this definition
we have obviously by the formulas (1) and (2) in \S 1 that if a modular
$m$ on $R$ is monotone, then both the first and the second norm of $m$ are
monotone too, that is, $|x|\leqq|y|$ implies $||x||\leqq||y||$ and $\Vert|x\Vert|\leqq\Vert|y\Vert|$ .

A modular $m$ on $R$ is said to be upper semi-continuous, if $m$ is monotone
and $0\leqq x_{\lambda}\uparrow\lambda\in\mu X$ implies

$m(x)=\sup_{\lambda\in \text{ノ}1}m(x_{l})$ .
Theorem 2. 1. If a $m\alpha fularm$ on $R$ is upper semi-continuous, then the

second norm of $m$ is semi-continuous, that is, $0\leqq x_{\lambda}\uparrow l\in\Lambda x$ imphes $\sup_{R\in}\Vert^{1},x_{l}\Vert=\Vert|x\Vert|$ .
Proof. If $ 0\leqq x_{\lambda}\uparrow$ a $C\Lambda x$ and $\sup_{\lambda\in}\Vert|x_{f}\Vert|<\Vert|x\Vert|$ , then we can find a positive

number $a$ such that

$\sup_{l\in}\Vert|ax_{1}\Vert|<1<|||\alpha x\Vert|$ .
Thus we have for such $a$

$\sup_{h\in}m(ax_{l})\leqq 1<m(ax)$ , $0\leqq ax$ a $\uparrow R\in\Lambda ax$ .
Therefore we obtain our assertion.

A modular $m$ on $R$ is said to be lower semi-continuous, if $m$ is monotone
and $x_{l}\downarrow\lambda\epsilon\Lambda 0,$ $ m(x_{f})<+\infty$ for every $\lambda\in\Lambda$ implies $\inf_{t\in\Lambda}m(x_{\lambda})=0$ . If a
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modular $m$ on $R$ is upper and lower semi-continuous simultaneously,
then $m$ is said to be semi-continuous.

A modular $m$ on $R$ is said to be continuous, if $m$ is monotone
$-$

and
$x_{l}\downarrow\lambda\in\Lambda 0$ implies always $infm(x_{l})=0$ .

$\lambda\in\Lambda$

Theorem 2. 2. Every continuous modular is semi-co.ntinuozts.
Proof. If a modular $m$ on $R$ is continuous, then $m$ is obviously

lower semi-continuous by definition. Since $m$ is $monoto\dot{n}e$ , we have for
$0\leqq x_{\lambda}\uparrow_{\lambda\in\Lambda}x_{\vee}$

$\sup_{f\in}m(x_{l})\leqq m(x)$ .
On the other hand we have by the formula (3) for $0<\epsilon\leqq 1$

$m(\frac{1}{1+\epsilon}x)\leqq m(\frac{1}{1+\epsilon}X_{\lambda})+\frac{\epsilon}{1+e}m(x_{\lambda})+\frac{\epsilon^{2}}{1+\epsilon}m(\frac{1}{\epsilon^{2}}(x-x_{f}))$

$\leqq\frac{1+2e}{1+\epsilon}\sup_{l\in\Lambda}m(x_{\lambda})+\frac{\epsilon^{0}}{1+\epsilon}m(\frac{1}{\epsilon^{2}}(x-x_{\lambda}))$ .

Since $\frac{1}{e^{2}}(x-x_{\lambda})\downarrow l\in,10$ , we obtain by assumption

$m(\frac{1}{1+e}x)\leqq\frac{1+2\epsilon}{1+\epsilon}\sup_{R^{\hat{r}}\Lambda}m(x_{\lambda})$ .

