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§ 1. Introduction. The present paper is a continuation of the one
with the same title “On groups of rotations in Minkowski space I.” [7]
Let M,,, be an n-+1-dimensional Minkowski space whose indicatrix I, is
defined by F(X! X2,-.-, X "*)=1. As I, is an n-dimensional hypersurface
in M,,.,, we may represent I, by m+1 equations involving n parameters
as

=X'w"). (¢=1,2,---,n4+1; a=1,2,---,0)?

Putting A, (X)=F(X)C,,, where C, k—‘é‘aagfi and g, = FF0X'0X",
A, is a symmetric covariant tensor in M,,,. If we denote by 9.s and

A, the induced components of g,; and A, respectively, i.e.
gaﬁ:gsz:Xﬁ ’ Aaﬁr:Az'jk)(az iXr (XJ=0X° /auja),

I, may be considered as an n-dimensional compact Riemannian space
with the fundamental metric tensor g.,, and the Riemannian space is
characterized by existence of a symmetric covariant tensor A,;;. More-
over, it is remarkable that in I, we have

(1-1) ‘ , Réﬁrazsa,era+(gargﬁa;‘gaagﬁr)’
where R,;;=¢..R5%,; and

w5 =222 (g2} 3

Saﬁra:A;.;Ao-rﬂ_A;.raAaaﬁ . )
Also, A, satisfies the relation A, . ,=A.:;,, [6].%

When a centro-affine transformation in M,,,, with its centre at
origin, preserves I,, the transformation is .called a rotation in M

n+1le

1) Numbers in brackets refer to the references at the end of the paper.

2) Throughout the present paper, the Greek indices «, 8, 7,--- are supposed to run over
the range 1, 2,- '

3) Semi- colon is used to represent the covariant differentiation with respect to the
Christoffel symbols made by gas.
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By this transformation every point on I, is transformed into a point on
the same. When an infinitesimal point transformation on I, coincides
with the transformation of such a class, we call it an infinitesimal
rotation on I, [7]. In the previous paper, the present author derived
the fundamental equation of an infinitesimal rotation on I, i.e.

(1'2) ggaﬁznﬂ;ﬁ'{_vﬁ;a:zﬁrAaﬂT ’

and discussed about the integrability conditions of the transformation,
where ¥ denotes Lie differential with respect to an infinitesimal trans-
formation w*=wu"-+7*(u)dt. ‘

‘ The purpose of the present paper is to study the properties of
infinitesimal rotations on I, and develop the structures of »-parameter
Lie groups of the transformations, mainly in connection with the pro-
perties of the symmetric tensor A,.

In §2 we shall state a few remarks on the connections between
properties of I, and those of the ténsor A,;. §3 contains theorems con-
cerning with properties of 7r-parameter groups of infinitesimal rotations
on I,, In 8§84 we shall discuss about the special cases in which the
infinitesimal rotation on I, coincides with a motion or transformation of
other classes. &5 devoted to give the order of the groups when the
infinitesimal rotations on I, preserve the tensor A,;,.

The present author wishes to express his sincere thanks to Dr. A.
Kawaguchi and Dr. Y. Katsurada for their constant guidances and eriti-
cisms, and also thanks to Mr. T. Sumitomo who gave the author many
valuable suggestions.

§2. Preliminary remarks on the structures of I,. Let us denote by
I| A.; || the matrix with elements A,;,, where y denotes the columns, and
a and B the rows. If we consider about the rank of the matrix ||A.:||,
the followings are exceptional cases in our discussions.

Case I. Rank [[A.;||=0. In this case, at every point on I,, A.;,=0
for every «, 8 and 7. Therefore, as we have A, =A,, X X/Xi [6],
it follows that A,,=0 and this means that the considered Minkowski
space is essentially a Euclidean space.

Case II. Rank||A, ||=1. In this case, we have

Aupe Aol (a, B, 7,6 1,2 )
V. a, P, 7,0, T, 0=1,4,°*, N
Arbr Arﬁw a o

On the other hand, by means of the symmetric properties of A.,, it

(2.1) A' def.
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is readily'seen that
(2-2) Saﬁra:A;'ﬁaAarﬁ—A;raAuaﬁ:g”(AarﬁAﬂar_AarrA.Baé) .

