FOURIER SERIES IX: STRONG SUMMABILITY
| OF THE DERIVED FOURIER SERIES.

By

Shin-ichi IZUMI and Masakiti KINUKAWA

- L Introduction. Let f(x) be é,n integrable and periodic function
with period 27 and its Fourier series and its conjugate be

(1.1) ay/2 + ni‘,;] (a, cos nx+b, sinnr) = né) A, (x),
(1. 2) né (b, cosnx—a, sin ﬁx) = ni;: B, (x) .
Further, let their termwise derived series be
(1. 3) ,é n (b, cos nx—a,, sin nxr) = n}?‘l nB, (x) ,
(1,° 4) —53] n (a, cos nx+b, sin nx) = — g}l nd,, ().

A series 'icn is said to be summable H, or strongly summable to

n=1
s, if
m
> [s,—s|* = o(m) (m —>o0) ,
n=0
n
where s, =>¢; .
k=0

B. N. Prasap and U. N. Sineu [7] have found a criteria for H, sum-
mability of the derived Fourier series which reads as follows:

Theorem A. If f(t) is a continuous function of bounded variation and
if for some a>1,

(1.5) G @) :Y]dg(u)l :o{t/(log%)a}, as t—0,

where 9 (w) = g.(uw)=f (x+u)—f@@—u)—2us,
then :

2 e @)—s| = o(m)



146 ' S. Izumi and M. Kinukowa

where z,(x) is the n-th partial sum of the series (1.3). That is, the derived
Fourier series of f (x) ts summable H, to s at a point x. o
One of us [6] (cf. [4]) generalized Theorem A in the following form :
Theorem 1. Undef the assumption of Theorem A, we have

1. 6) B i‘] | 2n(@)—8|* = o(m) for k>0.

In the case 0<k<2“ of Theorem 1, we can generalize in the
following form [4]:

Theorem 2. If f(t) is a continuous function of bounded variation and
if for some B>1/2

¢ ‘ 1\8 ,
1.7 j dgw)| = O It ] (1og = } : t—0,
a.7) ldg()| =0t [ (log ) as 0
then the derived Fourier series of f (x) is summable H, to s at a point x, that
%S, '

(1. 8) é ltn(@)—s]* =0(m) .

This theorem is the analogue of F. T. Wanc’s theorem for Fourier
series ([8]). As the analogue of another theorem due to G. H. HAarDY
and J. E. Lirrr.ewoop ([3], ef. [6]), we have proved [4]

Theorem 3. If f(t) is a continuous function of bounded variation such

that
[ 1dg@1 = o),
then ‘
3 [z, @)—8 > = o (m log m) .
n=1
.~ We have also the following theorem.
Theorem 4. If f(t) is a continuous function of bounded variation such
that
(2 |dg (w)]* |
(1.9) j <

then (1.8) holds.
The integral in (1.9) is taken in the Hellinger sense, that is, it
is defined as the limit of :
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I g (u,,)—-g (uz‘—l),g
Ug (Us—Uy—y)

Theorem 5. If f(t) is a continuous function of bounded variation such
that ' ’

L ["iage)—o0, (v>u, v—0),
V—U Y,

then (1.8) holds.
It is known that f(¢) is differentiable at t=x« when and only when

(f(u)—f(v))/(u—v)—m
as ulxz, v|x. Then we get

Theorem 6. If f(t) is a continuous function of bounded vamatzon and
it is monotone in a neighbourhood of t=x and s differentiable at t—=2x, then
the Fourier series of f(t) is strongly summable H, at t=2x.

We have the following generalizations of the Prasap-SineH theorem
concerning the series (1.4).