This relation yields $m(x)\leqq\sup_{a\sigma-\Lambda}m(x)$ , because $\sup_{\epsilon>0}m(\frac{1}{1+\epsilon}x)=m(x)$ by

the postulate 6). Therefore $m$ is upper semi-continuous too.
Theorem 2. 3. A monotone modular $m$ on $R$ is continuous, if and only

if the first or the second norm of $m$ is continuous: $x_{l}\downarrow\lambda C\Lambda 0$ implies

$\inf_{\lambda C-\Lambda}||x||=0$ or $\inf_{\lambda\in\Lambda}\Vert|x|||=0$ .
Proof. It is obvious that $inf|x_{a}||=0$ is equivalent to $\inf_{l\Lambda}\Vert|x_{\lambda}\Vert|=0$ .

If $m$ is continuous, then for $x_{l}\downarrow\lambda\in\Lambda 0$ we have $\nu X_{\lambda}\downarrow\lambda\in\Lambda 0$ for every $\nu=$

$1,2,$ $\cdots$ , and hence we $\cdot can$ find $\lambda_{\nu}C\Lambda(\nu=1,2, \cdots)$ such that $m(\nu x_{\lambda\nu})\leqq 1$

$(\nu=1,2, \cdots)$ . Then we have $\Vert|\nu x_{\lambda}\nu\Vert|\leqq 1$ , namely $\Vert|x_{l_{\nu}}\Vert|\leqq\div$ for every

$\nu=1,2,$ $\cdots$ , and this relation yields $\inf_{Rc_{\sim}\Lambda}\Vert|x_{f}\Vert|=0$ . Thus the second norm
of $m$ is continuous.

Conversely, if the second norm of $m$ is continuous, then for $x_{\lambda}\downarrow\lambda\in\Lambda 0$

we can find $\lambda_{\nu}\in\Lambda(\nu=1,2, \cdots)$ such that $|||\nu x_{\lambda\nu}\Vert|\leqq 1$ , and hence

$m(x_{\pi_{\nu}})\leqq\frac{1}{\nu}m(\nu X_{ly})\leqq\frac{1}{\nu}$
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for every $\nu=1,2,$ $\cdots$ . This relation yields $\inf_{l\in\Lambda}m(x_{f})=0$ . Thus $m$ is
continuous by definition.

A monotone modular $m$ on $R$ is said to be monotone complete, if
$0\leqq x_{\lambda}\uparrow_{R\in\Lambda}$ , $\sup_{\lambda\in}m(x_{f})<+\infty$

implies the existence of
$\bigcup_{R\in\Lambda}x_{l}$ . If $m$ is monotone complete, then $R$

must be universally continuous, because $ 0\leqq x_{h}\uparrow\lambda_{\vee}^{r}\Lambda$ , $x_{\lambda}\leqq x(\lambda\in\Lambda)$ implies
$\sup_{l\in}m(ax_{a})<+\infty$ for some positive number $\alpha$ such that $ m(ax)<+\infty$ .

7‘heorem 2. 4. A monotone modular $m$ on $R$ is $mmoWne$ complete if and
only if the first or the secmd $n\sigma rm$ of $m$ is monotone complete.

Proof. If $\sup_{lC\cdot\Lambda}m(x_{\lambda})\leqq a$ for.some $a>1$ , then we have

$m(\frac{1}{\alpha}x_{\lambda})\leqq\frac{1}{a}m(x_{\lambda})\leqq 1$ for every $\lambda\in\Lambda$

and hence $\sup_{l\in\Lambda}\Vert|\frac{1}{a}x_{\lambda}\Vert|\leqq 1$ , that is, $\sup_{l\in\Lambda}\Vert|x_{f}\Vert|\leqq a$ . Conversely if

$\sup_{\lambda\in}||x_{l}\Vert|\leqq a$ for some $\alpha>0$ , then we have

$\sup_{hC\Lambda}m(\frac{1}{a}x_{l})\leqq 1$ .