Comparing (2.1) and (2.2), we find that S,;;=0. This also implies that
the considered Minkowski space is essentially a Euclidean space [6].

According to the definition, as a rotation in M,,, leaves invariant
the indicatrix I, the transformation preserves the metric of M,,;
However, as we see from the fundamental equation (1.2), in general an
infinitesimal rotation on I, does not preserve the metrie of I, which is
induced from the one of M,,,. If an infinitesimal rotation #*=wu*-+7*(u)dt
coincides with a motion in I, the generating vector 7* should satisfy
the equation 77A4,,,=0. Therefore if an infinitesimal rotation coincides
with a motion in I, the rank of the matrix [|A.s: || is less than the
maximum value 7, and otherwise the transformation must be an identity
transformation. ‘

‘Theorem 2.1. If the rank of the matrie l]A,p,” 18 equal to the
maximum value m, an infinitesimal rotation on I, does mot coznczde
.with a motion in I, except an identity transformation.

 §3. Groups of infinitesimal rotations on I,. Let us denote by G,

the r-parameter group of 1nﬁn1tes1mal rotations on I, and by X, f =%, aaz{
(a=1,2,---,7)* its r linearly independent symbols. Then by means of
the fundamental equations (1.2), we get ' '

(3.1) ' gagaﬁ:77ca>a'ﬁ+77ca>ﬁ~a2277cra>Aaﬁr -

where %, denotes Lie differentiation with respeet to an 1nﬁn1tes1mal
transformation generated by the vector 7%,. . -
~ On.the other hand, from the theory of Lie derivatives, we have
(3.2) Rofsy = Cadliic s
(3.3) | (R4, @) T2, =(8,8,—2,8.) T4, — .58, T3,
‘where T, is an arbitrary tensor and ¢, is a structural constant of G,
and satisfies
Cap="—Cpay  CatCdytCreCd+Coscd=0.
Applying the formula (3.3) to the fundamental tensor g., we get
(3‘4) (gbr 8c)ga'ﬂ = cb?:gagap D

4) Throughout the present paper the Latin indices a, b, ¢, - - take the values 1,2,---, r
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Substituting (3.1) and (8.2) into the left hand side of (3.4), it follows
that ‘

| (21» Bc)gaﬁ:‘ng(’?g@ ,,,9,)——28 (ng) aﬂr)
- =4CnianA aﬁr+2(7)(c)£“ Asr —1syCcAugy) -

Since we have, cbnfgagaﬁ_zcbcv(a)Aaﬂry in consequence of the above
equatlon, (84) gives rise to the relation

(3.5) ’ 20pentayAapr + 2(0te s A s, “7/<rb>8cAaﬁr) =0.
If X,f (a=1,2,---,r) are r generators of G,, it is satisfied that
(be Xc)fE.Xchf—Xchf:cb?xXaf-

Ndw, consider the symbols X,.f (b, ¢c=1,2,---,r) defined by X, f=(X,,
X,)f, then each of them determines a subgroup G, of G, and its generat-
ing vector is cmniy. Since ¢ is constant, it is evident that

(3-6) . gbcgap = »Cb‘;’?(a)a;p -+ Cb?:ﬂ(a)p; a= zcblezx’?ga)Aaﬁr ’

where £,, denotes Lie differentiation with respect to an infinitesimal
transformation determined by a vector ¢27%,. By means.of (3.5) and (3.6),
if each transformation of G, leaves invariant the tensor A.;, namely
L, A.,=0 (¢a=1,2,---,7r), we must have %,.9.,=—=0. Hence we have the
following ' . ’ . ~ ]

Theorem 3.1. If the rank of the matrix || A, || is less than n and
each one-parameter group G,, determined by r generators X,f, leaves
wnvariant the covariant tenwsor A,s;, then Xbc f are symbols of one-para-
meter groups of motions on I,. .