Theorem 7. If f(t) is a continuous function of bowwled variation which
is differentiable at t—=x and if for some a>1

. z - _ [ _l_ a] R
H(t)Njoldh(u)l olt/<log t)J, as t—0,
where
h(w) = h,(w) = f(@+u)+f(@—u)—2f @),
then

3) | 2u(@)—Ho(@) |* = 0 (m)

for any k>0, where T,(x) is the n-th partial vsum of the series (1.4) and
1 (= s &
H, (x —_— h.(t) cosec® ——dt .
@=——|" h)cosec -

1/m

- Theorem 8. If f(t) is a continuous function of bounded variation which
is differentiable at t=x and if for some p>1/2

e ’ — I _l_ B] —_
H@) L}dh(u)] olt/<logt>J, as t—0,
then

) |%u@)— Hoa ()| = 0(m) .

n=1
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Proof of sketch of Theorem 1 and Theorem 2 is given in [4] and
[6]. We give here their complete proof in §2 and §3. Theorem 3 is
stated in [4], but the proof is not given there, so that we prove it in
§4. In the paragraphs §5-$8, we prove the remaining theorems.

2. Proof of Theorem 1.P
For the proof of Theorem 1, we need the following lemma.
Lemma. If f(x) be a continuous function of bounded variation and a,,
b, are its Fourier coefficients, then
3 (Ina,|*+|nb,|%) = o(m),
n=1
where k=1.
For, by the WieNErR theorem (cf. Zvemunp [9], p. 221), we have
‘ E=1n/a1+b‘i = o(m).
Hence ‘
Nnla, =o@m), nlb.l=om).
Without loss of generality, we may assume that nla,. <1, »|b,| <1,
since the function is of bounded variation. Thus we get
b2 |na,|* < )2 |na, | = o(m)
n=1 n=1
and
2 | nb, |t < 3Y | nb,| = o(m),
n=1 n=1

which complete the proof of the lemma.
We shall now prove Theorem 1. We have

1 f{ d sin(n+1/2)(x— u)]
&b n@= j TN % sin@—wuz J°
— __1_ § [ d sin(m+1/2)@—wu) 4
2n f( )ldu sin (x—w)/2 du

_ 1 ¢(r d sin (n+1/2)¢
=—5-) {f(x+t) Jx— t)} sint/2 dt .

By the integration by parts,

. (@) = 1 (* sin(n+1/2)¢
" 27 J, sin ¢/2

d{ fl@+t—f(z—t)} .

"Hence we have

1) Cf. HARDY-LITTLEWOOD [2]
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2.2) z.@—s :J_j'“ Sinm+ U2t g f @+ 6)— f (@—t)—2ts)

2 sin ¢/2
_ 1 sm(n+1/2)t do (¢
27 J, n¢/2 9@
1 (* sinnt j
= +-—— tdg (t
27 J, tant/2 a9 @) cosntdg (¢) .
For any €>0, there is a ¢ such that
z 1 a ’ :
d; t/(log—) , f <t .
ng(u)|<8/<ogt> or 0<t<d
Let us put |
. 9w = g:(W)+9:(w) ,
where ,
9:(w) = g(u) in (0, 8/2),
=0 7 in (5, n)

and g;(w) is linear in (6/2, ) and is continuous in (0, .7r) Hence g, (w) is
also a continuous function of bounded var1a.t1on which vanishes in the
interval (0, 8/2). So we have

1 j“ sin nt
2 (X)—8 = dg, (t
o (®)—s 27 J, tant/2 9:®)

1 (% sinnt g ¢ 4 1 rcosntdg(t)
2 0

2z J, tant/2
:P1L+Qn+Rn

Since Q, and R, are n times of the n-th Fourier coefficients of con-
tinuous functions of bounded variation, respectively, we have, by
Lemma,

Q.5 =o(m) and émn\k — o(m) .

n=1

However

P ]
P, 1 (3?2 sinmnt dg(t)+C 8  gin nt dt

27 J, tant/2 2z Jy,. tant/2
| 1 (%7 sinnt
= dg ®)+o(1
2r JO tan t/2 g@)+o(l)
=8,+o0(1), ' (a8 m—o0).

Hence, it is sufficient to show that
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= @1 |S,.1* = o(m) .
For this purpose we set
C, = Isnlk—] ‘ SgnSn ’

