ON THE RATIOS OF THE NORMS DEFINED BY MODULARS

By

Tetsuya SHIMOGAKI

§1. Let R be a modulared semi-ordered linear space and m(x) $(x \in R)$ be a modular¹⁾ on R. Since $0 \le m(\xi x)$ is a non-trivial convex function of real number $\xi \ge 0$ for every $0 \ne x \in R$, we can define two kinds of norms by the modular m as follows:

(1.1)
$$||x|| = \inf_{\xi > 0} \frac{1 + m(\xi x)}{\xi}, \quad |||x||| = \inf_{m(\xi x) \le 1} \frac{1}{|\xi|} \quad (x \in R).$$

The former of them is said to be the first norm by m and the latter to be the second (or modular) norm by m.

Let \overline{R}^m be the modular conjugate space of R and \overline{m} be the conjugate modular²⁾ of m. Then we can also define the norms on \overline{R}^m by \overline{m} as above. It is well-known [4; §40] that if R is semi-regular³⁾ the first norm by the conjugate modular \overline{m} is the conjugate one of the second norm by m and the second norm by \overline{m} is the conjugate one of the first norm by m. Since $\|\cdot\|$ and $\||\cdot\|\|$ are semi-continuous, they are reflexive [3]. We have always $\|\|x\|\| \le \|x\| \le 2\|\|x\|\|$ for all $x \in R$, that is, $1 \le \frac{\|x\|}{\|\|x\|\|} \le 2$ for all $0 \ne x \in R$.

When the ratios of these two norms are equal to a constant number, i.e. $\frac{||x||}{|||x|||} = \gamma$ holds for each $0 \neq x \in R$, S. Yamamuro [8] and I. Amemiya [1] succeeded in showing that the modular *m* is of L^{p} -type essentially, i.e. $m(\xi x) = \xi^{p} m(x)$ for all $x \in R$ and $\xi \ge 0$, where $1 \le p$.

In the earlier paper [7] the author investigated the case that the

2) \overline{R}^m is the totality of all linear functionals \overline{a} on R such that $\inf_{\substack{\lambda \in A \\ x \in A}} |\overline{a}(x_\lambda)| = 0$ for every $x_{\lambda \downarrow \lambda \in A} 0$ and $\sup_{m(x) \leq 1} |\overline{a}(x)| < +\infty$. The conjugate modular \overline{m} of m on \overline{R}^m is defined as $\overline{m}(\overline{a}) = \sup_{x \in \overline{R}} \{\overline{a}(x) - m(x)\} \quad (\overline{a} \in \overline{R}^m).$

3) R is said to be semi-regular, if $\overline{a}(x)=0$ for all $\overline{a} \in \overline{R}^m$ implies x=0.

¹⁾ For the definition of a modular see [4]. The notations and terminologies used here are the same as in [4 or 7].

ratios satisfy the condition:

(1.2)
$$\inf_{0 \neq x \in \mathbb{R}} \frac{||x||}{|||x|||} > 1$$

and proved that it is equivalent to uniform finiteness of both m and \overline{m} , provided that R is non-atomic.

In an Orlicz space $L_{\phi}^{*}(G)^{4}$, which is one of the concrete examples of modulared semi-ordered linear spaces, the similar results concerning the ratios were found independently by D. V. Salekhov in [6] under more restricted circumstances.

In this paper we shall consider the following conditions on the ratios of the norms by a modular m:

(1.3)
$$\frac{||x||}{|||x|||} < 2 \quad \text{for all } 0 \neq x \in R;$$

or

(1.4)
$$\sup_{0 \neq x \in R} \frac{||x||}{|||x|||} < 2$$

and study their relations to the properties of the modular m. We shall show in §2 that if the condition (1.3) is satisfied, then either $m(\xi x) < \xi^2 m(x)$ (for all $\xi > 1$ and $x \in R$ with $m(x) \ge 1$), or $m(\xi x) > \xi^2 m(x)$ (for all $\xi > 1$ and $x \in R$ with $+\infty > m(x) \ge 1$) holds, provided that R is non-atomic. And as for (1.4) we shall show in §3 that (1.4) implies that either $m(\xi x) \le \xi^p m(x)$. for all $\xi \ge 1$ and $x \in R$ with $m(x) \ge 1$ or $m(\xi x) \ge \xi^{p'} m(x)$ for all $\xi \ge 1$ and $x \in R$ with $m(x) \ge 1$ holds, where p, p' are real numbers with $1 \le p < 2 < p' \le$ $+\infty$, provided that R is non-atomic.

The difference between the conditions (1.2) and (1.4) exists in the point of their topological properties, that is, the former of them remains valid for any modular m' equivalent⁵⁾ to the original one except a finite dimensional space, but the later dose not hold in general. Thus we can not obtain the explicit conditions equivalent to (1.4) with respect to the modular m in general case. For a modular of unique spectra, however, we shall estimate $\sup_{0 \neq x \in \mathbb{R}} \frac{||x||}{|||x|||}$ and $\inf_{0 \neq x \in \mathbb{R}} \frac{||x||}{|||x|||}$ exactly in §4 by applying the results obtained in §§2 and 3.