It is well known that, as it follows that

(Xabv Xcd)f:(cagXey C¢£Xf>f=Ca§Ccz ehfy

symbols X,,f determine a group which is either G, itself, or an invariant
subgroup of G, called the derived group of G,. The order of the derived
group is determined by the rank of the matrix [[c.s|| where e denotes the
columns, and a and b the rows. Specially if the rank of the matrix ||c.]|
is equal to =, the derived group coincides with the given group G,.
Then, in consequence of Theorem 3.1 we have

Theorem 3.2. If the rank of the matrix || A || is less than n and an
r-parameter group G, of infinitesimal rotations on I, leaves imvariant
the covariant tensor Az, the derived group is a subgroup of motions
on I,, and G, itself is a group of motions if the 'romk of the matrix ||c.|
18 equal to r. -
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- Since Lie derivatives of g.; do not vanish for an infinitesimal rotation
on I, relations £A4,;,=0, LA%, =0, CA*2 =0 and LA**"=0 are not equivalent
each other. However, in consequence of direct calculations, we can obtain
the following analogous results concerning the mixed type of tensors A%,,
A*% and the contravariant tensor A<, :

Theorem 3.3. If the rank of the matrix ||A., || is less than n and
an r-parameter group G, of infinitesimal rotations on I, leaves invariant
the tensor A%,, the derived group is a subgroup of motions on I, and
itself is a group of motions if rank the of the matrix ||c.i]| ts equal to r.

Proof. As r vectors 7%, (a=1,2,--.,7) generate infinitesimal rota-
tions on I, we have the following equatlon Whlch is equivalent to the
fundamental equation (3.1): :

(3.7) ‘ Lobop = 277ca>rA?ap
Therefore, we may put the right hand side of (8.4) as follows:
(3.8) cbzgagaﬁ == zcb?:"](a)rA?aﬁ .

On the other hand, if we assume that £,4%,=0 (¢=1,2,-..,7), by
means of the symmetric property of A., and (3.1), the left member of
(84) is reduced as follows: .

(o) £)9as=24(2703r ATas) —Lo(2703 Alp)
(3.9) = 2(’7&& oy — Meores 1oy T Neolicoses r — o coor o) Alas
) =A4(Yceyrsehesy— Yoo Nosrse) Alas - ‘
However, as r vectors 7%, (a=1,2,---, r) satisfy the Maurer-Cartan equa-
tion - '
7o) a:“? — 7 aar D = Cxela »
we obtain from (3.9) |
(8.10) L (8, B)Gap =40 Al
Making use of (3.4), (3.8) and (3.10), it follows that
| Ly p =205l w A s =0 .
The last equation 1mp11es the result of Theorem 3.3.

Theorem 3.4. If the rank of the matrix || Aqs || is less than n and
an r-parameter group G, of infinitesimal rotations on I, leaves invariant
the tensor A%, the derived group is a subgroup of motions on I, and
itself is a group of motions if the rank of the matrix ||c.i|| is equal to 7.
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Proof. Multiplying the fundamental equation (8.1) by ¢g*° and sum-
ming for a, we have

(3.11) gaa(gagaﬁ) = 277(“)2"4'?'513 . .
Because of our assumption £,47%=0 (a=1,2,--., r), from (8.11) it follows
that

gbgaagagaﬁ"gagaégbgaﬁ‘l“gaa(gb, 890 =2A7%(8 Neasr — LaBsyr)
On the other hand it is evident that we have from (3.1)
(3.12) 8.9 = — 20, A%, .

Making use of (3.4), (3.12) and the Maurer-Cartan equation, the above
equation gives us

(3.18) 477ga)77gb>saﬂr s = 2Coaniy Ay -

However, from the definition of S,;,; we must have S,s;=—Ss.,s. Since
A, is a symmetrie covariant tensor, comparlng both sides of (3.13), we
should have -

77cra>775’b>Saﬁra=0 and  CunleyAas;=0.
The above equations enable us .to obtain the result of Theorem 3.4.