4. = 2 e, sinnt,
=1

=2 leal -
Then

m

J
RAUIIE P

Using these formulas, we have
2nT% = 27 31| S, " - S, (sgn S,)

3/ gin nt
= 2 S —dg (¢
i 2 ¢ n?l o tant/2 ®

:j "4, (®) cot /2 dg(t) = j”m+r’2=11+12,
0 - 0 1/m N

say, where

(L= mr, [Mldg@) < e

and
1L =| [ dn@ cottzdg )|
3/2
<p, j”mcot t/2 [ dg(t)|
<r, {[cot £ G(t)] +_j cosec’ t/2 G (£) dt}
where

¢ = | 1dg)| .

Hence we get?
\I,| < el +el,, jw__d_t_«
: ym t(log 1/t)“

1) In the following, we denote by A an absolute constant, which may be different
in each occurences.

< Ael’,,
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Collecting above results, we get
T: < Ael’, .
However, by the Holder inequality, we see that, for k>1,
m m 1/k’ N
Fo= 31805 < (2I81F) - m
. n=1 n=1t .
= T plt 1/k+1/K =1).
Hence we have
Tk < AemV*TH* |
that is, Tk /m < Ake*,

Thus we have

. TE
lim sup —= < A%e* .
m >oe m

Since e is arbitrary, we get the required result.

3. Proof of Theorem 2. We can replace O in (1.7) by o, and then
for any 0<e<1, there is a § such that

| G(t):j’ |dg(u)[<st/(log—1—>8, 0<t<0).

Let us put
g ) = g,(w)+g.(w) ,
where |
9:(uw) = g(u) in (0,48/2),
=0 in (6, 7

and g,(u) is linear in (§/2,8) and is continuous in (0,7). Hence g.() is
also a continuous function of bounded variation which vanishes in the
interval (0, 6/2).

By the argument in §2, we have

1 (* sinnt 1 (* sinnt 1 (~
2 (X)—8 = : dg, )+ d2t+—sc0sntdt
w@=8=5"), tantz 0O 20 ), tanee P07 20 ), 9@
—P,+Q,+R,.

It is sufficient to show that

AP =om),
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since, as in §2,

[Q |?=o0o(m) and é‘; | R, [*=0(m) .

u[_\As

Since

o= L[ sinnt_ g o, C [* sinu
27 J, tant/2 2r J 5 tant/2

1 rﬁ/‘-’ sinmt
— H+o(l),
o7 ), tangz WD

we have

ZIP I“—

/2 (32 i
3 jal dg(w) . dg() 2 sin nu - sin nv + o (m)

tanu/2 tanv/2 .-

1/m (*1]/m ]/m 8/2 3/2 r1/m d/2 8/::1 '
{J R T e A B W B R
4n* 1/m 1/m"Yo 1m llmI

I,+Ig+I3+I4+0(m) ,

I

where

1/m 1/m m
ILsgAj adg(wlj |dg@)] (B ) < Aem

| L] <Aj 1dg<u>|jf/”: 1dg@]. (Bm)<gm [**1dg )]

Aem_ ([[GE) T, (°7 GO 4.1
— (log m)® l[ v ] +J1/m v° dvl

Aem -
< m {0(1)+0 (log m)~#} < Aem

and
| I,] < Aem .

