ON AUTOMORPHISM GROUPS OF FINITE ORDER IN DIVISION RINGS

By
Hisao TOMINAGA

It is a well-known theorem of E. Artin that if F is an algebraically closed (commutative) field of characteristic 0 then any automorphism of F of finite order is of order at most 2. Recently, in [1], H. Lenz drew out the essence of Artin's proof [1, Satz 3], and obtained several results concerned with automorphism groups of finite order. In the present note, we shall prove an extension of [1, Satz 3] to division rings and that of [1, Satz 5], whose proof is notably easy.

Let K be a division ring with the center Z, and \mathscr{G} an automorphism group of K. Then, \mathscr{F} induces an automorphism group $\overline{\mathscr{G}}$ of the group K^{*} / Z^{*}, where K^{*} is the multiplicative group consisting of all non-zero elements of K. Particularly, if $\overline{\mathscr{G}}$ coincides with the identity group then \mathscr{E} will be called an M-group. In case K is commutative, the notion of M-group is trivial of course. Now let p be a prime number, and k an element of K. If there exists a division subring K^{\prime} of K such that k^{p} $\in K^{\prime}$ and $k \notin K^{\prime}$, then k will be called a p-th root of K. We consider here the following property of K :
(P) For each p-th root k of K, the equation $x^{p}-k=0$ has a solution in K.
At first, we shall prove the following fundamental lemma.
Lemma 1. Let K be strictly Galois ${ }^{1)}$ with respect to an M-group \mathfrak{P} $=\left\{\sigma^{i}\right\}$ of order p, and possess the property (\mathbf{P}). If Z contains a primitive p^{2}-th root η of 1 , then η is not contained in $L=J(\mathfrak{P}, K)$ (=the fixsubring of \mathfrak{P}).

Proof. Evidently, $\zeta=\eta^{p}$ is a primitive p-th root of 1 , and [$\left.\Phi(\zeta): \Phi\right]$. $<p$, where Φ is the prime subfield of K. If $\zeta \sigma \neq \zeta$, then $\Phi(\zeta)$ being \mathfrak{P} normal, we have $[\Phi(\zeta): \Phi] \geq p$. We see therefore ζ is contained in L. Accordingly, by [2, Corollary 2], there exists a non-zero element $x \in K$ such that $x \sigma=x \zeta$. As $x^{p} \in L$ and $K=L[x]$ consequently, the property (\mathbf{P})

1) Cf. [3].
secures the existence of $y \in K$ with $y^{p}=x$. Recalling here \mathfrak{P} is an M group, we have $y_{\sigma}=y z$ for some $z \in Z . \quad(y \sigma)^{p}=y^{p} \sigma=x \zeta=(y \eta)^{p}$ yields therefore $\left\{(y \sigma) y^{-1} \eta^{-1}\right\}^{p}=\left(z \eta^{-1}\right)^{p}=1$, whence we have $y \sigma=y \eta \zeta^{\lambda}$ where $0 \leq \lambda \leq p-1$. If $\eta \in L$, then $y \sigma^{p}=y \eta^{p} \zeta^{p \lambda}=y \zeta \neq y$. But this contradicts $\sigma^{p}=1$.

The following lemma will be almost evident from the proof of [3, Lemma 5].

Lemma 2. Let K be strictly Galois with respect to (s). Then, for an arbitrary subgroup \mathfrak{S} of \mathfrak{F}, K is strictly Galois with respect to \mathfrak{H}.

Now we can extend [1, Satz 3] to division rings.
Theorem 1. Let K be a division ring of characteristic 0 which is strictly Galois with respect to an M-group \mathscr{F}_{5} of order n. If K and Z possess the property (P), and Z contains a primitive $2 p$-th root of 1 , then p does not divide n if $p>2,4$ does not divide n if $p=2$.

