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In their paper,1) Ben Dushnik and’ E. W. Miller introduced the con-
cept of the reversible partial order and expressed the theorem about this
concept. In this Part III, I shall show that the same one is held in the
partially ordered abelian semigroup by adding the certain condition.

Definition 1. A set $S$ is said to be a partially ordered abelian
semigroup (p.o. semigroup), when $S$ is (I) an abelian semigroup (not

necessarily contains the unit element), (II) a partially ordered set, and
satisfies (III) the homogeneity: $a\geqq b$ implies $ac\geqq bc$ for any $c$ of $S$ .

A partial order which satisfies the condition (III) is called a partial

order defined on an abelian semigroup.
Moreover, if a partial order defined on an abelian semigroup $S$ is a

linear order, then $S$ is said to be a linearly ordered abelian semigroup

(l.o. semigroup). (Definition 1, 0.I.)

Definition 2. Let $\mathfrak{S}=\{P_{a}\}$ be any set of partial orders, each defined
on the same abelian semigroup $S$ . We define the new partial order $P$

on $S$ as follows: For any two elements $a,$
$b$, we put $a\geqq b$ in $P$ if and

only if $a\geqq b$ in every $P_{a}$ of the set $\mathfrak{S}$ . Indeed, $P$ is again a partial order

defined on $S$ . This partial order $P$ is said to be the product of the
partial orders P. or to be realized by the set $\mathfrak{S}$ of partial or.ders P..
(Definition 9, 0.I.)

By the dimension of a partial order $P$ defided on an abelian semi-
group $S$ is meant the smallest cardinal number $\mathfrak{m}$ such that $P$ is realized
by $\uparrow \mathfrak{n}$ linear orders defined on $S$ .

Definition 3. Let $P$ and $Q$ be two partial orders defined on the same

Partially ordered abelian semigroup. I. On the extension of the strong partial order

defined on abelian semigroups. Journ. Fac. Sci., Hokkaido University, Series I, vol. XI
(1951), pp. 181-189; this is referred to hereafter as “ 0.I. ”

1) Ben Dushnik and E. W. MiIler: Partially ordered sets, Amer. Math. Journ. vol. 63

(1941), pp. 600-610.
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abeli\‘an semigroup $S$, and suppose that any two distinct elements of $S$

are comparable in just one of these partial orders; in such a case we
shall say that $P$ and $Q$ are conjugate partial orders. A partial order
will be called reversible if and only if it has a conjugate. 2)

If $P$ is a partial order defined on $S$, then the partial order obtained
from $P$ by inverting the sense of all ordered pairs will be called a dual
order, which is denoted by $P^{*}$ .

Theorem 1. Let $P$ and $Q$ are conjugate partial orders defined on
an abelian semigroup S. Then we can define a linear order $L_{1}$ on $S$

sueh that $a>b$ in $L_{1}$ if and only if $a>b$ in either $P$ or $Q$ ; denoted by
$L_{1}=P+Q$ . Similary $L_{2}=P+Q^{*}$ is a linear order defined on $S$.

Proof. We shall prove only the transivity of $L_{1}$ .
From $a>b,$ $b>c$ in $L_{1}$ , we can consider the following four cases:

(i) $a>b,$ $b>c$ in $P$, (ii) $a>b,$ $b>c$ in $Q$ , (iii) $a>b$ in $P,$ $b>c$ in $Q$ , (iv)
$a>b$ in $Q,$ $b>c$ in $P$ .

In cases (i) and (ii), $a>c$ in $L_{1}$ is cleary. In case (iii), if $c>a$ in
$P$ or $Q$ , then $c>b$ in $P$ or $b>a$ in $Q$ respectively, which is absured,
therefore $a>c$ in $P$ or $Q$ and hence in $L_{1}$ . Similary, in case (iv) $a>c$
in $L_{1}$ is held.

Theorem 2. The following two $p\gamma operties$ of a partial order $P$ de-
fined on an abelian semigroup $S$ are equivalent to each other:

(1) $P$ is reversible.
(2) The dimension of $P$ is 2.
Proof. We shall show first that (1) implies (2). Suppose that the

partial order $P$ defined on $S$ is reversible, and let $Q$ be a partial order
defined on $S$ conjugate to $P$ and $Q^{*}$ be the dual order of $Q$ . Then by
Theorem 1, $L_{1}=P+Q$ and $L_{2}=P+Q^{*}$ are linear extensions of $P$ and it
is obvious that $P$ is realized by linear orders $L_{1}$ and $L_{2}$ .