We next consider the remaining part I,: We have

I :'jij dgw) dg) sin(m+1/2)(u—v)
Y ) e ym tanw/2 tanv/2  2sin (@—v) /2

_}_J'a’zja’g dg(w) dg®) sin(m+1/2)wu+v) — J+L
ymd ym tan w/2 tanv/2 - 2sin (u+v)/2 ’

where
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2

L) 5 4 190001 (** A5 @ - g (o y-s [** 1d00)
1/m 1/m

Jim V(UAV) v
— Allogmy-8 [[G@T" L[ G® 4,1
A(Ogm) ll: ,02 ]l/m+jl/m ‘“,03 vj

< A (log my-*# [ ™ M dv |
- (ogm) l(logm)”3+ ej,,m v (log 1/0)8}

Qa/m)d 372 d
< Aem(log m)'~28 + Ae (1 -8 f + } e T
< Aem (log m) e (logm) l»[ J‘(]/m)AJ v*(log 1/v)8

I/m
0<4d<l),

’ a/my4 ' 3/2
< Aem(log m)'~28 + Ae (log m)' %8 j iﬁi + Ae (logm)~* y d?:
' ym U amyd U

< Aem (logm)' -8 + Aem (log m)'~28 + Aem4 (logm)' 8 < Aem .
It is then sufficint to show that |J| < Aem. We have

oF :Jwr’z dg(w) dg@®) . sin(@m+1/2)(u—v)
ymY 1ym tanu/2 tanv/2  sini(u—v)/2

:r’z dgw) (3 dg() sin(m+1/2)wu—v)
ym tanwu/2J, tanv/2 sin (u—wv)/2

. jw dg () (* dg() sin@m+1/2)@—v) _ 7, ;
ym tanu/2 J,,, tanv/2 sin (u—v)/2 L

say. Let us first estimate J,, We write

_ (" dg@) (™, () dg@) sin(m+1/2)@—v) _
Jtl S]/m tan /2 ljl +j2u { v  sin (w—v)/2 Ju+Jis .

u

Then

IJ,.zlgAj” ldg;wl jf” 4dgv@>l ,
1/m o 3

where the inner integral becomes, by integration/by parts,

17 Ll [GWT"5[* G0 g,
v o U

2u v v°

2% 2u
< Ae + A < “Ae .
— u(log 1/u)® 0 (log 1/6)2 — u(log 1/u)®

Hence




154 Co S. Izumi and M. Kinukowao

[Tl < As‘jw _Jdg (w)|
= m W (log 1/u)® )
_ G (u) 31 o G(u)
A [ w’ (log 1/u)® ] +Asj ym W (log 1/u)®

L, 3/2 du ' ’
<Adet ™ 4 ge I < Ae'm .
=% log my® I (log Tupe = 5™

Concerning J,;,, we have

TN j }'da(v) sin (m +1/2) (u—v)
! u wel/m v sin (u—v)/2

— J111+J112 s -

where
| Jju I < AmJBIZ 'dg (u){ j‘u+1/m M

1/m 173 v

" r”l o ) (S0 [ Gw) )

\L v 1o u v

3/2 Idg(u)l f 1
éAEmLm v | {log1l/(u+1/m)}® N A
1 usiim gy |
+ {log 1/(u+1/m)}* f v

(3 | dg (w)|
= Aem j,,m 2 {log 1/(u+ 1/m)}®

: 32 |dg (u)]
< A R T Sl N
e | i U (10g 1/20)°

% Aem e ——“——1 | 8/2+ ejm i | du ]“ << Ae"m
= { [ (log 1/uy® :Ix um u(log Ljupe § —

and

| e | <j8’° Idgu(u)l s szlg(v;l)
1/m w+1fm

1 1,1 -——1—>, we obtain

v(v—u) U \v—u v

[ o <j3" |dg ()] " ldg(vﬂ +j3" |dg @] dg @)]

1/m w+1/m w1/ m vP—U

Since

- J112. + Jll., ’

where
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) - 3/2 Idg(u)l [ v 1 :|2u
=T < A
|| = 1] = 8L/m w l[v u (log1/v)®

u+1/ m
2% 'U‘ 1
+§ - dv}
~ uriim (log 1/0)%  (v—u)
SAsjm ldg@)| __mu  — geep,
- ym U (log 1/w)® —

