ON *-MODULAR RIGHT IDEALS OF AN ALTERNATIVE RING

By

Hiroyoshi Hashimoto

It is well known that, in any alternative ring A, the Smiley radical $\operatorname{SR}(A)$ is contained in every modular maximal right ideal M. E. Kleinfeld has shown that every primitive alternative, non-associative ring is a Cayley-Dickson algebra.

Now we introduce the notion of $*$-modularity as follows: a right ideal I of an alternative ring A is called $*$-modular if there exist two elements $a, u \in A$ such that

$$
\begin{equation*}
x+a x+(a, x, u) \in I \tag{1}
\end{equation*}
$$

for all $x \in A$, where (a, x, u) denotes the associator $a x \cdot u-a \cdot x u$ of a, x, u, and in this case we call a a left *-modulo unit of I. Clearly, modularity implies *-modularity.

In this note, we shall show that the above results are also true if we replace modular ideals by *-modular ideals.

If a ring A is assumed to be alternative, then (a, b, c) becomes a skewsymmetric function of its three variables.

The Smiley radical $\mathrm{SR}(A)$ of an alternative ring A is defined as the totality of elements $z \in A$ for which each element of $(z)_{r}$ is right quasiregular.

In the next lemma we develop an important property of $*$-modular right ideals.

Lemma 1. Let I^{*} be a *-modular right ideal of an alternative ring A, and suppose that a left *-modulo unit a of I^{*} is right quasi-regular. Then $I^{*}=A$.

Proof. Let b be a right quasi-inverse of a :

$$
\begin{equation*}
a+b+a b=0 \tag{2}
\end{equation*}
$$

Since a is a left $*$-modulo unit of I^{*} and since $(a, a, u) \doteq 0$, we have $a+a^{2} \in I^{*}$ by putting $x=a$ in (1), while $\left(a+a^{2}\right) b-(a, b, u)=a b+a^{2} b-(a, a, u)$ $-(a, b, u)=a b+a^{2} b-(a, a+b, u)=a b+a^{2} b+(a, a b, u) \in I^{*}$ by (2). Hence it follows that $(a, b, u) \in I^{*}$. On the other hand, if we put $x=b$ in (1), we
have $b+a b+(a, b, u) \in I^{*}$, whence $b+a b \in I^{*}$. Thus $a \in I^{*}$, which implies together with (1) that every $x \in A$ is in I^{*}, that is, $I^{*}=A$.

As any modular maximal right ideal is a member of a set of *modular maximal right ideals, the intersection of all the modular maximal right ideals is contained in the intersection of modular maximal right right ideals.

Now, we show a connection between the intersection of all the *modular maximal right ideals and the radical $\mathrm{SR}(A)$ in an alternative ring A.

Theorem 1. Let A be an alternative ring. Then the Smiley radical $S R(A)$: is contained in the intersection of all the *-modular maximal right ideals M^{*} :

$$
\operatorname{SR}(A) \subseteq \cap M^{*}
$$

Proof. Let $z \in A$ be an element not contained in the intersection $\cap M^{*}$. Then there exists a $*$-modular maximal right ideal M^{*} does not contain z. And we have $A=M^{*}+(z)_{r}$. Let a, u be elements such that $x+a x+(a, x, u) \in M^{*}$ for all $x \in A$, and let m^{*} and z^{\prime} be elements of M^{*} and $(z)_{r}$ respectively such that $a=m^{*}+z^{\prime}$. Then $x+z^{\prime} x+\left(z^{\prime}, x, u\right)=x$ $+\left(a-m^{*}\right) x+\left(a-m^{*}, x, u\right)=x+a x+(a, x, u)-m^{*} x+\left(m^{*}, x, u\right) \in M^{*}$ for all $x \in A$. Thus z^{\prime} is also a left $*$-modulo unit of M^{*}. But, since $M^{*} \neq A$, z^{\prime} is not right quasi-regular by Lemma 1 , and so z^{\prime} is not in $\operatorname{SR}(A)$. This proves our theorem.

Next we refer to the structure of $*$-primitive alternative ring.
An alternative ring is defined to be *-primitive in case it contains a *-modular maximal right ideal whose quotient is zero.

Lemma 2. The quotient $\left(I^{*}: A\right)=\left\{x \in A ; A x \subseteq I^{*}\right\}$ of a *-modular right ideal I^{*} is an ideal of A.

Proof. The *-modularity of I^{*} assures the existence of $a, u \in A$ with the property that $x+a x+(a, x, u) \in I^{*}$ for every $x \in A$. Since $a x \in I^{*}$ for $x \in\left(I^{*}: A\right)$, we have $x+(a, x, u)=x+a \cdot u x-a u \cdot x \in I^{*}$. And further $u x$ $+a \cdot u x+(a, u x, u) \in I^{*}$. Combining this with $u x \in I^{*}$, we obtain $a \cdot u x \in I^{*}$ and eventually $x \in I^{*}$. Hence, for any $y \in A, A \cdot x y$ and $A \cdot y x$ are both in I^{*}.

By the light of this lemma, it is clear that A is *-primitive if and only if A has a *-modular maximal right ideal which contains no nonzero two-sided ideals.

An alternative ring is called simple if it has no nonzero proper twosided ideals and is not a nil ring.

The following lemma is due to E. Kleinfeld [1].
Lemma 3. A simple alternative ring is either a Cayley-Dickson algebra or associative.

Most results in primitive alternative rings which were stated in [2] are also true in our *-primitive case under a slight modification of the modularity.

We obtain the following:
Theorem 2. Every *-primitive, alternative, non-associative ring A is a Cayley-Dickson algebra.

Proof. We may prove, with the help of the proof in primitive case [2], that every *-modular maximal right ideal M^{*} of A is zero. And so, it is enough only to show that A is a simple alternative ring. For any left *-modulo unit a of $M^{*}, a+a^{2}=0$ and then $a^{n}= \pm a$ for every integer $n \geq 1$. It shows that a is not nilpotent, and hence A is simple by Lemma 3. Therefore, A is a Cayley-Dickson algebra.

Bibliography

[1] E. Kleinfeld, Simple alternative ring, Ann. of Math. vol. 58 (1953), pp. 544-547.
[2] \longrightarrow, Primitive alternative ring and semi-simplicity, Amer. J. of Math. vol. 77 (1955), pp. 725-730.
[3] M. F. Smiley, The radical of an alternative ring, Ann. of Math. vol. 49 (1948), pp. 702-709.

