PARTIALLY ORDERED ABELIAN SEMIGROUPS. III

ON THE REVERSIBLE PARTIAL ORDER DEFINED ON AN ABELIAN SEMIGROUP

By

Osamu NAKADA

In their paper, ${ }^{1)}$ Ben Dushnik and E. W. Miller introduced the concept of the reversible partial order and expressed the theorem about this concept. In this Part III, I shall show that the same one is held in the partially ordered abelian semigroup by adding the certain condition.

Definition 1. A set S is said to be a partially ordered abelian semigroup (p.o. semigroup), when S is (I) an abelian semigroup (not necessarily contains the unit element), (II) a partially ordered set, and satisfies (III) the homogeneity: $a \geqq b$ implies $a c \geqq b c$ for any c of S.

A partial order which satisfies the condition (III) is called a partial order defined on an abelian semigroup.

Moreover, if a partial order defined on an abelian semigroup S is a linear order, then S is said to be a linearly ordered abelian semigroup (l.o. semigroup). (Definition 1, O.I.)

Definition 2. Let $\mathfrak{S}=\left\{P_{\alpha}\right\}$ be any set of partial orders, each defined on the same abelian semigroup S. We define the new partial order P on S as follows: For any two elements a, b, we put $a \geqq b$ in P if and only if $a \geqq b$ in every P_{α} of the set \subseteq. Indeed, P is again a partial order defined on S. This partial order P is said to be the product of the partial orders P_{α} or to be realized by the set \subseteq of partial orders P_{α}. (Definition 9, O.I.)

By the dimension of a partial order P defided on an abelian semigroup S is meant the smallest cardinal number m such that P is realized by m linear orders defined on S.

Definition 3. Let P and Q be two partial orders defined on the same
Partially ordered abelian semigroup. I. On the extension of the strong partial order defined on abelian semigroups. Journ. Fac. Sci., Hokkaido University, Series I, vol. XI (1951), pp. 181-189; this is referred to hereafter as "O.I."

1) Ben Dushnik and E. W. Miller: Partially ordered sets, Amer. Math. Journ. vol. 63 (1941), pp. 600-610.
abelian semigroup S, and suppose that any two distinct elements of S are comparable in just one of these partial orders; in such a case we shall say that P and Q are conjugate partial orders. A partial order will be called reversible if and only if it has a conjugate. ${ }^{2)}$

If P is a partial order defined on S, then the partial order obtained from P by inverting the sense of all ordered pairs will be called a dual order, which is denoted by P^{*}.

Theorem 1. Let P and Q are conjugate partial orders defined on an abelian semigroup S. Then we can define a linear order L_{1} on S such that $a>b$ in L_{1} if and only if $a>b$ in either P or Q; denoted by $L_{1}=P+Q$. Similary $L_{2}=P+Q^{*}$ is a linear order defined on S.

Proof. We shall prove only the transivity of L_{1}.
From $a>b, b>c$ in L_{1}, we can consider the following four cases: (i) $a>b, b>c$ in P, (ii) $a>b, b>c$ in Q, (iii) $a>b$ in $P, b>c$ in Q, (iv) $a>b$ in $Q, b>c$ in P.

In cases (i) and (ii), $a>c$ in L_{1} is cleary. In case (iii), if $c>a$ in P or Q, then $c>b$ in P or $b>a$ in Q respectively, which is absured, therefore $a>c$ in P or Q and hence in L_{1}. Similary, in case (iv) $a>c$ in L_{1} is held.

Theorem 2. The following two properties of a partial order P defined on an abelian semigroup S are equivalent to each other:
(1) P is reversible.
(2) The dimension of P is 2 .

Proof. We shall show first that (1) implies (2). Suppose that the partial order P defined on S is reversible, and let Q be a partial order defined on S conjugate to P and Q^{*} be the dual order of Q. Then by Theorem 1, $L_{1}=P+Q$ and $L_{2}=P+Q^{*}$ are linear extensions of P and it is obvious that P is realized by linear orders L_{1} and L_{2}.