Finally, with regard to the contravariant tensor A***, we have the
following

Theorem 3.5. If the rank of the matrixz |[A.; || is less than n and
an r-parameter group G, of infinitesimal rotations on I, leaves invariant
the temsor A**", the derived group 1is a subgroup of motions on I, and
itself is a group of motions if the rank of the matrix ||c.i|l is equal to r.

Proof. Multlplylng the fundamental equation (8.1) by g%’ and g‘g8
and summing Wlth respect to a and B, it follows that

(314) ' aagﬂsgagaﬂ - 27](007“4r c.
Because of our assumption 2,47°=0, we have from (3.14)
(o9°°)97(Cagus) — (€ag"")97(L10.p) +97°(L,9°) (Baus) — 9°°(L29°)(829.5)
:2A”E(8b7](a)r_8a77(.b)r‘) _gaagﬁe(gb’ 8a)gl’tﬂ

Substituting (8.12) into the above equation, ‘and making use of (3 4)
and the Maurer-Cartan equation, we find that

(8.15) - Ay (S2 5+S )= 20ba77<c>A .

Since S:f,=—S/; holds good, (8.15) gives rise to the relatlon cbav@A,,,ﬂ,—-O
This implies the result of Theorem 3.5,
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8§ 4. Special calsses of infinitesimal rotations on I,. Since A, is a
gradient vector [6], A.,;=A;. holds good, where A,=g* A,s.. Then it
follows that ' ‘

RN RA = A+ A =(Ag).e.

On the other hand, if »* is the generating vector of an infinitesimal
rotation oh I,, by means of the fundamental relation (1.2), we get
nh=A7. ‘As I, is a compact Riemannian space, if it is an orientable,
in consequence of the theorem of Green, we find from (4.1) and the last
relation that ’

a2 'Jnfada= f As'do=0

If the transformation preserves the vector A,, that is to say, £4,=0,
by means of (4.1) it should be satisfied that (Amﬂ) =0, ie. Aﬁn"—const
Hence, from (4.2) we get A,7°=0.

Conversely, from (4.1) it is evident that if A,7°=0 holds - good, we
have %A4,=0. Consequently we have the following theorem:

Theorem 4.1. In order that an infinitesimal rotation on I, pre-
serves the covariant wvector A, it is mecessary and sufficient that the
generating vector of the tramsformation be orthogonal to the vector A-®.

, Let us suppose: that:-an infinitesimal rotation generated by a vector
7" is a motion on I Then, we should have

(4.3) s =27 Ay =0 .

In ‘this case the vector 7* satisfies the relation »"4,=0." In consequence
of Theorem 4.1, this implies that £4,=0 holds good. Therefore we have

Theorem. 4.2. If an infinitesimal rotation on I, is a motion on I,
the generating wvector is orthogonal to the vector A* and the transforma-
tion preserves the wvector A°. S

Accordlng to the definition of Lie derlvatlves we have

8A 5 =Aupr;® + Aspriat Ausr st Aupalir -

However, by means of the fundamental equation (1.2), we can obtain

(44 A= @0 e

Maklng use of the relation Ausris=Auss,r (cf §1) and (4.4) we find that
Ry = 2407+ 200+ Q0+ Q0]
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Therefore, if A.;,;=0 holds good in I, 29.,=0 gives rise to the relation
BA,ﬁ,—O ‘

On the other hand considering I, as an affine hypersurface in an
n-+1-dimensional affine space and applying the theory of affine differential
geometry, as A. Kawaguchi has shown in [6], it follows that

(4.5) SJIaz,Sr: _{Aaﬂr—

_1‘_2 (gaﬁAr_FgﬁrAa'FgraAﬁ)} ’

(4.6) sua,;;'=araﬁ,.r.—l(2—'n)ax,,ﬁ,ar ,

where QIa,g,_i’Ia,s,ag , and %,;,, denotes covariant derivative of ‘JIaﬁ, with
respect to ©,,.> According to the result obtained by A. Kawaguchi, if
2€,.,.=0 holds good at every point on I, then I, (n=2) is a hyperquadric.
Therefore, in consequence of (4.5) and (4 6), if A.s,;=0 holds good in I,
then the considered Minkowski space M, is equivalent with a Euclldean
space. Thus we have