Throughout this paper we denote by R a modulared semi-ordered linear space and by m a modular on R. For any $p \in R$ we denote by [p]

⁴⁾ For the definition of Orlicz space $L_{\phi}^{*}(G)$ see [2] or [9].

⁵⁾ Two modulars m and m' on R are called *equivalent*, if their norms are equivalent to each other.

a projection operator defined by $p:[p]x = \bigcup_{n=1}^{\infty} (n|p| \frown x)$ for all $0 \le x \in R$. R is called to be non-atomic, if any $0 \neq a \in R$ is decomposed into a=b+csuch that $|b| \frown |c|=0$, $b \neq 0$ and $c \neq 0$. Since m(x+y)=m(x)+m(y) for any $x, y \in R$ with $|x| \frown |y|=0$, $a \in R$ with $m(a) < +\infty$ can be decomposed into a=[p]a+(1-[p])a for some $p \in R$ such that m([p]a)=m((1-[p])a), if R is non-atomic. Here we note that $m(\xi x)$ is a continuous function of $\xi \in [0, \eta]$ for each $x \in R$, if $m(\eta x) < +\infty$, because $m(\xi x)$ is a positive convex function of $\xi \ge 0$ for each $x \in R$.

§ 2. We put for every
$$x \in R$$
 with $m(x) < +\infty$
(2.1) $\pi_+(x) = \inf_{\varepsilon > 0} \frac{1}{\varepsilon} \{m((1+\varepsilon)x) - m(x)\}$

and

(2.2)
$$\pi_{-}(x) = \sup_{\varepsilon > 0} \frac{1}{\varepsilon} \{m(x) - m((1-\varepsilon)x)\},$$

and for $x \in R$ with $m(x) = +\infty$ we put (2.3) $\pi_+(x) = \pi_-(x) = +\infty$.

Then it follows from the definitions that $0 \le \pi_{-}(x) \le \pi_{+}(x)$ for all $x \in R$ and both $\pi_{+}(\xi x)$ and $\pi_{-}(\xi x)$ are non-decreasing functions of $\xi \ge 0$ for every $x \in R$ and are orthogonally additive, that is, $\pi_{\pm}(x+y) = \pi_{\pm}(x) + \pi_{\pm}(y)$ if $x \perp y^{\circ}$, $x, y \in R$. Furthermore $\pi_{+}(\xi x)$ is a right-hand continuous function of $\xi \ge 0$ for every $x \in R$, since $m(\xi x)$ is a convex function of $\xi \ge 0$. In fact, we have for each $\xi_0 \ge 0$ $\lim_{\xi + \xi_0} \pi_{+}(\xi x) = \inf_{\xi > \xi_0} \left[\inf_{\varepsilon > 0} \frac{1}{\varepsilon} \{m((1+\varepsilon)\xi x) - m(\xi x)\} \right] = \inf_{\varepsilon > 0} \left[\inf_{\xi > \xi_0} \frac{1}{\varepsilon} \{m((1+\varepsilon)\xi_0 x) - m(\xi_0 x)\} \right] = \inf_{\varepsilon > 0} \frac{1}{\varepsilon} \{m((1+\varepsilon)\xi_0 x) - m(\xi_0 x)\} = \pi_{+}(\xi_0 x)$, if $m(\alpha \xi_0 x) < +\infty$ for some $\alpha > 1$. If $m(\alpha \xi_0 x) = +\infty$ for all $\alpha > 1$ or $m(\xi_0 x) = +\infty$, we have $\pi_{+}(\xi_0 x) = +\infty$ and $\lim_{\xi + \xi_0} \pi_{+}(\xi x) = \pi_{+}(\xi_0 x)$. Similarly $\pi_{-}(\xi x)$ is a left-hand continuous function of ξ for every $x \in R$, that is, $\lim_{\xi + \xi_0} \pi_{-}(\xi x) = \pi_{-}(\xi_0 x)$ for each $\xi_0 \ge 0$.

We put also

 $S = \{x : x \in R, ||| x ||| = 1\},$

 $S_m = \{x : x \in R, m(x) = 1\}$ and $S_c = \{x : x \in S, m(x) < 1\}$.

From the definition of the second norm it is clear that $S = S_m \cup S_c$, $S_m \cap S_c = \phi$ and $m(\xi x) = +\infty$ for all $x \in S_c$ and $\xi > 1$.

⁶⁾ Two elements x, y are called *mutually orthogonal*, if $|x| \cap |y| = 0$ and then we write $x \perp y$. For a subset A of R, A^{\perp} denotes the set of all $x \in R$ with $x \perp y$ for all $y \in A$.

Lemma 1. We have ||x||=2 for $x \in S$ if and only if $x \in S_m$ and $\pi_-(x) \leq 2 \leq \pi_+(x)$.

Proof. If ||x||=2 for $x \in S$, then we have by the formula (1.1) $2\xi \leq 1+m(\xi x)$ for every $\xi > 0$. This implies m(x)=1 and $\frac{1-m(\xi x)}{1-\xi} \leq 2$ $\leq \frac{m(\eta x)-1}{\eta-1}$ for every $0 < \xi < 1 < \eta$. It follows therefore $\pi_{-}(x) \leq 2 \leq \pi_{+}(x)$. Conversely $\pi_{-}(x) \leq 2 \leq \pi_{+}(x)$ implies $\frac{m(x)-m(\xi x)}{1-\xi} \leq 2 \leq \frac{m(\eta x)-m(x)}{\eta-1}$ for every $0 < \xi < 1 < \eta$, which yields $2\xi \leq 1+m(\xi x)$ for all $\xi > 0$ in virtue of m(x)=1. Hence we have ||x||=2. Q.E.D.