Next we show that (2) implies (1). Let L_{1} and L_{2} be any two linear orders defined on S which together realize P. We define the other order Q as follows: $a>b$ in Q if and only if a and b are non-comparable in P and $a>b$ in L_{1} (likewise $a>b$ in L_{1} and $b>a$ in L_{2}). Then $a>b$ and $b>a$ in Q are contradictory. If $a>b$ and $b>c$ in Q, then we have $a>b>c$ in L_{1} and $c>b>a$ in L_{2}, hence $a>c$ in $Q . \quad a>b$ in Q implies that $a c \geqq b c$ in L_{1} and $b c \geqq a c$ in L_{2}, i.e. $a c \geqq b c$ in Q. Therefore Q is a partial order defined on S. Evidently P and Q are conjugate.

Definieion 4. A linear extension L of a partial order P defined on

[^0]an abelian semigroup S will be called separating if and only if there exist three elements a, b and c in S such that $a>c$ in P, and b is not comparable with either a or c in P, while in L we have $a>b>c$.

Theorem 3. ${ }^{3)}$ Let P be a partial order defined on an abelian semigroup S which satisfies the condition $(E) .{ }^{4)}$ Then the following three properties of a partial order P are equivalent to each other:
(1) P is reversible.
(2) The dimension of P is 2.
(3) There exists a linear extension of P which is non-separating.

Proof. (1) and (2) are equivalent by Theorem 2.
We show now that (2) implies (3) without the condition (E). Let L_{1} and L_{2} be any two linear orders defined on S which together realize $P: P=L_{1} \times L_{2}$. If L_{1} is separating, then there exist three elements a, b and c such that $a>c$ in $P, a>b>c$ in L_{1} and b is not comparable with either a or c in P. Hence we have $c>b>a$ in L_{2} which is impossible.

To show that (3) implies (1) we shall suppose that L is a nonseparating linear extension of P. We define the other order Q as follows: $a>b$ in Q if and only if a and b are non-comparable in P and $a>b$ in L. Then clearly $a>b$ and $b>a$ in Q are contradictory. If $a>b$ and $b>c$ in Q, then we have $a>b>c$ in L and a and c are non-comparable in P, for otherwise $a>c$ in P would imply that. L is separating contrary to the assumption, hence we have $a>c$ in $Q . \quad a>b$ in Q implies that $a c \geqq b c$ in L. If $a c>b c$ in P, then by the condition $(E) a>b$ in P which is impossible. Hence $a c=b c$ or $a c$ and $b c$ are non-comparable in P, and hence $a c \geqq b c$ in Q. Therefore Q is a partial order defined on S. Clearly P and Q are conjugate.

Definition 5. Let S be a p.o. semigroup and P be the partial order defined on S. For any element a of S, we denote the set of all elements x such that $x \leqq a$ in P by \bar{a}. Then the correspondence $a \leftrightarrow \bar{a}$ is one-to-one. We put $\bar{a} \geqq \bar{b}$ if and only if \bar{b} is a subset of \bar{a}, likewise $a \geqq b$ in P, then the family $\bar{S}=\{\bar{a}\}$ is become a partially ordered set. Next we define the product $\bar{a} \cdot \bar{b}=\overline{a b}$, then the family \bar{S} is a commutative semigroup, moreover \bar{S} become a p.o. semigroup. Clearly S and \bar{S} are order-isomorphic. ${ }^{5)}$

More generally, if there exists a one-to-one correspondence between
3) Ben Dushnik and E. W. Miller: 1.c. Theorem 3.61.
4) Condition (E) (order cancellation law):
$a c>b c$ in P implies $a>b$ in P.
5) See Definition 3, O.I.
the elements of the p.o. semigroup S and the family \mathfrak{R} of subsets of the certain set R (a subset of R which corresponds with an element a of S, denote by $s(a)$), and $a \geqq b$ in P if and only if $s(a) \supseteqq s(b)$ (in the sense of set-inclusion), then by the defining the product $s(a) \cdot s(b)=s(a b)$, two p.o. semigroups S and \Re are order-isomorphic.

Any family \Re of the subsets of the set R which has the above properties will be called a representation of P.