Theorem 4.3. When A,,.,=0 is satisfied in I, (n=3), if an
infinitesimal rotation is a motion in I, the transformation leaves im-
varian the tensor A.,. ’ '

In the previous paper [7], the present author has shown that the
system of linear partial differential equations determining the group
of infinitesimal rotations on I, is completely integrable and then the
maximum order of the group of infinitesimal rotations on I, is equal to
in(n+1). :

If an infinitesimal rotation on I, comc1des with a motion on I,, the
generating vector 7 should satisfy the condition 7 *A.;;=0. Now, let us
suppose that the rank of the matrix [[A..|| is equal to p, then there
exist p independent conditions. 7 *A,;,=0. Therefore, the order of ‘a sub-
group of motions does not exceed 3n(n-+ 1)—p. However, as was stated
in §2, since p=2 we can see that the order of the subgroup of. motlons
is less than #n(n+1)—1.

On the other hand, according to the theorem proved by K. Yano [10],

in an n-dimensional Riemannian space for n =4, there exists .no: group
of motions of order 7 such that

——n(n 1)+1<7’<——n(n+1)

5) @aﬂ denotes the aﬁine fundamental quantity of the second order, and- Qfa,g, the
fundamental tensor of the third order defined on I,. Cf. W. Blaschke [1].
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and if the Riemannian space admits a group of motions of order 3n(n— 1)
+1, then the group is transitive. =

If we call our attention to the fact that a group of 1nﬁn1tes1mal
rotations on I, is intransitive [6], we have the following

Theorem 4.4. In I, (n=:4), the order of the subg'roup of motions,
conlained in the group of znﬁnzteszmal Totatzons on I does mot exceed
n(n—1).

Remembering the fact that the indicatrix I, is a compact Riemannian
space, in consequence of the theorems concerning affine motion or homo-
thetlc transformation in a compact Riemannian ‘space 2], [8], we get

Lemma 1. If an infinitesimal rotation on I, is an affine motzon
it 1s mecessarily a motion on I,. :

Lemma 2. If an infinitesimal rotation on I, zs a homothetic t'rans-
‘formatzon it 1s necessamly a motion on I,. :

Now, we shall consider the case when an infinitesimal rotation on
I, is a conformal transformation on I,. Then according to the theory
of Lie derivatives, it should be satlsﬁed that [9] -

4.7) , Cg.s =217 Ay =209.4,

where ¢ is a scalar function. Contracting 6°* to the second and third
terms of (4.7), we have 7’A,=ng. Then as 4,,=A,,, it follows that

CA,=A air +Ar77 =N, .

The last relation shows us that if the transformation leaves invariant
the .covariant vector A4;, the scalar function ¢ becomes constant, and from '
(4.7) the transformation is a homothetlc one. Then, by means of Lemma
2, we have . .

Theorem 4.5. When an znﬁnzteszmal rotation on I, is a conformal

transformation, if the transformatzon preserves the covamant vector A,,
1t is mecessarily a motion. :
Next, we shall consider the case when an infinitesimal rotation on
I, is a projective transformatlon on I In. this case it must be satisfied
that [9] : '

(4.8) L{5} = 030, + 6204,
where ¢, be an arbitrary covariant vector.
On the other hand, if the vector 7* is the generating vector of an

infinitesimal rotation on I,, by means of (1.2), we have from the sym-
metric properties of A,; and the relation Acsrs=Aussr
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| )=S0 [(00s) + (€0 — €0p)0]
(4.9) 2

=A%, +7° (01 A%, + 03 A%  —9* Apys) .
Comparing (4.8) with (4.9) we find that
(4.10) 050, + 0705 = Alsy° +77?z(5ffA7pa'+5§A775 —g**Ag.s) .
Therefore, if we contract a and 8 in.(4.10), it follows that (n+1)p,=%A
The last relation gives us that if the transformation leaves invariant 4,,
it becomes that ¢,=0, and from (4.8) we have £{;;}=0. Therefore the
transformatlon becomes an afﬁne motlon Then, by meansﬂ of Lemma 1,
we have