Lemma 2. We have $\pi_{-}(x) > 2$ for $x \in S_{m}$, if and only if ||x|| < 2 and $||x|| = \inf_{\frac{1}{2} \le \xi < 1} \frac{1 + m(\xi x)}{\xi}$.

Proof. If $\pi_{-}(x) > 2$ for $x \in S_{m}$, then we have for some $0 < \xi < 1$ $2 < \frac{1-m(\xi x)}{1-\xi}$, which implies $2 > \frac{1+m(\xi x)}{\xi}$ and ||x|| < 2. Since $\pi_{+}(x) \ge \pi_{-}(x)$ > 2, we obtain $\frac{m(\eta x)-1}{\eta-1} \ge \pi_{-}(x) > 2$ for all $\eta > 1$. It follows from above that $\frac{1+m(\eta x)}{\eta} > 2$ for $\eta > 1$ and $||x|| = \inf_{\frac{1}{2} < \xi < 1} \frac{1+m(\xi x)}{\xi}$. Conversely let ||x|| < 2, $||x|| = \inf_{\frac{1}{2} < \xi < 1} \frac{1+m(\xi x)}{\xi}$ and $x \in S_{m}$, then there exists ξ_{0} ($0 < \xi_{0} < 1$) such that $2 > \frac{1+m(\xi_{0}x)}{\xi_{0}}$. This implies $2 < \frac{1-m(\xi_{0}x)}{1-\xi_{0}}$ and $\pi_{-}(x) > 2$. Q.E.D. Lemma 3. We have $\pi_{+}(x) < 2$ for $x \in S$ if and only if ||x|| < 2 and

 $||x|| = \inf_{1 < \xi} \frac{1 + m(\xi x)}{\xi}.$

Proof. If $x \in S$ and $\pi_+(x) < 2$, then we have $m(\xi_0 x) < +\infty$ for some $1 < \xi_0$ by the definition of $\pi_+(x)$. Thus we have $x \in S_m$. The remainder of the proof can be obtained by the similar way as above. Q.E.D.

Now we put

$$S_{*} = \left\{ x : x \in S, ||x|| = \inf_{\frac{1}{2} \le \xi < 1} \frac{1 + m(\xi x)}{\xi} \right\}$$

and

$$S^* = \left\{ x : x \in S, ||x|| = \inf_{1 < \xi} \frac{1 + m(\xi x)}{\xi} \right\}$$

It is clear by Lemmata 1-3 that $S_* \cup S^* = S$, $S_c \subset S_*$ and that $x \in S_* \cap S^*$ implies ||x|| = 2.

The following lemma plays essential rôle in this paper.

Lemma 4. If there exist mutually orthogonal elements $x, y \in R$ with $x \in S_*$ and $y \in S^*$, then there exists an element $z \in S$ such that ||z||=2.

Proof. If ||x||=2 (or ||y||=2) holds, then the above assertion is clearly true. Hence we suppose ||x||<2 and ||y||<2. We put for every positive number α with $0 \le \alpha \le 1$

(2.4)
$$\varphi(\alpha) = \sup_{\|\|\alpha x + \beta y\|\| = 1} \beta.$$

Since $y \in S^*$ implies m(y)=1, it is easily seen that $\varphi(\alpha)$ is a continuous function of α $(0 \le \alpha \le 1)$ and if α runs decreasingly from 1 to 0, $\varphi(\alpha)$ does increasingly from ξ_0 to 1, where $\xi_0 = \sup_{m(\xi y)=1-m(x)} \xi$.

Now we put
$$z_{\alpha} = \alpha x + \varphi(\alpha) y$$
. It is clear that $z_{\alpha} \in S_m$ and

(2.5) $\pi_{\pm}(z_{\alpha}) = \pi_{\pm}(\alpha x) + \pi_{\pm}(\varphi(\alpha)y) \quad \text{for all } 0 \le \alpha \le 1.$

By Lemma 3, ||y|| < 2 and $y \in S^*$ imply

(2.6) $\pi_{-}(z_{0}) \leq \pi_{+}(z_{0}) = \pi_{+}(y) < 2.$

And if $x \in S_m$, then we have by Lemma 2

(2.7) $\pi_{-}(z_{1}) = \pi_{-}(x) + \pi_{-}(\xi_{0}y) \geq \pi_{-}(x) > 2.$

On the other hand, $x \in S_c$ implies $\pi_+(x) = \pi_+(z_1) = +\infty$, because $m(\xi x) = +\infty$ for all $\xi > 1$. Thus we have $||z_1|| = 2$ by Lemma 1, if $\pi_-(z_1) \le 2$. Therefore, we may also suppose that both (2.6) and (2.7) hold good.