Theorem 4. Let P be a partial order defined on an abelian semigroup S which satisfies the condition (E). Then the following two proparties are equivalent to each other:
(1) P is reversible.
(4) There exists a representation of P by means of a family. $\mathfrak{R}=\left\{I_{a}\right\}$ of closed intervals on some l.o. semigroup R, and let $I_{a}=\left[\alpha_{1}, \alpha_{2}\right], I_{b}=\left[\beta_{1}, \beta_{2}\right]$, $I_{a c}=\left[\gamma_{1}, \gamma_{2}\right], I_{b c}=\left[\delta_{1}, \delta_{2}\right]$, and if a and b are non-comparable in P, then $a_{1}<\beta_{1}$ (and $\alpha_{2}<\beta_{2}$) implies $\gamma_{1} \leqq \delta_{1}$ (and $\gamma_{2} \leqq \delta_{2}$) or its daal.

Proof. We shall show (1) implies (4). Let P be reversible, and hence the dimension of P is 2 . Let A and B be any two linear orders defined on S which together realize P.

Let S^{\prime} be a l.o. semigroup which is anti-order-isomorphic to the l.o. semigroup S in the linear order B, where the set S^{\prime} is disjoint from S, and the linear order defined on S^{\prime} is denoted by B^{\prime}.

Let R be the union of S, S^{\prime} and the new element 0 which belongs to neigther S nor S^{\prime}.

We define the multiplication in R as follows:

$$
\begin{array}{ll}
0 \cdot 0=0, & \\
x \cdot 0=0 \cdot x=0 & \text { for any } x \text { in } S \text { or } S^{\prime}, \\
a \cdot a^{\prime}=a^{\prime} \cdot a=0 & \text { for any } a \text { in } S \text { and } a^{\prime} \text { in } S^{\prime},
\end{array}
$$

and for any two elements x and y of $S\left(S^{\prime}\right)$ the product is the same as in $S\left(S^{\prime}\right)$.

Thus R becomes the abelian semigroup under the multiplication introduced above.

Let us now define the order-relation L in R as follows:

$$
\begin{array}{ll}
x>y \text { in } L(x, y \in S) & \text { if and only if } x>y \text { in } A, \\
x>y \text { in } L\left(x, y \in S^{\prime}\right) & \text { if and only if } x>y \text { in } B^{\prime},
\end{array}
$$

and we put

$$
a>0>a^{\prime} \text { in } L\left(a \in S, a^{\prime} \in S^{\prime}\right) .
$$

Then R becomes a l.o. semigroup.

For each a in S denote by a^{\prime} the image of a in S^{\prime}, and denote by I_{a} the closed interval $\left[a^{\prime}, a\right]$ of R.

We will show that the family $\Re=\left\{I_{a}\right\}$ of all such intervals is a representation of P. Suppose first that $a>b$ in P. Then $a>b$ in A and $a^{\prime}<b^{\prime}$ in B^{\prime}, so that we have $a^{\prime}<b^{\prime}<b<a$ in L. This means that I_{b} is a proper subset of I_{a}.

Let $I_{a}=\left[a^{\prime}, a\right], \quad I_{b}=\left[b^{\prime}, b\right], \quad I_{a c}=\left[a^{\prime} c^{\prime}, a c\right], \quad I_{b c}=\left[b^{\prime} c^{\prime}, b c\right]$. If a and b are non-comparable in P, then from $a>b\left(a^{\prime}>b^{\prime}\right)$ in L we have $a c \geqq b c$ ($a^{\prime} c^{\prime} \geqq b^{\prime} c^{\prime}$) in L or its dual.

We prove that (4) implies (1). Suppose that P is a partial order which is represented by a family \Re of intervals taken from some l.o. semigroup R, whose linear order is denoted by L. For each a in S, denote by I_{a} the interval of the family \Re which corresponds to a. We notice first that if a and b are distinct elements of S which are not comparable in P, then I_{a} and I_{b} cannot have the same left (right)-hand end-point.

Suppose that $I_{a}=\left[\alpha_{1}, \alpha_{2}\right], I_{b}=\left[\beta_{1}, \beta_{2}\right], I_{c}=\left[\gamma_{1}, \gamma_{2}\right], \cdots$.
We define a new partial order Q defined on S as follows:
(i) a and b are not comparable in P,
(ii) $\alpha_{1}<\beta_{1}$ (and $\alpha_{2}<\beta_{2}$) in L.