Hence we have proved that
| Ji| < Aem .
Finally we consider the remaining part

- jw dg(w) (* _dg() sin(m+1/2)u—v)

um tanu/2 Jy,,, tanv/2 ~ sin (u—v)/2
Since 1 1 <L + 1 ) , we have
v (Uu—v) U \ v u—v/

IJ‘,|<Aja/°ldg(”)lj I g()l

1/m

| sin (m+1/2)(u—v) |
v) '

:AF/’ldg(u)[ dg ()] [s1n(m+1/2)(u v)|

yym U U—v

N Arp ldg(u)l ldgv(v)! sin (- 1/2) ()| = Ty T
m ) o

Say, Where _ )

gl _ldg@w)|
Ju = A’”J . f | dg @)] <Aem L/m ok a7

< Aem, :
(cf. Ju), and
Jzngjwldg(u)l[ |dg ()|

1/m v

32 |dg (u)) 1—g (%7 |dg(u)]
éAEL,m u* (log 1/u)® +Ae (log m)* L'/m u

R . _ , (1/m du
= Ae’m+ A€’(lo -8 {—m-*— +J —
' : (log m) (log m)® ym  wW(log 1lju)®
j‘w du 1
) (1/my4 u* (log 1/u)® J

< Ae'm+ Ae?(log my-8 [ ™ " -t m®
=< Ae’m e’ (log m) l(IOgm)B+(10gm)“+mI

, 0<d<xl),

< Ag'm .
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Thus we have , .
]Jz,] = Aem .

Collecting above estimations, 'We get

lim sup_Z] | P, ]2<Ae ,

which completes the proof of Theorem 2.

4. Proof of Theorem 3". ‘
We see that the assumption of Theorem 3

@y  Go=law =00
implies that | | -
© ldg®| _ -
4.2) | jun_—t_« — o(log n) |
and \ . |
© |dg®)| _ |
(4 3) , j] /nT =o0(n).

By integration by parts, we have

[ lase) :[G-(t) : ] [ G<t> dt
1/

n t-' 1/ n

| _o{[l/tlml+o{j dt}__o(n), | -

which shows (4.2). ,(4' 3) is similarly proved.
: For the proof of Theorem 3, we have

5 — sin (n+1/2)¢ sin (n+1/2)u
B lem—sl= 3 [T HRE P g <>j dg ()
_ 1 & (* sinnt , sin nu
T 4n*am1l, tant/2 )J dg(w)
1 T sinnt
+ =
o nZ_ln(b cos nx—a,, sin nx)  tane2 dg (t)
1

+ vy Z_,‘ n’ (b, cosnx—a, sinnx)y+o(l)
n=1 .

=J+K+L+o(1),

1) Cf. T. KAwWATA [56].



Fourier Series IX: Strong Summability of the Derived Fourier Series 157

where, by Lemma,

LIS Bn @ +5) = o(m)
and

lKléén(lanHlb I)If ldg(t)r+j” M}

Yin

— Ofén(mnlﬂbn[)logn} = 0{logm§1n(la;l+lbni)

e, s/

= o(m log m) .
Hence it is sufficient for the proof to show that

m T L
4y =3 " Smn g (t)rM dg () = o(m logm) .
n=1J, tant/2 o tan u/2
For this purpose, we have

An*J :J dg(®) (*_dg@) 3\ sin nt sin nu
tant/2 J, tanu/2 »=1

1/m (*1/m 1/m T T
:j S +j j +j Jr +s j = Jy+JotTs+ Ty,
(i} 0 0 1/m 1/mJ 0 1/m J1/m

where

| 1om 1m 4 m
I =["1dg @1 | " 1dg @)l (2 5) = otmime) = o m),
7 éj‘]/mldg\(t)ljm Idg(u)l <i: > = o(m*log m/m) = o(mlogm),