In virtue of (2.6) we can put $\alpha_0 = \sup_{\pi_+(z_{\alpha}) < 2, 0 \le \alpha \le 1} \alpha$. For such $\alpha_0 \ge 0$ there exists a sequence of positive numbers such that $0 \le \alpha_n \uparrow_{n=1}^{\infty} \alpha_0$ and $\pi_-(z_{\alpha_n}) \le \pi_+(z_{\alpha_n}) < 2$. We have by (2.5) and by the fact that $1 \ge \alpha' \ge \alpha \ge 0$ implies $0 \le \varphi(\alpha') \le \varphi(\alpha) \le 1$

$$\pi_{-}(z_{\alpha_{n}}) = \pi_{-}(\alpha_{n}x) + \pi_{-}(\varphi(\alpha_{n})y) \geq \pi_{-}(\alpha_{n}x) + \pi_{-}(\varphi(\alpha_{0})y).$$

Since $\pi_{-}(\xi x)$ is left-hand continuous, we obtain

$$2 \geq \overline{\lim_{n \to \infty}} \pi_{-}(z_{\alpha_{n}}) \geq \lim_{n \to \infty} \pi_{-}(\alpha_{n}x) + \pi_{-}(\varphi(\alpha_{0})y) = \pi_{-}(\alpha_{0}x) + \pi_{-}(\varphi(\alpha_{0})y),$$

which implies $\pi_{-}(z_{\alpha_{0}}) \leq 2$. On the other hand, since $\pi_{-}(z_{\alpha_{0}}) \leq 2$ implies $\alpha_{0} < 1$, we can find a sequence $\{\alpha'_{n}\}_{n=1}^{\infty}$ such that $1 \geq \alpha'_{n}\downarrow_{n=1}^{\infty}\alpha_{0}$ and $\pi_{+}(z_{\alpha'_{n}}) \geq 2$. We have also by (2.5)

$$2 \leq \pi_{+}(z_{\alpha'_{n}}) = \pi_{+}(\alpha'_{n}x) + \pi_{+}(\varphi(\alpha'_{n})y) \leq \pi_{+}(\alpha'_{n}x) + \pi_{+}(\varphi(\alpha_{0})y).$$

Since $\pi_+(\xi x)$ is right-hand continuous, we obtain

$$2 \leq \lim_{\overrightarrow{n \to \infty}} \pi_+(z_{\alpha'_n}) \leq \lim_{n \to \infty} \pi_+(\alpha'_n x) + \pi_+(\varphi(\alpha_0) y) = \pi_+(\alpha_0 x) + \pi_+(\varphi(\alpha_0) y),$$

which yields $\pi_+(z_{\alpha_0}) \ge 2$. Therefore we have $\pi_-(z_{\alpha_0}) \le 2 \le \pi_+(z_{\alpha_0})$ and a

fortiori $||z_{\alpha_0}||=2$ by Lemma 1.

Q.E.D.

We denote by S_{xy} the totality of all elements $z \in S$ such that $z = \alpha x + \beta y$ for some $0 \le \alpha, \beta$.

Lemma 5. If there exist mutually orthogonal elements $x, y \in S$ and $z \in S_{x,y}$ such that $x, y \in S^*$ and $z \in S_*$, then there exists $z_0 \in S_{x,y}$ such that $||z_0||=2$.

Proof. Here we may also assume without loss of generality that $\pi_+(x) < 2$, $\pi_+(y) < 2$ and $\pi_-(z) > 2$. We also define $\varphi(\alpha)$ by the formula (2.4) and put $z_{\alpha} = \alpha x + \varphi(\alpha)y$ for $0 \le \alpha \le 1$. It follows from $x, y \in S^*$ that z_{α} belongs to S_m for each $0 \le \alpha \le 1$. Since there exists some $1 > \alpha' > 0$ such that $\pi_-(z) = \pi_-(z_{\alpha'}) > 2$ we can put $\alpha_0 = \inf_{\substack{x_-(x_{\alpha}) \ge 2}} \alpha$. Then we can find a sequence of positive numbers $\{\alpha_n\}_{n=1}^{\infty}$ such that $1 \ge \alpha_n \downarrow_{n=1}^{\infty} \alpha_0$ and $\pi_-(z_{\alpha_n}) \ge 2$ $(n=1, 2, \cdots)$. Since

$$2 \leq \pi_{+}(z_{\alpha_{n}}) = \pi_{+}(\alpha_{n}x) + \pi_{+}(\varphi(\alpha_{n})y) \leq \pi_{+}(\alpha_{n}x) + \pi_{+}(\varphi(\alpha_{0})y)$$

implies

$$2 \leq \lim_{\overline{n \to \infty}} \{\pi_+(\alpha_n x) + \pi_+(\varphi(\alpha_0)y)\} = \pi_+(\alpha_0 x) + \pi_+((\alpha_0)y) = \pi_+(z_{\alpha_0})$$

we have $2 \leq \pi_+(z_{\alpha_0})$. On the other hand, $\pi_+(z_{\alpha_0}) \geq 2$ implies $\alpha_0 > 0$ and hence we can find also a sequence of positive numbers $\{\alpha'_n\}_{n=1}^{\infty}$ such that $0 \leq \alpha'_n \uparrow_{n=1}^{\infty} \alpha_0$ and $\pi_-(z_{\alpha'_n}) < 2$ $(n=1, 2, \cdots)$. Since