Therefore we can conclude our assertion.
Theorem 2. 5. For any monotone modular $m$ on $R$ , its conjugate modular

$\overline{m}$ is upper semi-continuous and monotone complete.
Proof. The modular associated space $\overline{R}$ of $R$ is always universally

continuous. (cf. [2]) The conjugate modular $\overline{m}$ is obviously monotone
by definition. If $0\leqq\sim x_{\lambda}\uparrow\lambda\in\Lambda\tilde{X}$ , then we have

$\overline{m}(\sim x)=\sup_{x\in R}\{\sim x(x)-m(x)\}=\sup_{0\leqq x\in R}\{\sup_{lC\Lambda}\sim x_{\lambda}(x)-m(x)\}$

$=\sup_{\lambda\in\Lambda}\{\sup_{0\leqq x\in R}\{\sim x_{R}(x)-m(x)\}\}=\sup_{l\in\Lambda}\overline{m}(\sim x_{\lambda})$ .

Thus $\overline{m}$ is upper semi-continuous. The first norm of $\overline{m}$ is the conjugate
norm of the second norm of $m$ , and hence monotone complete. (cf. [2])
Thus $\overline{m}$ is monotone complete by Theorem 2. 4.

\S 3. Reflexivitv of upper semi-continuous modulars

Now we suppose that $R$ is a universally continuous linear space
and $m$ is a monotone modular on $R$. The totality of universally con-
tinuous $linear\sim$ functionals on $R$ , which are modular bounded, is called
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the modular conjugate $s\mu|ce$ of $R$ and denoted by R. $\overline{R}$ is a normal
manifold of the modular $associ\dot{a}ted$ space $\overline{R}$ of $R$ . If $m$ is continuous,
then the second norm of $m$ also is continuous by Theorem 2. 3, and
hence $\overline{\overline{R}}=\overline{R}$ .

Theorem 3. 1. If $R$ is semi-regular and $m$ is upper semi-conbinuous, then
$m$ is reflexive, that $is$, we have for every $x\in R$

$m(x)=\sup_{\overline{x}C-\partial}\{\overline{x}(x)-\overline{m}(\overline{x})\}$

Proof. For any $0\neq\overline{a}\subset\cdot\overline{R}$ and $\nu=1,2,$ $\cdots$ , putting

$m_{\nu}(x)=\inf_{|x|=|y|+|z|}M$ax $\{m(y), 2^{\nu}|\overline{\alpha}|(|z|)\}$ for $x\in[\overline{\mathfrak{c}\iota}]R$ ,

we obtain a monotone modular $m_{\nu}$ on $[\overline{(\iota}]R$ . Indeed we see easily that
$m_{\nu}$ satisfies the all postulates except for 4). If $m_{\nu}(x)=0$ and $x\in[a]R$ ,
then we can find $0\leqq y_{\mu},$ $z_{\mu}\in R(fl=1,2, \cdots)$ such that

$|x|=y_{\mu}+z_{\mu}$ , Max $\{m(y_{1k}), 2^{\nu}|\overline{(\iota}|(z_{\mu})\}\leqq\frac{1}{2^{\mu}}$

and putting $u_{\mu}=\bigcup_{0\geqq\mu}Z_{\rho}(\mu=1,2, \cdots)$ , we have

$2^{\nu}|\overline{a}|(u_{\mu})\leqq\sum_{0\geqq\mu}\frac{1}{2^{\rho}}$ $(\mu=1,2, \cdots)$

and hence $2^{\nu}|\overline{\alpha}|(\bigcap_{\mu=1}^{\infty}u_{\mu})=0$ . This relation yields
$\mu-1r$
]$u_{\mu}\infty=0$ , that is,

$u_{\mu}\downarrow_{\mu=1}^{\infty}0$ . Thus we have $|x|-u_{\mu}\uparrow_{\mu-J}^{\infty}|x|$ and

$m(|x|-u_{\mu})\leqq m(y_{\mu})\leqq\frac{1}{2^{\mu}}$ $(\mu=1,2, \cdots)$ .
Therefore we obtain $m(x)=0$ , because $m$ is upPer semi-continuous by
assumption, and we conclude that $m_{\nu}(x)=0$ and $x\in[_{\sim}\overline{(\iota}]R$ implies $m(x)=0$ .
Consequently the postulate 4) also is satisfied.

