ON AUTOMORPHISM GROUPS OF FINITE ORDER IN DIVISION RINGS

By

Hisao TOMINAGA

It is a well-known theorem of E. Artin that if F is an algebraically closed (commutative) field of characteristic 0 then any automorphism of F of finite order is of order at most 2. Recently, in [1], H. Lenz drew out the essence of Artin's proof [1, Satz 3], and obtained several results concerned with automorphism groups of finite order. In the present note, we shall prove an extension of [1, Satz 3] to division rings and that of [1, Satz 5], whose proof is notably easy.

Let K be a division ring with the center Z, and (G) an automorphism group of K. Then, (G) induces an automorphism group $\overline{(G)}$ of the group K^*/Z^* , where K^* is the multiplicative group consisting of all non-zero elements of K. Particularly, if $\overline{(G)}$ coincides with the identity group then (G) will be called an *M*-group. In case K is commutative, the notion of *M*-group is trivial of course. Now let p be a prime number, and k an element of K. If there exists a division subring K' of K such that k^p $\in K'$ and $k \notin K'$, then k will be called a p-th root of K. We consider here the following property of K:

(P) For each p-th root k of K, the equation $x^p - k = 0$ has a solution in K.

At first, we shall prove the following fundamental lemma.

Lemma 1. Let K be strictly Galois¹⁾ with respect to an M-group $\mathfrak{P} = \{\sigma^i\}$ of order p, and possess the property (P). If Z contains a primitive p^2 -th root η of 1, then η is not contained in $L=J(\mathfrak{P}, K)$ (=the fix-subring of \mathfrak{P}).

Proof. Evidently, $\zeta = \eta^p$ is a primitive *p*-th root of 1, and $[\varPhi(\zeta):\varPhi] < p$, where \varPhi is the prime subfield of *K*. If $\zeta \sigma \neq \zeta$, then $\varPhi(\zeta)$ being \mathfrak{P} -normal, we have $[\varPhi(\zeta):\varPhi] \ge p$. We see therefore ζ is contained in *L*. Accordingly, by [2, Corollary 2], there exists a non-zero element $x \in K$ such that $x\sigma = x\zeta$. As $x^p \in L$ and K = L[x] consequently, the property (P)

1) Cf. [3].

secures the existence of $y \in K$ with $y^p = x$. Recalling here \mathfrak{P} is an *M*-group, we have $y\sigma = yz$ for some $z \in Z$. $(y\sigma)^p = y^p\sigma = x\zeta = (y\eta)^p$ yields therefore $\{(y\sigma)y^{-1}\eta^{-1}\}^p = (z\eta^{-1})^p = 1$, whence we have $y\sigma = y\eta\zeta^{\lambda}$ where $0 \le \lambda \le p-1$. If $\eta \in L$, then $y\sigma^p = y\eta^p\zeta^{p\lambda} = y\zeta \neq y$. But this contradicts $\sigma^p = 1$.

The following lemma will be almost evident from the proof of [3, Lemma 5].

Lemma 2. Let K be strictly Galois with respect to \mathfrak{G} . Then, for an arbitrary subgroup \mathfrak{H} of \mathfrak{G} , K is strictly Galois with respect to \mathfrak{H} .

Now we can extend [1, Satz 3] to division rings.

Theorem 1. Let K be a division ring of characteristic 0 which is strictly Galois with respect to an M-group \bigotimes of order n. If K and Z possess the property (P), and Z contains a primitive 2p-th root of 1, then p does not divide n if p>2,4 does not divide n if p=2.

Proof. (I) p=2. If 4 diveds n, then \mathfrak{G} contains a subgroup \mathfrak{H} of order 4, and K is strictly Galois with respect to \mathfrak{H} (Lemma 2). Let \mathfrak{H}_1 be a subgroup of \mathfrak{H} of order 2, and set $L_1=J(\mathfrak{H}_1,K)$. Then, $K=L_1[i]$ by Lemma 1, where i is an element of Z with $i^2=-1$. (i is a primitive $4(=2p=p^2)$ -th root of 1.) And so, $i \notin L = J(\mathfrak{H}, K)$. If we set $L_2 = L[i]$, then $[L_2:L] = 2$ and $\mathfrak{H}(L_2) \neq 1$.²⁾ For, if not, every σ in \mathfrak{H} different from 1 moves i into -i. But this is impossible. This proves that K/L_2 is strictly Galois with respect to $\mathfrak{H}(L_2)$ of order 2. Hence, again by Lemma 1, $K=L_2[i] = L_2$. This contradiction shows that 4+n.

(II) p>2. If p divides n, then \mathfrak{G} contains a subgroup $\mathfrak{P}=\{\sigma^i\}$ of order p, and K is strictly Galois with respect to \mathfrak{P} . Since Z possesses the property (P), it contains primitive p^j -th roots of 1 for all j. Since $E_{p,\infty}$, the subfield (of Z) generated by all the p^j -th roots of 1 $(j=1,2,\cdots)$, is \mathfrak{P} -normal, Lemma 1 shows that σ induces an automorphism of $E_{p,\infty}$ which leaves invariant every primitive p-th root of 1 and moves really primitive p^2 -th roots of 1. But this contradicts [1, Satz 1].

Let L be a division subring of K. If, for every $k \in K$, there exists a finite number of division subrings K_1, \dots, K_m such that $L(k) = K_1 \supseteq \cdots$ $\supseteq K_m = L$ and $[K_i: K_{i+1}]_i \leq n$ (fixed) for $i=1, \dots, m-1$, then we say that K/L is *n*-accessible. Further if, for every intermediate division subring L' of K/L, K/L' is *n*-accessible, then K/L will be said to be completely *n*-accessible. To be easily seen, in case K is commutative, the notion of *n*-accessibility coincides with that of complete *n*-accessibility. Now, let K/L be completely *n*-accessible and strictly Galois with respect to \mathfrak{G} of

²⁾ $\mathfrak{H}(L_2) = \{ \sigma \in \mathfrak{H} \mid x \sigma = x \text{ for all } x \in L_2 \}.$

prime order p, where \mathfrak{G} is an automorphism group of K which leaves invariant every element of L. Then, [K:L']=p where $L'=J(\mathfrak{G}, K)$, whence K=L'[k] for some k. On the other hand, there exists a finite number of division subrings K_1, \dots, K_m such that $K=K_1\supseteq \dots \supseteq K_m=L'$ and $[K_i:K_{i+1}]_i=n_i\leq n$. And so, $p=[K:L']=\prod_{i=1}^{m-1}n_i$. Thus, we have proved the following which contains [1, Satz 5].

Theorem 2. Let K be a division ring, and completely n-accessible over a division subring L. If K is strictly Galois with respect to $(G \circ f)$ prime order p and $J((G, K) \supseteq L$, then $p \le n$.

References

- [1] H. LENZ: Uber endliche Automorphismengruppe unendlicher Körpererweiterungen, Archiv der Math., 4 (1953) 100-106.
- [2] N. NOBUSAWA and H. TOMINAGA: Some remarks on strictly Galois extensions of simple rings, Math. J. Okayama Univ., 9 (1959) 13-17.
- [3] H. TOMINAGA: A note on Galois theory of primary rings, Math. J. Okayama Univ., 8 (1958) 117-123.

Hokkaido University

(Received September 16, 1960)