$$2 \! > \! \pi_{-}(z_{lpha'_n}) \! = \! \pi_{-}(lpha'_n x) \! + \! \pi_{-}(arphi(lpha'_n) y) \! \ge \! \pi_{-}(lpha'_n x) \! + \! \pi_{-}(arphi(lpha_0) y)$$

implies

$$2 \ge \overline{\lim_{n \to \infty}} \{ \pi_{-}(\alpha'_{n}x) + \pi_{-}(\varphi(\alpha_{0})y) \} = \pi_{-}(\alpha_{0}x) + \pi_{-}(\varphi(\alpha_{0})y) \}$$

we have $2 \ge \pi_{-}(z_{\alpha_{0}})$. Therefore we obtain $\pi_{-}(z_{\alpha_{0}}) \le 2 \le \pi_{+}(z_{\alpha_{0}})$, which implies $||z_{\alpha_{0}}||=2$. Q.E.D.

Here we note that if there exist mutually orthogonal elements $x, y \in S$ and $z \in S_{x,y}$ such that $z \in S^*$ then m(x+y) > 1. Hence applying the similar method as in the proof of Lemma 5, we have

Lemma 6. If there exist mutually orthogonal elements $x, y \in S$ and $z \in S_{x,y}$ such that $x, y \in S_*$ and $z \in S^*$, then there exists $z_0 \in S_{x,y}$ with $||z_0||=2$.

Collecting the results of the above Lemmata, we have Theorem 2.1. In order that the condition (1.3) is satisfied, that is, $\frac{||x||}{||x|||} < 2 \text{ for all } 0 \neq x \in R, \text{ it is necessary and sufficient that either}$ (2.8) $\pi_+(x) < 2$ for all $x \in S$ or

6

(2.9')

€). ⊾.

$$\pi_-(x) \! > \! 2$$
 for all $x \! \in \! S_m$

holds.

Proof. Necessity. When R is one-dimensional, the assertion comes directly from Lemmata 2 and 3. Thus we may assume that the dimension of R is greater than two. Now let $R=N_1\oplus N_2$, where N_i (i=1,2) are normal manifolds and $N_1^{\perp}=N_2$. For an element $x_0 \in N_1 \cap S$ the condition (1.3) implies either $x_0 \in S_*$ or $x_0 \in S^*$.

First let $x_0 \in S_*$. Then Lemma 4 and the condition (1.3) imply $N_2 \supset S \subseteq S_*$, which implies also $N_1 \supset S \subseteq S_*$ by Lemma 4. Therefore we obtain $S \subset S_*$ by Lemma 6. Thus we can see that (2.9') holds good in virtue of Lemma 2.

Secondly let $x_0 \in S^*$, then we have by the same manner $N_2 \subseteq S = S^*$ and $N_1 \subseteq S = S^*$. This implies that (2.8) holds good in virtue of Lemmata 3 and 5. Q.E.D.

Sufficiency. Since $x \in S_c$ implies 1+m(x) < 2, we have ||x|| < 2 for all $x \in S_c$. Thus we can see that Lemmata 2 and 3 assure that (2.8) (or (2.9')) implies the condition (1.3). Q.E.D.

A modular m on R is said to be *finite* if $m(x) < +\infty$ for all $x \in R$. Since we have $S=S_m$, in case R is finite, we have immediately from Theorem 2.1

Corollary 1. Let a modular m be finite. In order that the condition (1.3) holds, it is necessary and sufficient that either the condition (2.8) or

 $\pi_{-}(x) > 2 \quad \text{for all } x \in S$

holds.

In order that we discuss the condition (1.3) more precisely in case of non-atomic R, we need to prove

Lemma 7. If R non-atomic and $S=S^*$, then the modular m is finite.

Proof. If there exists $0 \le x \in R$ with $m(x) = +\infty$, we put $a_0 = \inf_{\substack{m(\xi x) = +\infty \\ m(\xi x) = +\infty}} \xi$ and $x_0 = \alpha_0 x$. It follows $m(\eta x_0) = +\infty$ for all $\eta > 1$ and $m(\xi x_0) < +\infty$ for all $0 \le \xi < 1$. When $m(x_0) < +\infty$ holds, we can find an element $p \in R$ such that $m(\eta[p]x_0) = +\infty$ for all $\eta > 1$ and $m([p]x_0) \le 1$, since R has no atomic elements. For such $[p]x_0$ we have $[p]x_0 \in S_c$, which is inconsistent with $S^* = S$. Now let $m(x_0) = +\infty$ hold. Since R is non-atomic, we can find $p \in R$ with $m(\frac{2}{3}[p]x_0) \le \frac{1}{4}$ and $\lim_{\xi \neq 1} m(\xi[p_0]x_0) = +\infty$. Now we put

T. Shimogaki

 $lpha = rac{1}{\left|\left|\left|rac{2}{3} \left\lceil p
ight
ceil x_0
ight|
ight|
ight|
ight|}
ight|} ext{ and } y = lpha rac{2}{3} \left\lceil p
ight
ceil x_0. ext{ Then we have } 1 < lpha < rac{3}{2} ext{ and } y \in S_m,$

hence

$$\pi_{-}(y) = \pi_{-}\left(\alpha \frac{2}{3} \lfloor p \rfloor \pi_{0}\right) \geq \frac{m\left(\alpha \frac{2}{3} \lfloor p \rfloor x_{0}\right) - m\left(\frac{2}{3} \lfloor p \rfloor x_{0}\right)}{\frac{\alpha - 1}{\alpha}} \geq \frac{1 - \frac{1}{4}}{\frac{1}{3}} > 2$$

This contradicts the assumption: $S=S^*$ by Lemmata 1 and 2. Therefore we have proved that $m(x) < +\infty$ for all $x \in R$. Q.E.D.