The modular $m_{\nu}$ on $[\overline{a}]R$ is continuous for every $\nu=1,2,$ $\cdots$ , because
we have obviously

$m_{\nu}(x)\leqq 2^{\nu}|$ ct $|(|x|)$ for every $x\in[\overline{a}]R$ .
Thus the modular associated space $\tilde{R}_{\nu}$ of $[\overline{\alpha}]R$ by $m_{\nu}$ coincides with the
modular conjugate space of $[\overline{a}]R$ by $m_{\nu}$ and hence $\overline{R}_{\nu}$ is included in
the modular conjugate space $\overline{R}$ of $R$ by $\dot{m}$ , because we have obviously

$m_{\nu}(x)\leqq m(x)$ for every $x\in[a]R$ .
Therefore we have for every $x\in[\overline{\alpha}]R$
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$m_{\nu}(x)=sp\{\overline{x}(x)-\overline{m}_{\nu}(\overline{x})\}\leqq\sup_{\overline{x}\overline{x},\in^{\frac{u}{R}}\nu\in R}\{\overline{x}(x)-\overline{m}(\overline{x})\}$
,

because we have for $\overline{x}\in\overline{R}_{\nu}$

$\overline{m}(\overline{x})=\sup_{-}\{\overline{x}(x)-m(x)\}x_{\sim}^{\prime}-\ulcorner\overline{a}JR\leqq\sup_{xC[\overline{\alpha}]R}\{\overline{x}(x)-m_{\nu}(x)\}=\overline{m}_{\nu}(\overline{x})$ .
On the other hand we have

$\lim_{\nu\rightarrow\infty}m_{\nu}(x)=m(x)$ for every $x\in[a]R$ .
Because, for any $x\in[\overline{a}]R$ we can find $0\leqq y_{\nu},$ $z_{\nu}\in R(\nu=1,2, \cdots)$ such that

$|x|=y_{\nu}+z_{\nu}$ , $m(y_{\nu})\leqq m_{\nu}(x)+\frac{1}{2^{\nu}}$ , $2^{\nu}|\overline{\sigma}|(z_{\nu})\leqq m_{\nu}(x)+\frac{1}{2^{\nu}}$ .
Then putting $u_{\nu}=\bigcup_{0\geqq\nu}z_{\rho}(\nu=1,2, \cdots)$ , we conclude $u_{\nu}\downarrow\nu=1\infty 0$ and

$m(|x|-u_{\nu})\leqq m(y_{\nu})\leqq m_{\nu}(x)+.\frac{1}{2^{\nu}}\leqq m(x)+\frac{1}{2^{\nu}}$ ,

as obtained above. This relation yields $m(x)=\lim_{\nu\rightarrow\infty}m_{\nu}(x)$ . Therefore
we conclude

$m(x)\leqq\sup_{\overline{x}\in\partial}\{\overline{x}(x)-\overline{m}(\overline{x})\}$ for every $x\in[\overline{a}]R$ .
Since $R$ is semi-regular by assumption, we have $[\overline{a}]x\uparrow_{\overline{a}\in\hslash}^{\vee}x$ , and hence
we obtain furthermore

$m(x)\leqq su_{\frac{p}{R}}\overline{x}\in\{\overline{x}(x)-\overline{m}(\overline{x})\}$ for every $x\in R$ .
On the other hand it is obvious by definition

$m(x)\geqq\sup_{\overline{x}\in\hslash}\{\overline{x}(x)-\overline{m}(\overline{x})\}$ for every $x\in R$ .
Thus we conclude our assertion.

Recalling Theorem 2.4, we obtain immediately
Theorem 3. 2. If $R$ is semi-regular and $m|is$ upper semi-continuous and

monotone complete, then $R$ is reflexive and the modular ccmjugate space of $R$

by $m$ coincides with the conjugate space of $R$ .