{mg“'“wj%@ww

1/m

ﬁMs

) = o(m log m)
and

Ji = r dg(® (* _dg( > [cos n(u —t)—cos n (u+t)]
1m tan t/2 1m tanu/z n=1

_ J"‘” dg (t) j“ dg (uw) sinm(u—t)
ym tant/2 J,,, tanu/2 sin(u—t)/2

4 r dg (1) V dg (w) sinm (u—t)
<2 tant/2 J,,, tanu/2 sin(u—t)/2

__r dg(®) (* dgw) sinmu+t) _ = TatTat T
um tant/2 J,,,, tanu/2 sin (u+t)/2 o
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We consider first J,,. We have

_ (" _dg @ ) ) 1 sin m (u—t)
Ja= [T 299 { | + ; d
ym tant/2 lu—2] <1/2m J‘u_“;l,m Jtanu/2 sin (u—t)/2 g(u)

= J;1+J;2 ,
where S ’
|J4,|<Amj“’ Idg(t)l yl | Idg;w!
wu—t]<1/2m
e ldg(t)l i |dg )|
mj j‘t 1/29n U
_ Amjm dg(t)] {G(t+1/2m)_G(t——'1/2m)]
t+1/2m t—1/2m |
+Amf ldg(t”jwm G gy
t—1[2m u
. f |dg ()] t+1/2m
= o(m log m)+ O mj p log —1/2m J
= o(m]og m)—l—O{ij,Lgt@l—} = o(m logm) ,
since
1 < t+12m g for 1/m<t<nr/2,
t—1/2m =r=
and |

| T | gAJ“”ldg(t)lS“ ldg @) Ar’“ Idg @)1 j‘ 1| dg (w)]

1m t try2m U 3/2m 4 ym  UE—u)

= A {J411+J412}- .

Integrating by parts, we get

_(*Pldg®I G T° -, (" ldg®)| G (w) (2u—*t)
o = jl/m t [u(u t):‘t+1/2m+ j1/m. jtﬂ/:m w? (u—1t)* du

!y“’ 1dg<t>11+ mr” dg(t)|1+ofj“’ ldg(t)(j du )
i

1/m;t7(k77—? t+1/2m (u t)z I

fr/ dg(t)l}+o(mlogm)+0 fmr/ ldg ()]

= ¢ (mlog m)

|
J

and we have Similarly |
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o= r/e Idg(t)l[ G (w) ]’-’/2””+J' dg(t)| r 1 gy 2
3/2m

yam b uE—u)lym w(E—uy
— ol (Pldg@® 1, f (" 1dg®)] "”ldg(t)l =i du
OlmL,.zm B l[q/mt(t——-l/m)l U om \m u(t—u)}

| :o(mlogm)+0< jrw |d9'(t) ij

3/2m

>_[10g w ]

t—U _{i/m f

o(mlog m)

3/2m

_—_o(mlogm)+o(mlogm)+0{Ing[ ldgt( I}
v 3/2mn )

Hence we get ,
Ju = o(mlogm) .

The circumstances for the remalnmg parts J,. and J, are very
simple. We have namely,

] = ASI dg(t)l j Idgu(u)l = o(logm),
/2

1/m

and

| T |<AS |dg<t>|§ L9001 10g m [ |dig<u>1)

ym WU+ t) Jim
= o(m log m) .
Thus we get Theorem 3.

5. Proof of Theorem 4. Since f(¢) is a continuous function of
bounded variation, it is sufficient to prove (1.8), replaced z,(x) by

1t/ d  sinn@—u)
@)= 3 dx 2tan (x—u)/2 )f(u) du .

We have

¥y _o— 1 (*_sinnt
(@) —e j 2tangz PO

We shall prove that
(5.1) T (@ @—srr —o(1/<1 M) 11,

from Wh1ch we get easily”

1) It follows from the inequality (valid for any p,=0) »
$1p, = (1=1m) " 3p, (1—1/m)" =4 Dp, (1-Um)", m=2.
Cf. O. SzAsz [10]. '
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2 e @—sl = o(m) .