Thoreme 2.2. Let R be non-atomic and the condition (1.3) be satisfied, then the modular m satisfies one of the following conditions:

(2.10)
$$m(\xi x) < \xi^2 m(x)$$
 for all $\xi > 1$ and $x \in R$ with $m(x) \ge 1$;

(2.11)
$$m(\xi x) > \xi^2 m(x)$$
 for all $\xi > 1$ and with $+\infty > m(x) \ge 1$.

Proof. In virtue of the foregoing theorem we know that one of the conditions (2.8) or (2.9') is true. First we suppose that (2.8) holds. Then Lemma 7 together with Lemma 3 implies that m is finite. If $m(x)=N+\frac{m}{n}$ (where N, m and n are natural numbers with $m \le n$), we can decompose orthogonally x into $x=\sum_{i=1}^{N-1}x_i+\sum_{j=1}^{n+m}y_j$ such that $m(x_i)=1$ ($i=1, 2, \cdots, N-1$) and $m(y_j)=\frac{1}{n}$ ($j=1, 2, \cdots, n+m$). The number of j satisfying $\pi_+(y_j)\ge 2m(y_j)$ is less than n, because if there exist j_1, j_2, \cdots, j_n with $\pi_+(y_{j_k})\ge 2m(y_{j_k})$ ($k=1, 2, \cdots, n$), we have $\sum_{k=1}^n y_{j_k}\in S_m$ and $\pi_+\left(\sum_{k=1}^n y_{j_k}\right)=\sum_{k=1}^n \pi_+(y_{j_k})\ge \sum_{k=1}^n 2m(y_{j_k})=2m\left(\sum_{k=1}^n y_{j_k}\right)=2$, which is inconsistent with (2.8). Hence we can find $\{j_p\}$ ($1\le p\le m$) such that $\pi_+(y_{j_p})<2m(y_{j_p})$ ($p=1, 2, \cdots, m$). Putting $y_0=\sum_{p=1}^m y_{j_p}$, we obtain $m\left(\sum_{j=1}^{m+n}y_j-y_0\right)=1$ and $\pi_+\left(\sum_{j=1}^{m+n}y_j-y_0\right)<2$. Therefore we have

$$\pi_{+}(x) = \sum_{i=1}^{N-1} \pi_{+}(x_{i}) + \pi_{+} \left(\sum_{j=1}^{m+n} y_{j} - y_{0} \right) + \pi_{+}(y_{0})$$

$$< 2(N-1) + 2 + 2m(y_{0}) = 2\left(N + \frac{m}{n}\right) = 2m(x)$$

hence $\pi_+(x) < 2m(x)$. In general, if 1 < m(x), we can find $\{\alpha_n\}_{n=1}^{\infty}$ with $\alpha_n \downarrow_{n=1}^{\infty} 1$ and $m(\alpha_n x)$ is a rational number for each $n \ge 1$. It follows

$$\pi_+(x) = \lim_{n \to \infty} \pi_+(\alpha_n x) \leq \lim_{n \to \infty} 2m(\alpha_n x) = 2m(x) ,$$

8

hence

(2.12)
$$\pi_+(x) \leq 2m(x) \quad \text{for all } x \in R \text{ with } 1 \leq m(x).$$

Now we put

(2.13)
$$m'_{x}(\xi) = \lim_{\xi \to 0} \frac{m((\xi + \varepsilon)x) - m(\xi x)}{\varepsilon}$$

for each $x \in R$ and $\xi \ge 0$. It is clear that $\xi \cdot m'_x(\xi) = \pi_+(\xi x)$ for all $\xi > 0$ and $x \in R$. (2.12) implies

(2.14)
$$\frac{m'_x(\xi)}{m(\xi x)} \leq \frac{2}{\xi} \quad (\xi > 1)$$

for every $x \in R$ with $m(x) \ge 1$. Integrating both sides of (2.14) from 1 to $\eta > 1$ with respect to ξ , we have

(2.15)
$$\log \frac{m(\eta x)}{m(x)} \leq 2 \log \xi \quad (\eta > 1).$$

In formula (2.15), however, the equal sign does not hold in any case. Indeed, since as is shown above, the set of all ξ satisfying $\xi m'_x(\xi) = \pi_+(\xi x) < 2m(\xi x)$ is dense in $[1, +\infty)$ and $m(\xi x)$ is a continuous function of ξ , there exists an interval $(\xi_0, \eta_0) \subseteq (1, \eta)$ such that

$$\xi m'_x(\xi) = \pi_+(\xi x) < 2m(\xi x)$$

holds for all $\xi \in (\xi_0, \eta_0)$. Therefore we have

$$m(\eta x) < \eta^2 m(x)$$

for all $\eta > 1$ and $x \in R$ with $m(x) \ge 1$.