\S 4. Semi,additive modulars

A modular $m$ on a lattice ordered linear space $R$ is said to b\’e
upper semi-additive, if $m$ is monotone and

$m(a+b)\geqq m(a)+m(b)$ for $0\leqq a,$ $b\in R$ .
Theorem 4. 1. If an upper semi-additive moclular $m$ is upper semi-
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continuous, then $m$ is lower semi-continuous, and hence semi-continuous.
Proof. For $x_{h}\downarrow\lambda\in\Lambda 0$ , $m(x_{\lambda})<+\infty(\lambda\in\Lambda)$ we have

$m(x_{\lambda})\leqq m(x_{\lambda_{0}})-m(x_{\lambda_{0}}-x_{\lambda})$ for $x_{\lambda}\leqq x_{\lambda_{0}}$ ,

because $m$ is upper semi-additive by assumption. Since
$x_{\lambda_{0}}-x_{\lambda}\uparrow_{x_{\lambda}\leqq x_{\lambda_{0}}}x_{\lambda_{0}}$

and $m$ is upper semi-continuous by assumption, we have

$\sup_{x<x}m(x_{R_{0}}-x_{R})=m(x_{\lambda_{0}})$ .
Thus we obtain $m(x_{\lambda})\downarrow\lambda\in\Lambda 0$ .

A modular $m$ on $R$ is said to be lower semi-additive, if $m$ is monotone
and

$m(ab)\leqq m(a)+m(b)$ for $0\leqq a,$ $b\in R$ .
A modular $m$ on $R$ is said to be additive, if $m$ is upper and lower

semi-additive simultaneously. Additive modulars are discussed in detail
already in [2]. When $R$ is universally continuous, if a modular $m$ on
$R$ is upper semi-continuous and

$m(a+b)=m(a)+m(b)$ for $a\leftrightarrow b=0$ ,

then $m$ is additive. (cf. [2])
Theorem 4. 2. The conjugafe modulars of the upper semi-additive modulars

are lower semi-additive, and the conjugate modulars of the lower semi-additive
modulars are upper semi-additive.

Proof. If a modular $m$ on $R$ is upper semi-additive, then for the
conjugate modular $\overline{m}$ of $m$ and the modular associated space $\overline{R}$ of $R$

we have by dePnition for $0\leqq X,y\sim\in\overline{R}$

$\overline{m}(\sim x)+\overline{m}(\tilde{y})=\sup_{x.y\in R}\{\sim x(x)+\sim y(y)-m(x)-m(y)\}$

$\geqq\sup\{\sup\{\sim x(x)+\sim y(y)\}-m(z)\}$

$0\leqq z\subseteq R\alpha.y\geqq 0z\leftarrow x+y$
,

$=\sup_{z_{-}^{\prime}R}\{\sim x\tilde{y}(z)-m(z)\}=\overline{m}(xy)$ ,

and hence $\overline{\overline{m}}$ is lower semi-additive by definition. If $m$ is lower semi-
additive, then we have by definition for $0\leqq xy\sim,$$\sim\in\overline{R}$

$\overline{m}(\sim x)+\overline{m}(\sim y)=\sup_{0\leqq x,yC- R}\{\sim x(x)+\overline{\mathfrak{Y}}\langle y)-m(x)-m(y)\}$

$\leqq\sup_{0\leqq x,y\in R}\{\sim x(x\cdot y)+\tilde{y}(x\cup y)-m(x\cdot y)\}$
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$\leqq\sup\{\sim x(z)+\sim y(z)-m(z)\}=\overline{m}(\sim x+\overline{y})$ ,
’ $z\in R$

and hence $\overline{m}$ is upper semi-additive by definition.