The left side of (5.1) is

Sk s 12 .05 - sinntsinnu
5. 2 *(x)—s)Fr* = " j
(5.2) ,§1(T (@) =) 7’ Z—" ‘ o 2tant/2-2 tanwu/2

_ 1 r‘ [“ dg (u) dg ()

dg (u) dg (t)

. 5 r™ sin nt sin nu)
7t Jdy )y 2tanu/2 2tanit/2 El

— ;2 jo fP(u, t,7) dg (w) dg () -

Then
: 1
P(u,t,r) = s ts
b T) = S an w2 2tant/2 27 sin nt sin
dr(l—rd) cos /2 cos u/2 |
® [1—2rcos(u+t)+7*] [1—2r cos (u—t) +7°]

>0 (O<t<n, O<u<m, 0<r<l).

The right side integral of (5.2) is majorated by®
5.3) rrp(u,t,r) L”%glﬁdu

11 |dg@®P* ("
thant/Z dt j 2tanu/2(2r s1nntsmnu)

_:q 1 |dg@®)*, =
2t

— ™ sin nt
ant/2  dt 27‘»‘2? m

:_Frj 1 |dg(,t>12}
27~ Jo (1—re?)2tant/2 dt ’

The integral may be written as

(5.4) 5:,_ " ff_r: o( 1—1—7' fﬁ lof:gdgzt)]2> '

1) For, the inte_gral is the limit of
DN Plus, ts, )| g we)—g (us-1)|| g (Es)—g -]

=322 '/P(u?b tshr lg(://b’:zz u,jt] ] ' 'l/ ti—tj-1

s 19t —gi-1)| ,——
/P(u1; tj) ’r) '/Ej—t_y_.; '/u Ui-1

= BN Plus, 1y, 7) 100l

which tends to the integral (5. 3).

Us—Wi—1)
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Since the relation (1.8) depends only on the local property of f ) at
t=x, we can suppose, from the begining, that f(#)=0 for |x—t|>¢, and
then it may be supposed that the integral of (5.4) in the right side
is sufficiently small, by the condition (1.9). Thus we have proved (5.1).

6. Proof of Theorem 5. From (5.2), it is sufficient to prove that

T2 o2 ) (1_7‘)2| dg(u)[ ]dg(v)[ : _ N
¢y j-m»j-m [(A—rf+ (w—of] [1—7)] + (u+v)] o) (r11).

By the symmetry, it suffices to consider the integral

T/2 T/2
j dug dv .
Let D, be the set
0<u<nr, 2:'(1— r)<v w<2¢(1—7),

contalned in the triangle 0<u<n/2, u<v<m/2.
The integral (6.1) on D, is less than

[ 'dg(u)l ldCI('U)l |dg(u)| LITE. LI
jj 7(]( I)[(l ,r) +u] 322\1‘: b [(1 r) +u]ju+wk ‘(l—vﬁldg (v)l

<17, (™" !dg(uM] (-

2" l-/“o (1—7‘)2—}—%‘-’] 21c 10 j +J Ik+JIc7
where '

=1 of 1 7 !

L 21 V17 L | dg (u)lj

and

1 ! 1 j‘l-r
J. =
LT R o

o being uniform in 4. Thus, summing up above estimations, we get
(6.1). Thus the theorem is proved. ’

0 {(i—r)r % jjl dg (u)]}

I—-r

7. Proof of Theorem 7. As usual if we put
D* @) = (L—cos nt)/2tant/2 ,
then

(7.1) %, () = j S ()

d
) &
— i j f(u) g_ [—% sin fn(u-—x)] du

T

D (u—=x) du

4=I(n)+J(n).
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We easily see that

J(m) = — —%« (na,, cos nx + nb, sinnx) .