Next we show that (2) implies (1). Let $L_{1}$ and $L_{2}$ be any two linear
orders defined on $S$ which together realize $P$ . We define the other order
$Q$ as follows: $a>b$ in $Q$ if and only if $a$ and $b$ are non-comparable in $P$

and $a>b$ in $L_{1}$ (likewise $a>b$ in $L_{1}$ and $b>a$ in $L_{2}$). Then $a>b$ and $b>a$

in $Q$ are contradictory. If $a>b$ and $b>c$ in $Q$ , then we have $a>b>c$ in
$L_{1}$ and $c>b>a$ in $L_{2}$ , hence $a>c$ in Q. $a>b$ in $Q$ implies that $ac\geqq bc$ in
$L_{1}$ and $bc\geqq ac$ in $L_{2}$ , i.e. $ac\geqq bc$ in $Q$ . Therefore $Q$ is a partial order
defined on $S$ . Evidently $P$ and $Q$ are conjugate.

Definieion 4. A linear extension $L$ of a partial order $P$ defined on
$\overline{2)}$Cf. Ben Dushnik and E. W. Miller: l.c.
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an abelian semigroup $S$ will be called separating if( and only if there
exist three elements $a,,$

$b$ and $c$ in $S$ such that $a>c$ in $P$ , and $b$ is not
comparable with either $a$ or $c$ in $P$ , while in $L$ we have $a>b>c$ .

Theorem 3.3) Let $P$ be a partial order defined on an abelian semi-
group $S$ which satisfies the condition $(E)^{4)}$ Then the following three
properties of a partial order $P$ are equivalent to each other:

(1) $P$ is reversible.
(2) The dimension of $P$ is 2.
(3) There exists a linear extension of $P$ which is non-separating.
Proof. (1) and (2) are equivalent by Theorem 2.
We show now that (2) implies (3) without the condition $(E)$ . Let

$L_{1}$ and $L_{2}$ be any. two linear orders defined on $S$ which together realize
$P;P=L_{1}\times L_{2}$ . If $L_{1}$ is separating, then there exist three elements $a,$

$b$

and $c$ such that $a>c$ in $P,$ $a>b>c$ in $L_{1}$ and $b$ is not comparable with
either $a$ or $c$ in $P$ . Hence we have $c>b>a$ in $L_{2}$ which is impossible.

To show that (3) implies (1) we shall suppose that $L$ is a non-
separating linear extension of $P$ . We define the other order $Q$ as follows:
$a>b$ in $Q$ if and only if $a$ and $b$ are non-comparable in $P$ and $a>b$ in $L$ .
Then clearly $a>b$ and $b>a$ in $Q$ are contradictory. If $a>b$ and $b>c$ in
$Q$ , then we have $a>b>c$ in $L$ and $a$ and $c$ are non-comparable in $P$, for
otherwise $a>c$ in $P$ would imply that. $L$ is separating contrary to the
assumption, hence we have $a>c$ in Q. $a>b$ in $Q$ implies that $ac\geqq bc$ in
$L$ . If $ac>bc$ in $P$ , then by the condition $(E)a\geq b$ in $P$ which is impos-
sible. Hence $ac=be$ or $ac$ and $bc$ are non-comparable in $P$ , and hence
$ac\geqq bc$ in $Q$ . Therefore $Q$ is a partial order defined on $S$ . Clearly $P$

and $Q$ are conjugate.

Definition 5. Let $S$ be a p.o. semigroup and $P$ be the partial order
defined on $S$. For any element $a$ of $S$, we denote the set of all elements
$x$ such that $x\leqq a$ in $P$ by $\overline{a}$ . Then the correspondence $a\leftrightarrow\overline{a}$ is one-to-one.
We put $\overline{a}\geqq\overline{b}$ if and only if $\overline{b}$ is a subset of $\overline{a}$, likewise $a\geqq b$ in $P$ , then
the family $\overline{S}=\{\overline{a}\}$ is become a partially ordered set. Next we define the
product $\overline{a}\cdot\overline{b}=\overline{ab}$ , then the family $\overline{S}$ is a commutative selnigroup, more-
over $\overline{S}$ become a p.o. semigroup. Clearly $S$ and $\overline{S}$ are order-isomorphic.5)

More generally, if there exists a one-to-one correspondence between

$\overline{3)}$Ben Dushnik and E. W. $Miller^{J}$. l.c. Theorem 3.61.
4) Condition $(E)$ (order cancellation law):

$ac>bc$ in $P$ implies $a>b$ in $P$.
5) See Definition 3, 0.I.