\S 5. Bimodulars

Let $R,$ $S$ be two lattice ordered linear spaces. A functional $M(x, y)$

$(x\in R, y\in\$S)$ is said to be a $b|imodular$ , if $M(x, y)$ is an additive upper
semi-continuous modular on $R$ for every fixed $0\neq y\in S$ ,

$M(x, |y_{1}|+|y_{2}|)=M(x, y_{J})+M(x, y_{2})$ ,

$M(x, \beta y)=|\beta|M(x, y)$ ,

and for any $x\in R$ we can find a positive number $a$ such that
$ M(ax, y)<+\infty$ for every $y\in S$ .

A bimodular $M(x, y)(x\in R, y\in S)$ is said to be finite, if
$ M(x, y)<+\infty$ for every $x\in R,$ $y\in S$ .

If $S$ is a normed space and $complete_{d}$ then putting

$m,(x)=\sup_{((y(\leqq 1}M(x, y)$ $(x\in R, y\in S)$ ,

we obtain a modular $m$ on $R$ . This modular $m$ is said to be a norm-
mdtdar of $M$ by the norm of $S$ .

Theorem 5. 1. Every norm-modular of a bimodular $M(x, y)(x\in R, y\in S)$

is lower semi-additive and upper semi-continuous.
Proof. For $0\leqq x_{1},$ $x_{2}\in R$ we have by definition

$m,(xx,)=\sup_{|(y(\leqq 1}M(x_{1}\cdot x_{\lrcorner}\supset’ y)$

$\leqq\sup_{)1y)(\leqq)}M(x_{1}, y)+\sup_{Iy|/\leqq 1}M(x_{2}, y)=m(x_{1})+m(x_{2})$ ,

because $M(x_{\iota^{\cup}}x_{2}, y)\leqq M(x_{1}, y)+M(x\underline,, y)$ . Thus the norm-modular $m$ is
lower semi-additive. For $0\leqq x_{R}\uparrow_{l\in\Lambda}x$ we have by definition

$m(x)=\sup_{)fy||\leqq 1}M(x, y)=\sup_{||y||\leqq l}\{\sup_{\lambda\in\Lambda}M(x_{\lambda}, y)\}$

$=\sup_{\lambda_{/}^{\prime}1}\{\sup_{)[y||\leqq]}M(x_{l}, y)\}=.\sup_{\lambda\in\Lambda}m(x_{l})$ .
Thus the norm-modular $m$ is upper semi-continuous by definition.

Theorem 5. 2. If a bimodular $M(x, y)(x\in R, y\in S)$ is finite, then the norm-
$mod\iota dar$ of $M$ is finite.

Proof. For each $x\in R$ , since $ M(x, y)<+\infty$ by assumption, putting
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$x(y)=M(x, y^{+})-M(x, y^{-})$ $(y\in S)$

we obtain a positive linear functional $x$ on $S$. Since the norm of $S$ is
complete by assumption, this linear functional $x$ on $S$ is norm bounded,
and hence

$supM(x, y)<+\infty$ for every $x\in R$ .
Thus the norm-modular of $M$ is finite by definition.

For an additive complete modular $m_{s}$ on $S$ , putting

$m(x)=\sup_{y\in}\{M(x, y)-m_{S}(y)\}$ $(x\in R)$

we obtain a monotone modular $m$ on $R$. This modular $m$ on $R$ is said
to be the $d\sigma uble- modul\iota\iota r$ of $M$ by $m_{s}$ .

Theorem 5. 3. Every double-mo6lular of a bimodular $M(x, y)(x\in R, y\in S)$

is upper semi-additive and semi-continuous.
Proof. For $0\leqq x_{1},$ $x_{\wedge},\in R$ we have by definition

$m(x_{1}+x_{2})=\sup_{y\in S}\{M(x_{1}+x_{2}, y)-m_{S}(y)\}$

$\geqq\sup_{y\in.S}\{M(\backslash x_{1},\dot{y})+M(x_{2}, y)-m_{S}(y)\}$

$\geqq\sup\{M(x_{1}, y_{1})+M(x_{2}, y_{2})-m_{s}(y_{1}\cup y_{2})\}0\leqq y_{1},y_{2}\in S$