By the quite same manner we can prove that the condition (2.11) is satisfied, if we assume that the condition (2.9') is true. Q.E.D.

§ 3. Here we consider the case that the norms defined by a modular m satisfy (1.4), that is, $\sup_{0 \neq x \in \mathbb{R}} \frac{||x||}{|||x|||} < 2$. From the results proved in § 2 we have

Theorem 3.1. If the condition (1.4) is satisfied, then either (3.1) $\sup_{x \in S} \pi_+(x) < 2$ or (3.2) $\inf_{x \in S_m} \pi_-(x) > 2$

holds.

Proof. In virtue of Theorem 2.1, we can see that either (2.8) or (2.9') holds. First let (2.8) be true and set $\gamma = \sup_{0 \neq x \in \mathcal{R}} \frac{||x||}{|||x|||}$. Then for

T. Shimogaki

each $x \in S$ and $\varepsilon > 0$, there exists $\varepsilon > 1$ such that $\frac{1 + m(\varepsilon x)}{\varepsilon} < \gamma + \varepsilon$ by Lemma 3. From this

$$\pi_{+}(x) \leq \frac{m(\xi x) - 1}{\xi - 1} < \gamma + \varepsilon$$

follows, if $\gamma + \varepsilon < 2$. Hence we have $\gamma \ge \pi_+(x)$ for all $x \in S$.

On the other hand, we can prove by the same way⁷ that (2.9') together with (1.4) implies (3.2). Q.E.D.

Remark 1. The converse of Theorem 3.1 does not remain true in general. It is easily verified that there exists a modular which does not fulfil (1.4) but satisfies (3.1) (or (3.2)).

Remark 2. As is seen in the proof of Theorem 3.1, it is clear that $\sup_{x \in S} \pi_+(x) \le \gamma \text{ or } \inf_{x \in S_m} \pi_-(x) \ge \frac{\gamma}{\gamma - 1} \text{ holds respectively, where } \gamma = \sup_{0 \neq x \in R} \frac{||x||}{|||x|||} \le 2.$

As for non-atomic R, corresponding to Theorem 2.2, we have

Theorem 3.2. Let R be non-atomic and the condition (1.4) be satisfied, then either

Proof. In virtue of the preceding theorem we need only to verify implications: $(3.1) \rightarrow (3.3)$ and $(3.2) \rightarrow (3.4)$. And these implications can be ascertained by the same manner as in the proof of Theorem 2.2. Here we may choose p, p' as $p=\gamma$ and $p'=\frac{\gamma}{\gamma-1}$ respectively, where $\gamma = \sup_{0 \neq x \in \mathbb{R}} \frac{||x||}{|||x|||}$. Q.E.D.

Remark 3. As is easily verified by calculating ||x|| of $x \in S$, the condition (3.3) is the sufficient one for (1.4) at the same time. On the other hand, (3.4) is not such a one in general.

§4. At last we deal with a modular of unique spectra [4; §54] and estimate exactly $\sup_{0 \neq x \in \mathbb{R}} \frac{||x||}{|||x|||}$ and $\inf_{0 \neq x \in \mathbb{R}} \frac{||x||}{|||x|||}$ as applications of the

7) We note that $2-r\xi \ge \frac{\gamma}{\gamma-1}(1-\xi)$ holds if 1 < r < 2 and $1 < r\xi$.

10

⁸⁾ When $p'=+\infty$, we put $\xi^{\infty}=\infty$ if $\xi>1$.

preceding theorems and those of [7]. An element $0 \le s \in R$ is said to be simple, if $m(s) < +\infty$ and m([p]s)=0 implies [p]s=0. And a modular m is said to be of unique spectra if $m(\xi s) = \int_{[s]} \xi^{\rho(\mathfrak{p})} m(d\mathfrak{p}s)^{\mathfrak{p})}$ for all $\xi \ge 0$ and simple elements $s \in R$. Function spaces $L^{p(t)}$ [5] (where p(t) is a measurable function with $p(t)\ge 1$ $(0\le t\le 1)$): the totality of all measurable functions $\varphi(t)$ such that

(4.1)
$$\int_{0}^{1} |\alpha \varphi(t)|^{p(t)} dt < +\infty \quad \text{for some } \alpha > 0,$$

and sequence spaces $l^{p_{\nu}}$ (where $p_{\nu} \ge 1$ ($\nu \ge 1$)): the totality of all sequences $\mathfrak{x}=(\xi_{\nu})_{(\nu\ge 1)}$ such that