Theorem 4.6. When an infinitesimal rotation on I, is a projective
transformation, if the tramsformation preserves the covariant vector A,
it 1s mecessarily a motion. : - 4

If an nm-dimensional Riemannian space I, is a space of constant curva-
ture, I, is equivalent with a hypersphere in an n-+1-dimensional Euclidean
space and the considered Minkowski space M, ., is essentially’a Euclidean
space [6]. Although a space of constant curvature is an Einstein space,

there exists an Einstein space which is not a space of constant curvature.
Then, we shall consider the case when I, is an Einstein space.

If an infinitesimal rotation w*=wu"-7*(#)ét is a motion or a confbrmal
transformation, as 7* satisfies (4.3) or (4.7) respectively, it follows that
7*Saprs=0. Then, we have from (1.1)

(4.11) , Y Rupo=1"(GurGp0— Gar0p1) -
Multiplying (4.11) by ¢’ and summing for 8 and 7, we get 7 {R,,, 1—n)g.,}

=0. If I, is an Einstein space, substituting the relation Ra,—g g., into

the last equation, we get 7, {R—n(l—n)}=0. Hence, at any point, if
R n(1—mn), then 7, must be zero at the same point. Thus we have

Theorem 4.7. If I, is an Einstein space and R n(1—mn) is satis-
fied at every point on I, an infinitesimal rotation does mot coincide
with a motion or a conformal transformation with respect to the metric
on I, _ .
K. Yano and T. Nagano [12] has shown the following theorem con-
cernlng the transformation in a compact Einstein space:

Theorem:: I. In a compact Einstein: space with negative scalar cur-
vature, there does not exist an imfinitesimal projective transformation,

Also, T. Sumitomo [8] has proved the following theorem concerning
the conformal transformation in a compact Riemannian space:
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Theorem II. In a compact Riemannian manifold M with non-
pasitive constant scalar curvature: R=const.<0, Cy(M) coincides with
I (M) 6)

In consequence of Theorem I and Theorem II, we have

Theorem 4.8. If I, is an' Einstein space with R=n(l—mn), an in-
finitesimal rotation on I, does mot coincide with a confo'rmal and a
p'rogectwe transformatzon wn I,

8 5. Order of groups of inﬁnitesimal rotations on I, preserving A,;;,.
In the following, we shall consider the groups of infinitesimal rotations

on I, such that each element of the gToups preserves one of the ‘tensors
A,,,,S,, A%, AE and AT

Case I. LA%,=0. In this case we have

Aﬁr 7+ A 7 ﬁ+Aﬁﬁ77 v Aﬁr’? 620

Putting
Gy - TO) =0457 48 Ay — 8345,
and we denote by [|T()(5)|| the matrix of elements T()(s), where (§)
denotes the columns and (5) the rows.

Lemma 1. If the rank of the matrix HT(S)(M)” 8 less than n, it
Jollows that A;:5:=0.

Proof. From (51) we can easily see that T(2)(ee)=—0dzid,,°
where «,%«; for 15j. Then we can select from ]}T(e)(ﬂ )|l the follow-
1ng n-rowed square matrix :

1) ( 22) e (

as (24 as az aa C!z

a LN 4

S) —Ag. 0 eeees 0
.

(@) 0 —AL"
. .

Z;)i 0 0 ceoee __Aa'sa'zax

6) Io(M) denotes the connected component of the identical transformations in I(M),
where I(M) is the totality of isometric transformations of M. Cy(M) denotes the connected
component of -the conformal transformations in C(M), where C(M) 1s the totahty of con-
formal transformatlons of M.