Hence we have, by the lemma,

.2 RS AD (na,*+nb]Y) = om).
For the first part of (7.1), we have, for n<m,
1 (% d ma
T = — _n_[ £-Dx ) (f@+t)+ f @—1)} dt

— _ Lj'“ D*@®) dh (@)

1 I 1/m T _
__1 [ +j } — I,m)+ Ln) .
T l 0 1/m
By the assumption, we have
o y
0

L =0{["wytidne) = 0 [nf " an@)1} = 0w

0 .
and
L= — 1 [ cot L any+-L j“ cot L cos nt dh(?)
- 27 Jim 2 27 Jim 2
1 t T 1 ( 1 t
== leot L h(t)| ——| — 2 b
5 [eo > ()l/m 5 d cosec > h(t) dt
, +—1—r cott cosntdh(t) = G, +H,+ Ly,
272' Y 1/m 2
where
1 1 1
m — T T t— —_— ) = ’
G 7 co 2m < ) o)

for h(t)/t—0 with ¢, as f’(x) exists.
Collecting above results, we get

z2,(®)—H,, = L,,+J+0(1) .
By virtue of (7.2), it is sufficient to show that

illen!k = 0(m) .

For any &>0, there is a & such that
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j ahw) <<t/ (log %) , (0<t<3) .
Let us put ’
h(u) = by (u)+h,(w) ,
where
hi(w) = h(u) in (0,4/2),
=0 in (5, #)

and h,(u) is linear in (3/2,8) and is continuous in (0,7). Hence h, (u) is
also a continuous function of bounded varlatlon which vanishes in (0, §/2).
So we have

1 (" t
L = =
mn (T) 5 jllmcot 5 cos ntdh (t)

:27r

_P+Q

Since @, is n times of the n—th Fourier coefficient of a eontlnuous func-
tion of bounded variation, we have, by Lemma,

1 cot —;—— cos nt dh, () +——j cot —;—cosntdh ()

20t =o(m) .

However ‘
— 1 3/2 A
P, = _— cot —cosntdh(t)+o(1)
2r Jym 2
= S,+o0(1).

Hence it s'ufﬁ_ces to show that
= D ISt =o(m).
n=1

Similarly as in the proof of Theorem 1, we put

m

= |S,.|*'sgn S, , Zm(t) = > ¢, cosnt,

and
rm:aIEnl-

Then we have
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— m mo /2
Tt = 2NeS,=2 cn-—l—r cot—t—cosntdh(t)
Cm=1 =1 2r 2 :
= -zln— (‘j: (é C,, COS nt) cot l—dh )
a2 ‘
=1 (*" 1, @ cot _—dh ® .
272' J]/m

Hence

T;<FJ cot——]dh(t)l—o(rm)wff [ g )

l m € (log 1/8)° J
= 0(1"',,,)+0(Tf,,{" m''*) .
Thus we get
T =o(m),

which is the required.

8. Proof of Theorem 8. As in the proof of Theorem 7, it is
sufficient to show that

Sal*=

Ms

1 jaf" cos nt
271' 1/m ta t/2

u[\ﬂi

3

For this purpose we have

3/2 cos nt 2 3% cos mt ? cos nu_
_CoST )| = j j %
j,,m tan t/2 © ym tan tant/2 ah®) um tanu tanu/2 dh ()

1 §5/2 3/2 dh (t) dh (u) . .
T2 ' —t)+ +1) L.
2 Jim j)/m tant/2 tan w/2 {cosn (u—t)+cosn (u+1) |

Hence we get

15— 1 Sw(w dh ¢)  dh @) {sin(m+1/2)(u—t)
=t - 2(27P Jymiun tant/2 tanw/2 2 sin (u—t)/2
sin(m+1/2)(u+1¢)
osin@+0)/2 }+°(m)"

Thus the required result shall be obtained by the same argument used
in the proof of Theorem 2.
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