It is easy to see that Q is the partial order defined on the set S. We shall now prove the homogeneity. Let $a>b$ in Q and $I_{a c}=\left[\lambda_{1}, \lambda_{2}\right], I_{b c}$ $=\left[\mu_{1}, \mu_{2}\right]$. If $a c$ and $b c$ are distinct and comparable in P, then by the condition (E) a and b are comparable in P which is impossible. If ac and $b c$ are non-comparable in P, then $\lambda_{1}<\mu, \lambda_{2}<\mu_{2}$ and hence $a c>b c$ in Q.

Example 1. Let S_{1} be an abelian semigroup generated by two elements a and b with the relation

$$
a^{m} b^{n}=a b^{n} \quad \text { for } \text { any positive integers } m \text { and } n .
$$

By putting the order-relation
$P: \quad\left\{\begin{array}{l}a^{m+1}>a^{m} \\ b^{n}>a b^{n}\end{array} \quad\right.$ for any positive integer n
S_{1} becomes a p.o. semigroup, and the partial order P is reversible. Its conjugate order Q is as follows:
$Q:$

$$
\left\{\begin{array}{l}
a^{m}>b^{n}>b^{n+1}>a b^{n+1} \\
a^{m}>a b^{n}>b^{n+1}
\end{array} \quad \text { for any positive integers } m \text { and } n .\right.
$$

The linear orders which together realize P are

$$
a^{m+1}>a^{m}>b^{n}>a b^{n}>b^{n+1}>a b^{n+1}
$$

and

$$
b^{n+1}>a b^{n+1}>b^{n}>a b^{n}>a^{m+1}>a^{m}
$$

for any positive integers m and n.
Example 2. Let S_{2} be an abelian semigroup generated by two elements a and b with the relation

$$
a^{m} b^{n}=b^{n} \quad \text { for any positive integers } m \text { and } n .
$$

By putting the two order-relations A and B
A:

$$
a^{m+1}>a^{m}>b^{n}>b^{n+1}
$$

B :

$$
b^{n+1}>b^{n}>a^{m+1}>a^{m}
$$

for any positive integers m and n,
S_{2} becomes a l.o. semigroup in the orders A and B respectively. Let P be the partial order which is the product of A and B, that is P :

$$
a^{m+1}>a^{m} .
$$

Then P has the conjugate order Q such that Q :

$$
a^{m}>b^{n}>b^{n+1}
$$

Example 3. Let S_{3}^{\prime} and $S_{3}^{\prime \prime}$ be free abelian semigroups generated by elements a and b respectively. And by defining the order-relations

$$
a^{m+1}>a^{m} \quad(m \geqq 1), \quad b^{n+1}>b^{n} \quad(n>1),
$$

S_{3}^{\prime} and $S_{3}^{\prime \prime}$ becomes a l.o. semigroup and a p.o. semigroup respectively. Let S_{3} be the direct product of S_{3}^{\prime} and $S_{3}^{\prime \prime}$. Then S_{3} becomes a p.o. semigroup by introducing the following order-relation P :

$$
\begin{aligned}
& a^{i} b^{j}>a^{m} b^{n} \\
& \text { if and only if } \\
& a^{i}>a^{m} \quad \text { or } \quad a^{i}=a^{m} \text { and } \quad b^{j}>b^{n} .
\end{aligned}
$$

Since $a b^{2}$ and $a b$ are non-comparable in P in spite of $\left(a b^{2}\right)(a b)=a^{2} b^{3}>$ $a^{2} b^{2}=(a b)(a b), P$ does not satisfy the condition (E).

Now, in $S_{3}^{\prime \prime}$ we define the another order-relation:

$$
b^{n+1}>b^{n} \quad(n \geqq 1),
$$

then we get the non-separating linear extension of P.
But we cannot realize the partial order P by two linear orders.

[^0]: 2) Cf. Ben Dushnik and E. W. Miller: 1.c.