7) In the theory of groups in an asymmetric affine connectlon space, ‘1. P. Egorov 8]
proved that ‘“If the rank of matrlxHT(”)(M)II*HB"S 088, -8, ’Il is less than =,

1 Al
then S, ¥=0.", where S, :E(l“ —1I'7,) and I';; are parameters of an affine connection.

The methods of our proof are analogous as those of I.P. Egorov.
8) Indices a;, a; take the values'1,2,---, n.
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Therefore, if the rank of the matrix HT(‘;)(,;;)” is less than », we must
have (—A4,,;*)"=0 and this implies A4.,."*=0. Q.E.D.

Lemma 2.  If the rank of the matriz [|T()(55)|] is less than m it
Sollows that A; .2=0.”

Proof. Noting that al#az, from the symmetric properties of Aﬁ, ,-
we have from (5.1) that T(5)(e,e2) = 02 s+ 0a! A .. Then, if we

suppose that a;<a, we can select from H T()(2)]|| the following n-rowed
square matrix:

(laz) Ga) ore (e oot (ad) (nig)

I e 0
(“21) 0 | A“'l‘;zaz | .

. . *
a) AL
- 1.0 i 3 , .
)| At A x Agam o« 24,5, x A
. . 7 % 0
(P) 0 e EEERRED A

Therefore, by virtue of Lemma 1, if the rank of the matrix || TG)() |
is less than m, we must have 2(4,.%)"=0 and this implies A.;*>=0.
By the same way we can prove A, .**=0 for the case a;>a,. Q.E.D.

Lemama 3. If the rank of the matrix ]]T( Y| ts less than n, it
Sfollows that A, =0.

Proof. Noting that a; %= a,, from the symmetric properties of Ap, ,
we have from (5.1) that T'(5)(.e)= —02iAuq" Then, if we suppose that
a, < a,, we can select from || T(s)(ﬁ‘;) || the followmg n-rowed square matrix:

N (“z '}'z) ('12 zz ..... ay :;) """ ay z:) """ (“2 ay

(S —Agemt 0 e 0
(?l) l O ) '—Aa;a;;l L E

. : * S

a)| - — A,
R | ]

(i:;) E _Aa.zc;:l .
(;1) 0 ---.....-...-..........’ ........ O _Aa.zc;zal

9) In the following, we do not sum up with respect to the indices a; (1=1,2,---, n)..
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Therefore; -if the rank of the matrix [|7'(3)(; )|l is less than %, we must
have (—A4,,.*)"=0 and this implies A .f*=0. By the same way, we can
prove A,;"=0 for the casé a;>a,. ; : Q.E.D.

Lemma 4. If the rank of the matrix ”T( GO s less than n, it
Jollows that A, ;*=0.

Proof. From (5.1), it follows that T(zl)(alz) 24, J——5"‘JA “t,  Then

41“1

we can select from || T'(5)(;%) || the following m-rowed square matrix:

1 (o L) (0‘1 2) eeenn g S e ‘(a; ")

(5) [ —Aa® 0 et e 0

(;1) ¢ 0 Aa.lc:lar . - :

Cl *

) D AL :

o S

(70;1) 0 >ee.. ettt e aea e 0 _‘_.Aa'l-l;lax '
Therefore, if the rank of the matrix ||'T( )(ﬁ,)Hv is less than =, we must
have —(—A,.)"=0 and this implies A, ar=0. Q.E.D..

Summarlzmg the results of above Lemmas, we see that if the rank
of  the matrix NTEGH] is less than n, it follows that A =0 for every
w, B and 7. Consequently, as the maximum order of groups of the in-
finitesimal rotations on I, is equal to in(n-+1) [7], it follows that

- Theorem 5.1. .The order of the group of infinitesimal rotations on
I,, preserving the tensor A;:*, does mot exceed in(n—1).
Case II. LA°.=0. In this case we have
Ay —~AE*9 fe— A5y ﬁ i N U
We put T (E)(“ﬂ) 05 A%, +'o‘ﬁA"‘? —05A%E,; and consider the rank of the matrix
HT(E)(“ﬂ)H 'Making wuse of the analogous way as those in Case I, we
obtain

Lemma -5. If the frank of the matrix || T(G)(°E)]|| s less than n, it
follows that A“‘g =0. ,

Consequently, we obtain the following

Theorem 5.2. The Qrder of the group of infinitesimal rotations on
I,, preserving the tensor A%, does mot exceed }n(n—1).