Proof. (I) $p=2$. If 4 diveds n, then $(\mathscr{S}$ contains a subgroup \mathfrak{F} of order 4 , and K is strictly Galois with respect to \mathfrak{N} (Lemma 2). Let $\mathfrak{\beta}_{1}$ be a subgroup of \mathfrak{F} of order 2 , and set $L_{1}=J\left(\mathfrak{F}_{1}, K\right)$. Then, $K=L_{1}[i]$ by Lemma 1 , where i is an element of Z with $i^{2}=-1$. (i is a primitive $4\left(=2 p=p^{2}\right)$-th root of 1.) And so, $i \notin L=J(\mathfrak{I}, K)$. If we set $L_{2}=L[i]$, then $\left[L_{2}: L\right]=2$ and $\mathfrak{S}\left(L_{2}\right) \neq 1 .^{2} \quad$ For, if not, every σ in \mathfrak{J} different from 1 moves i into $-i$. But this is impossible. This proves that K / L_{2} is strictiy Galois with ressect to $\mathfrak{H}\left(L_{2}\right)$ of order 2. Hence, again by Lemma 1, $K=L_{2}[i]$ $=L_{2}$. This contradiction shows that $4+n$.
(II) $p>2$. If p divides n, then (SS contains a subgroup $\mathfrak{P}=\left\{\sigma^{i}\right\}$ of order p, and K is strictly Galois with respect to \mathfrak{P}. Since Z possesses the property (\mathbf{P}), it contains primitive p^{j}-th roots of 1 for all j. Since $E_{p, \infty}$, the subfield (of Z) generated by all the p^{j}-th roots of $1(j=1,2$, \cdots, is \mathfrak{P}-normal, Lemma 1 shows that σ induces an automorphism of E_{p}, ∞ which leaves invariant every primitive p-th root of 1 and moves really primitive p^{2}-th roots of 1 . But this contradicts [1, Satz 1].

Let L be a division subring of K. If, for every $k \in K$, there exists a finite number of division subrings K_{1}, \cdots, K_{m} such that $L(k)=K_{1} \supseteq \cdots$ $\supseteq K_{m}=L$ and $\left[K_{i}: K_{i+1}\right]_{i} \leq n$ (fixed) for $i=1, \cdots, m-1$, then we say that K / L is n-accessible. Further if, for every intermediate división subring L^{\prime} of $K / L, K / L^{\prime}$ is n-accessible, then K / L will be said to be completely n-accessible. To be easily seen, in case K is commutative, the notion of n-accessibility coincides with that of complete n-accessibility. Now, let K / L be completely n-accessible and strictly Galois with respect to \mathscr{F} of
2) $\mathfrak{S g}\left(L_{2}\right)=\left\{\sigma \in \mathfrak{F} \mid x \sigma=x\right.$ for all $\left.x \in L_{2}\right\}$.
prime order p, where \mathscr{G} is an automorphism group of K which leaves invariant every element of L. Then, $\left[K: L^{\prime}\right]=p$ where $L^{\prime}=J(\mathscr{S}, K)$, whence $K=L^{\prime}[k]$ for some k. On the other hand, there exists a finite number of division subrings K_{1}, \cdots, K_{m} such that $K=K_{1} \supseteq \cdots \supseteq K_{m}=L^{\prime}$ and $\left[K_{i}: K_{i+1}\right]_{l}=n_{i} \leq n$. And so, $p=\left[K: L^{\prime}\right]=\prod_{i=1}^{m-1} n_{i}$. Thus, we have proved the following which contains [1, Satz 5].

Theorem 2. Let K be a division ring, and completely n-accessible over a division subring L. If K is strictly Galois with respect to (Ss of prime order p and $J(\mathscr{S}, K) \supseteq L$, then $p \leq n$.

References

[1] H. LENZ: Über endliche Automorphismengruppe unendlicher Körpererweiterungen, Archiv der Math., 4 (1953) 100-106.
[2] N. Nobusawa and H. Tominaga: Some remarks on strictly Galois extensions of simple rings, Math. J. Okayama Univ., 9 (1959) 13-17.
[3] H. Tominaga: A note on Galois theory of primary rings, Math. J. Okayama Univ., 8 (1958) 117-123.

Hokkaido University

(Received September 16, 1960)