$\geqq\sup\{M(x_{1}, y_{1})+M(x_{2}, y_{2})-m_{s}(y_{1})-m_{s}(y,\lrcorner)\}0\leqq y_{1\prime}y_{2}\in s=m(x_{1})-\dagger- m(x_{\backslash })$ ,

because
$M(x_{1}+x_{2}, y)\geqq M(x_{1}, y)+M(x_{2}, y)$ ,

$m_{s}(y_{1}\cdot y_{2})\leqq m_{S}(y_{1})+m_{S}(y_{2})$ .
Thus the double-modular $m$ is upper semi-additive. For $0\leqq x_{l}\uparrow\lambda\in\Lambda x$

we have by definition

$m(x)=\sup_{y\mathfrak{c}_{-}s}\{\sup_{l\in\Lambda}\{M(x_{l}, y)-m_{S}(y)\}\}=\sup_{l\in\Lambda}m(x_{l})$ .
Thus $m$ is upper semi-continuous. Recalling Theorem 4.1, we conclude
therefore that $m$ is semi-continuous.

Theorem 5. 4. Let $m_{S}$ be a complete, additive modular on S. For a bimo-
dular $M(x, y)(x\in R, y\in S)$ , denoting by $m_{d}$ the double-modular of $M$ by $m_{s}$ and
by $m_{n}$ the norm-modular of $M$ by the first norm of $m_{S}$, then we have

$m_{a}(x)\leqq m_{n}(x)$ for $m_{n}(x)\leqq 1$ ,

$m_{d}(x)\geqq m_{n}(x)$ for $m_{n}(x)\geqq 1$ ,
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and the second norm of $m_{d}$ coincides with that of $m_{n}$ .
Proof. If $ M(x, y)<+\infty$ for every $y\in S$ , then putting

$x(y)=M(x, y^{+})-M(x, y^{-})$ $(y\in S)$

we obtain a positive linear functional $x$ on $S$. Since the modular $m_{s}$

is complete by assumption, this linear functional $x$ is modular bounded.
Thus we have by definition

$m_{d}(x)=\overline{m}_{S}(x)$ , $m_{n}(x)=\Vert|x\Vert|$

for the conjugate modular $\overline{m}_{S}$ of $m_{s}$ and the second norm $\Vert|x\Vert|$ of. $\overline{m}_{s}$ .
If $ M(x, y)=+\infty$ for some $y\in S$ , then we have obviously by definition

$ m_{d}(x)=m_{n}(x)=+\infty$ .
Therefore we conclude that $m_{n}(x)\leqq 1$ implies $m_{d}(x)\leqq m_{n}(x)$ , and that
$m_{n}(x)\geqq 1$ implies $m_{d}(x)\geqq m_{n}(x)$ . Consequently the second norm of $m_{d}$

coincides with that of $m_{n}$ .

\S 6. Proper bimodular

Let $m$ be an additive upper semi-continuous modular on a univer-
sally continuous semi-ordered linear space $R$ , and $\mathfrak{E}$ the proper space
of $R$ . We denote by $D_{m}$ the totality of such dilatators $T$ in $R$ that
for any $x\in R$ we can find a positive number $a$ for which

$\int_{\mathfrak{G}}(\frac{|^{\prime}T|}{1}$ $o)m(ad\mathfrak{p}_{X})<+\infty$

Then, putting

$M_{m}(x, T)=\int_{t\mathfrak{H}}(\frac{|T|}{1}$ , $p)m(dp_{X})$ $(x\in R, T\in D_{m})$

we obtain a bimodular $M_{m}$ . Here we see easily that $D_{m}$ is a semi-
normal manifold of the dilatator space and $1\in D_{th}$ , because $M_{m}(x, 1)=m(x)$.
This bimodular $M_{m}$ is said to be the proper bimodular of $m$ .