(4.2)
$$\sum_{\nu=1}^{\infty} |\alpha \xi_{\nu}|^{p_{\nu}} < +\infty \quad \text{for some } \alpha > 0.$$

are the examples of modulared spaces whose modulars are of unique spectra, where the modulars are defined as $m(\varphi) = \int_{0}^{1} |\varphi(t)|^{p(t)} dt$ and $m(x) = \sum_{\nu=1}^{\infty} |\xi_{\nu}|^{p_{\nu}}$ respectively. When *m* is of unique spectra, we denote by ρ_{u}, ρ_{l} the upper exponent of $m: \rho_{u} = \sup_{\mathfrak{p} \in \mathfrak{C}} \rho(\mathfrak{p})$ and the lower exponent of $m: \rho_{l} = \inf_{\mathfrak{p} \in \mathfrak{C}} \rho(\mathfrak{p})$ respectively. There exist normal manifolds N_{1}, N_{2} such that $R = N_{1} \oplus N_{2}$ and $\rho(\mathfrak{p})$ is finite for all $\mathfrak{p} \in U_{[N_{1}]}$ and $\rho(\mathfrak{p}) = +\infty$ for all $\mathfrak{p} \in U_{[N_{2}]}$, that is, *m* is singlar in N_{2} . For any $0 \neq x \in N_{2}$ we have ||x|| = |||x||| and $S = S_{*}$. Therefore we obtain

Theorem 4.1. If a modular m is of unique spectra, then we have (with the conventions $\frac{1}{\infty} = 0$ and $\infty^0 = 1$)

$$\sup_{0
eq x \in \mathbb{R}} rac{||x||}{|||x|||} egin{cases} = 2\,, & ext{if} \ \
ho_l \leq 2 \leq
ho_u\,, \ =
ho_u^{rac{1}{
ho_u}} q_u^{rac{1}{q_u}}\,, & ext{if} \ \
ho_u < 2\,, \ =
ho_l^{rac{1}{
ho_l}} q_l^{rac{1}{q_l}}\,, & ext{if} \ \
ho_l > 2\,, \end{cases}$$

where q_u and q_l are real numbers with $\frac{1}{\rho_u} + \frac{1}{q_u} = 1$ and $\frac{1}{\rho_l} + \frac{1}{q_l} = 1$. *Proof.* As $\frac{||x||}{|||x|||} = 1$ for all $0 \neq x \in N_2$, we may consider only the

||| x |||

⁹⁾ \mathfrak{p} is a point of *representation space* \in of R, i.e. the maximal ideal of normal manifolds of R. For N, we denote by $U_{[N]}$ the totality of all $\mathfrak{p} \in \mathfrak{e}$ with $N \in \mathfrak{p}$. $\rho(\mathfrak{p})$ is a continuous function on \in with $\rho(\mathfrak{p}) \ge 1$.

ratios of the norms in N_1 . When $\gamma \leq \rho(\mathfrak{p}) \leq \gamma'$ for all $\mathfrak{p} \in U_{[p]} \subseteq U_{[N_1]}$, then we have for all $x \in R$ $\xi^r m([p]x) \leq m(\xi[p]x) \leq \xi^r m([p]x)$ $(\xi \geq 1)$ and $\eta^r m([p]x) \geq m(\eta[p]x) \geq \eta^{r'}m([p]x)$ $(0 \leq \eta \leq 1)$. From this and Lemma 4 we have $\sup_{0 \neq x \in \mathbb{R}} \frac{||x||}{|||x|||} = 2$, if $\rho_i \leq 2 \leq \rho_u$. Since $\sup_{x \in S} \pi_+(x) < 2$ if and only if $\rho_u < 2$ and $\inf_{x \in S} \pi_-(x) > 2$ if and only if $\rho_i > 2$ for m, we have by Lemmata 2 and 3 that $||x|| \leq \rho_u^{\frac{1}{\rho_u}} q_u^{\frac{1}{q_u}}(x \in S)$ and $||x|| \leq \rho_i^{\frac{1}{\rho_i}} q_i^{\frac{1}{q_i}}$ respectively according to (3.1) and (3.2). Therefore we complete the proof. Q.E.D.

Similarly we can conclude by Theorem 3.1 in [7]

Theorem 4.2. If a modular m is of unique spectra, then we have

$$\inf_{0\neq x\in R} \frac{||x||}{|||x|||} = \operatorname{Min} \left\{ \rho_i^{\frac{1}{\rho_i}} q_i^{\frac{1}{q_i}}, \ \rho_u^{\frac{1}{\rho_u}} q_u^{\frac{1}{q_u}} \right\}.$$

Department of Mathematics, Hokkaido University, Sapporo...

References

- [1] I. AMEMIYA, A characterization of the modulars of L_p -type, Jour. Fac. Sci. Hokkaido Univ., 13 (1954).
- [2] W.A.J. LUXEMBURG, Banach function spaces, Thesis, Delft (Netherlands) (1955).
- [3] T. MORI, I. AMEMIYA and H. NAKANO, On the reflexivity of semi-continuous norms, Proc. Japan Acad., 31 (1955).
- [4] H. NAKANO, Modulared semi-ordered linear spaces, Tokyo (1950).
- [5] H. NAKANO, Topologies and linear topological spaces, Tokyo (1951).
- [6] D. V. SALEKHOV, On the norm of the linear functional in the Orlicz space and on a certain internal characteristic of the L_p -spaces, Dok. Acad. Nauk, URSS, 111, No. 5 (1956).
- [7] T. SHIMOGAKI, On certain property of the norms by modulars, Jour. Fac. Sci. Hokkaido Univ., 13 (1957).
- [8] S. YAMAMURO, On linear modulars, Proc. Japan Acad. 27 (1951).
- [9] A.C. ZAANEN, Linear analysis, Amsterdam. Groningen, New York (1953).