142 $0$ . Nakada

the elements of the p.o. semigroup $S$ and the family $\Re$ of subsets of
the certain set $R$ (a subset of $R$ which corresponds with an element $a$

of $S$, denote by $s(a))$ , and $a\geqq b$ in $P$ if and only if $s(a)\supseteqq s(b)$ (in the
sense of set-inclusion), then by the defining the product $s(a)\cdot s(b)=s(ab)$ ,
two p.o. semigroups $S$ and $\mathfrak{R}$ are order-isomorphic.

Any family $\Re$ of the subsets of the set $R$ which has the above
properties will be called a representation of $P$ .

Theorem 4. Let $P$ be a partial order defined on an abelian semi-
group $S$ which satisfies the condition $(E)$ . Then the following two pro-
parties are equivalent to each other:

(1) $P$ is reversible.
(4) There exists a representation of $P$ by means of a family $\Re=\{I_{a}\}$

of closed intervals on some $l.0$ . semigroup $R$, and let $I_{a}=[\alpha_{1}, \alpha_{2}],$ $I_{b}=[\beta_{1}, \beta_{2}]$ ,
$I_{ac}=[\gamma_{1}, \gamma_{2}],$ $I_{bc}=[\delta_{1}, \delta_{2}]$ , and if $a$ and $b$ are non-comparable in $P$ , then
$a_{1}<\beta_{1}$ (and $\alpha_{2}<\beta_{2}$) implies $\gamma_{1}\leqq\delta_{1}$ (and $\gamma_{2}\leqq\delta_{2}$) or its &\mbox{\boldmath $\chi$}al.

Proof. We shall show (1) implies (4). Let $P$ be reversible, and
hence the dimension of $P$ is 2. Let $A$ and $B$ be any two linear orders
defined on $S$ which together realize $P$ .

Let $S^{\prime}$ be a l.o. semigroup which is anti-order-isomorphic to the l.o.
semigroup $S$ in the linear order $B$ , where the set $S^{\prime}$ is disjoint from $S$,
and the linear order defined on $S^{\prime}$ is denoted by $B^{\prime}$ .

Let $R$ be the union of $S,$ $S^{\prime}$ and the new element $0$ which belongs to
neigther $S$ nor $S^{\prime}$ .

We define the multiplication in $R$ as follows:
$0\cdot 0=0$ ,
$x\cdot 0=0\cdot x=0$ for any $x$ in $S$ or $S^{\prime}$ ,
$a\cdot a^{\prime}=a^{\prime}\cdot a=0$ for any $a$ in $S$ and $a^{\prime}$ in $S^{\prime}$ ,

and for any two elements $x$ and $y$ of $S(S^{\prime})$ the product is the same as
in $S(S^{\prime})$ .

Thus $R$ becomes the abelian semigroup under the multi’plication
introduced above.

Let us now define the order-relation $L$ in $R$ as follows: $\rightarrow\backslash $

$x>y$ in $L(x, y\in S)$ if and only if $x>y$ in $A$ ,

$x>y$ in $L(x, y\in S^{\prime})$ if and only if $x>y$ in $B^{\prime}$ ,

and we put
$a>0>a^{\prime}$ in $L(a\in S, a^{\prime}\in S^{\prime})$ .

Then $R$ becomes a l.o, semigroup.
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For each $a$ in $S$ denote by $a^{\prime}$ the image of $a$ in $S^{\prime}$ , and denote by
$I_{a}$ the closed interval $[a^{\prime}, a]$ of $R$ .

We will show that the family $\mathfrak{R}=\{I_{a}\}$ of all such intervals is a
representation of $P$ . Suppose ‘first that $a>b$ in $P$ . Then $a>b$ in $A$ and
$a^{\prime}<b^{\prime}$ in $B^{\prime}$ , so that we have $a^{\prime}<b^{\prime}<b<a$ in $L$ . This means that $I_{b}$ is
a proper subset of $I_{a}$ .

Let $I_{a}=[a^{\prime}, a],$ $I_{b}=[b^{\prime}, b],$ $I_{ac}=[a^{\prime}c^{\prime}, ac],$ $I_{bc}=[b^{\prime}c^{\prime}, bc]$ . If $a$ and $b$

are non-comparable in $P$ , then from $a>b(a^{\prime}>b^{\prime})$ in $L$ we have $ac\geqq bc$

$(a^{\prime}c^{\prime}\geqq b^{\prime}c^{\prime})$ in $L$ or its dual.
We prove that (4) implies (1). Suppose that $P$ is a partial order

which is represented by a family $\mathfrak{R}$ of intervals taken from some l.o.
semigroup $R$, whose linear order is denoted by $L$ . For each $a$ in $S$,
denote by $I_{a}$ the interval of the family $\Re$ which corresponds to $a$ . We
notice first that if $a$ and $b$ are distinct elements of $S$ which are not
comparable in $P$ , then $I_{a}$ and $I_{b}$ cannot have the same left (right)-hand
end-point.