For a semi-normal manifold $D$ of $D_{m}$ containing 1, and for a com-
plete norm $||T||(T\in D)$ on $D$ , putting

$m_{n}(x)=\sup_{/)T||\leqq 1,T\subseteq D}.M_{m}(x, T)$ $(x\in R)$ ,

we obtain a norm-modular $m_{n}$ of $M_{m}$ .
Theorem 6. 1. If the modular $m$ on $R$ is monotme camplete, then every

norm-modular of the proper bimodular $M_{m}$ of $m$ also is monotOne complete.
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Proof. If $0\leqq x_{l}\uparrow_{l\in\Lambda}$ , $\sup_{R\in\Lambda}m_{n}(x_{\lambda})<+\infty$ , then we have by definition

$\sup_{\lambda\in\Lambda}m(x_{l})=\sup_{l\in\Lambda}M_{m}(x_{l}, 1)<+\infty$

and hence $x_{\lambda}(\lambda\in\Lambda)$ is bounded, because $m$ is monotone complete by
assumption. Therefore the norm-modular $m_{n}$ also is monotone complete.

For a complete, additive modular $m_{D}(T)(T\in D)$ on $D$ , putting

$m_{d}(x)=\sup_{T\in D}\{M_{m}(x, T)-m_{D}(T)\}$ $(x\in R)$ ,

we obtain a double-modular $m_{d}$ of $M_{m}$ .
Theorem 6. 2. Every double-moc ular of the proper bimo(lular $M_{m}$ of $m$

also is additive.
Proof. If $ M_{m}(x, T)<+\infty$ for every $T\in D$ , then, putting

$x(T)=\int_{\mathfrak{E}}(\frac{T}{1}$ , $\mathfrak{v})m(d\mathfrak{p}x)$ $(T\in D)$ ,

we obtain a positive linear functional $x(T)(T\in D)$ on $D$ . Furthermore if
$x_{\cap}y=0,$ $M_{m}(x, T)<+\infty,$ $ M_{m}(y, T)<+\infty$ for every $T\in D$ ,

then we also have $x\leftrightarrow y=0$ considering both $x$ and $y$ linear functionals
on $D$ , and hence

$\overline{m}_{D}(x+y)=\overline{m}_{D}(x)+\overline{m}_{D}(y)$

for the conjugate modular $\overline{m}_{D}$ of $m_{D}$ , because $m_{D}$ is additive by assump-
tion. On the other hand we have by definition

$m_{d}(x)=.\dagger+\infty\overline{m}_{D}(x)$

if $ M_{m}(x, 2^{v})<+’\infty$ for every $T\in D$ ,

if $ M_{m}(x, T)=+\infty$ for some $T\in D$ .
Thus we conclude that $x_{\cap}y=0$ implies $m_{cl}(x+y)=m_{d}(x)+m_{d}(y)$ . There-
fore the double-modular $m_{d}$ is additive. (cf. [2])

Theorem 6. 3. If the modular $mmR$ is mmotme complete, then every
double-modular of the proper bimodular $M_{m}$ of $m$ also is mmotone complete.

Proof. For an additive complete modular $m_{D}$ on $D$ , we can find
a positive number $a$ such that $ m_{D}(a)<+\infty$ considering ct a dilatator in
$R$. If $0\leqq x_{l}\uparrow_{l\in\Lambda}$ and $\sup_{\lambda\in}m_{d}(x_{l})<+\infty$ , then we have

$\sup_{\lambda\in\Lambda}m(x_{\lambda})=\frac{1}{a}\sup_{l\in 4}M_{m}(x_{l}, a)\leqq\frac{1}{a}\{\sup_{\lambda\epsilon.4}m_{d}(x_{\lambda})+m_{D}(a)\}<+\infty$ ,

and hence $x_{\lambda}(\lambda\in\Lambda)$ is bounded, because $m$ is monotone complete by
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assumption. Therefore the double-modular $m_{d}$ also is monotone com-
plete by definition.
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