Case III. 2A.;,=0. In this case we have

- k Aaﬁr;ﬂ?a+Aaﬁrvfa+Aaarﬂfﬁ+Aaﬁa7If7 =0.
We. put . o ' '
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B2 T =0t e 33Ae,+5 Augs . |
and denote by ||7T(3)(.s:)|| the matrix of elements 7(3)(as,), ,Where G)
denotes the columns and (,s5;) the rows. ’

Lemma 6. If the rank of the matriz || T( )(aﬁr)ll is less than m, it
Sollows that A, .. =0.

Proof. Making use of the symmetric properties of Aaﬁ,, we have from
(5.2) that T()(uae)= 2553Aa,alaj+5“‘Aa1alal Then, we can select from
N T(3)(e) |l the following .m-rowed.square matrix: ‘

(alall) (alalz) “““ (a1a1a1) """ (“1“1”)
GOl Aperes 0 wremeereieant 0
@) 0 Ao, :
N *
ar) *x x - % 84, .. *
_ o * :
gl) ) e D | N

Therefore, it the rank of the matrlx || T( )(,,,p,)ll is less than n, we must
have 3(A4.,4,4,)"=0, ie. A, 4o, =0. Q.E.D.

Lemma 7. If the rank of the matrix Tl s less than m, it
follo'ws that A, . .,=0.

- Proof. From (5.2), by means of the symmetrlc propertles of Az,
we have T'(5)(aape,) = 05iAu, 000y + 205i A0 0,0;» Then, if we suppose that a,<a,,
we can select from ||T(§)(,,,9,)H the followmg n-rowed square matrlx

| G G cee e O SPUODR G DE TN A
()| Apage, 0 v eneeees 0

A (51) 0 -Aglagag - o .
:, ‘: ‘ : . * 7 ‘ .
G | - Asiage,
(3 * * % * *  BAsape, * *
: C x 0
PY 0 e veeieeriieaes 0 A,..

Therefore, if the rank of the matrix T3 sr) || is less 'tha;n n, we must
have 8(A,,.,.)"=0, i.e. A,..,=0. By the same way, we can prove A..,q,
=0 for the case a;<a,. Q.E.D.
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Lemma 8. If the rank of the matfrm HT G s || ts less than m, it
Jollows that Aaxaz“s—o '

Proof. In consequence of the symmetrlc property of Az, we may
assume that a,<a,<a, without loss of generality. Thus, we have from

(6.2) that T(5)(ejesas) =025A0 000, + 0% Arjaras +0iArjare,. Then we can select
from ||T(})(.sr) || the followmg n-rowed -square matrix: '

Coras)  Coagas) =7+ Crpanas) ***** Capagag) =7 Cepasas) * 7 ** (nages)

6 1 P T | R L L 0

@) * Asege, » T

. sk ! - k

@) .

. * * L

(g: * - 24, 4,0,

. £ 3 L3

I 24,..., B

< * * 0

";’1) * * * * * * ok % * A,
Therefore, if the rank of the matrix || T()(.s;)]|| is less than n, we must
have 4(A.,.,.,)"=0, ie. 4,.,.,,=0. | Q.E.D.

Summarizing the results of the above Lemmas, we see that if the
rank of the matrix || T()(.s,)|| is less than %, then it follows that A, =0
for every a, 8 and 7. Consequently we have

Theorem 5.3. The order of the group of infinitesimal 'rotatzons on
I, preserving the tensor A,,ﬁ,, does mot ewxceed in(n—1).

Case IV.  QA*7=0. In this case we can easily obtain the following
theorem by means of the analogous way as in Case III:

Theorem 5.4. The order of the group of infinitesimal rotations on
I,, preserving the tensor A*#", does mot exceed im(n—1).

Department of Mathematics, Faculty of Science,
Hokkaido University, Japan.
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