Suppose that $I_{a}=[\alpha_{1}, \alpha_{2}],$ $I_{b}=[\beta_{1}, \beta_{2}],$ $ I_{c}=[\gamma_{1}, \gamma_{2}],\cdots$

We define a new partial order $Q$ defined on $S$ as follows:
(i) $a$ and $b$ are not comparable in $P$ ,
(ii) $\alpha_{1}<\beta_{1}$ (and $\alpha_{2}<\beta_{2}$) in $L$ .

It is easy to see that $Q$ is the partial order defined on the set $S$ . We
shall now prove the homogeneity. Let $a>b$ in $Q$ and $I_{ac}-\leftarrow[\lambda_{1}’, \lambda_{2}],$ $I_{bc}$

$=[\mu_{1}, \mu_{2}|]$ . If $ac$ and $bc$ are distinct and comparable in $P$ , then by the
condition $(E)$ $a$ and $b$ are comparable in $P$ which is impossible. If $ac$

and $bc$ are non-comparable in $P$ , then $\lambda_{1}<\mu,$ $\lambda_{2}<\mu_{2}$ and hence $ac>bc$ in $Q$ .
Example 1. Let $S_{1}$ be an abelian semigroup generated by two ele-

ments $a$ and $b$ with the relation
$a^{m}b^{n}=ab^{n}$ for any positive integers $m$ and $n$ .

By putting the order-relation

$P$ : $\left\{\begin{array}{l}a^{m+1}>a^{m}\\b^{n}>ab^{n}\end{array}\right.$ for any positive integer $n$

$S_{1}$ becomes a p.o. semigroup, and the partial order $P$ is reversible. Its
conjugate order $Q$ is as follows:

$Q$ : $\left\{\begin{array}{l}a^{m}>b^{n}>b^{n+1}>ab^{n+1}\\mn\\a^{m}>ab^{n}>b^{n+1}\end{array}\right.$

The linear orders which together realize $P$ are
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$a^{m+1}>a^{m}>b^{n}>ab^{n}>b^{n\vdash 1}>ab^{n+1}$

and
$b^{n+1}>ab^{n+1}>b^{n}>ab^{n}>a^{m+1}>a^{m}$

for any positive integers $m$ and $n$ .
Example 2. Let $S_{2}$ be an abelian semigroup generated by two ele-

ments $a$ and $b$ with the relation
$a^{m}b^{n}=b^{n}$ for any positive integers $m$ and $n$ .

By putting the two order-relations $A$ and $B$

$A$ ; $a^{m+1}>a^{m}>b^{n}>b^{n+1}$

$B$ : $b^{n+1}>b^{n}>a^{m+1}>a^{m}$

for any positive integers $m$ and $ n,\cdot$

$S_{2}$ becomes a l.o. semigroup in the orders $A$ and $B$ respeetively. Let $P$

be the partial order which is the product of $A$ and $B$, that is
$P$ : $a^{m+1}>a^{m}$

Then $P$ has the conjugate order $Q$ such that
$Q$ : $a^{m}>b^{n}>b^{n+1}$

Example 3. Let $S_{3}^{\prime}$ and $S_{3}^{\prime\prime}$ be free abelian semigroups generated
by elements $a$ and $b$ respectively. And by deflning the order-relations

$a^{m+1}>a^{m}$ $(m\geqq 1)$ , $b^{n+1}>b^{n}$ $(n>1)$ ,
$S_{3}^{\prime}$ and $S_{3}$ becomes a l.o. semigroup and a $\rho.0$ . semigroup respectively.
Let $S_{3}$ be the direct product of $S_{3}^{\text{ノ}}$ and $S_{3}^{\prime\prime}$ . Then $S_{3}$ becomes a p.o.
semigroup by introducing the following order-relation $P$ :

$a^{i}b^{j}>a^{m}b^{n}$

if and only if
$a^{i}>a^{m}$ or $a^{i}=a^{m}$ and $b^{j}>b^{n}$

Since $ab^{2}$ and $ab$ are non-comparable in $P$ in spite of $(ab^{2})(ab)=a^{2}b^{8}>$

$a^{2}b^{2}=(ab)(ab),$ $P$ does not satisfy the condition $(E)$ .
Now, in $S_{3}^{\prime\prime}$ we define the another order-relation:

$b^{n+1}>b^{n}$ $(n\geqq 1)$ ,

then we get the non-separating linear extension of $P$.
But we cannot realize the partial order $p$ by two linear orders.

Mathematical Institute,
Hokkaido University.


