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\S 1. Let $R$ be a modulared semi-ordered linear space and $m(x)$

$(x\in R)$ be a modular1) on $R$ . Since $0\leq m(\xi x)$ is a non-trivial convex
function of real number $\xi\geq 0$ for every $0\neq x\in R$ , we can define two
kinds of norms by the modular $m$ as follows:

(1.1) $||x||=\inf_{\xi>0}\frac{1+m(\xi x)}{\xi}$ , $|||x|||=\inf_{m(\phi)\leq 1}\frac{1}{|\xi|}$ $(x\in R)$ .
The former of them is said to be the first norm by $m$ and the

latter to be the second (or modular) norm by $m$ .
Let $\overline{R}^{m}$ be the modular conjugate space of $R$ and $\overline{m}$ be the con-

jugate modular 2) of $m$ . Then we can also define the norms on $\overline{R}^{m}$ by
$\overline{m}$ as above. It is well-known [4; \S 40] that if $R\dot{r}s$ semi-regular 8) the
first norm by the conjugate modular $’,-\iota$ is the conjugate one of the second
norm by $m$ and the second norm by $\overline{\prime n}$ is the conjugate one of the first
norm by $m$ . Since $||\cdot||$ and $|||\cdot|||$ are semi-continuous, they are reflexive

$[3].Wehavealways\leq 2forall0\neq x\in R.|||x|||\leq||x||\leq 2]||x\{||$
for all $x\in R$ , that is, $1\leq\frac{||x||}{[||x|]|}$

When the ratios of these two norms are equal to a constant number,

i.e. $\frac{||x||}{|[|x|||}=\gamma$ holds for each $0\neq x\in R$ , S. Yamamuro [8] and I. Amemiya

[1] succeeded in showing $\cdot$ that the modular $m$ is of $L^{p}$-type essentially,
i.e. $m(\xi x)=\xi^{p}m(x)$ for all $x\in R$ and $\xi\geq 0$ , where $1\leq p$ .

In the earlier paper[7] the author investigated the case that the
1) For the definition of a modular see [4]. The notations and terminologies used here

are the same as in [4 or 7].

2) $\overline{R}^{m}$ is the totality of all linear functionals $\overline{a}$ on $R$ such that $\inf_{\lambda\in 4}|\overline{a}(x_{\lambda})|=0$ for every
$x_{\lambda}\downarrow\lambda\in A0$ and $\sup_{m(x)1}|\overline{a}(x)|<+\infty$ . The conjugate modular iii of $m$ on $\overline{R}^{m}$ is defined as

$\overline{m}(\overline{a})=\sup_{x\in R}\{\overline{a}(x)-m(x)\}$
$(\overline{a}\in\overline{R}^{m})$ .

3) $R$ is said to be semi-regular, if $\overline{a}(x)=0$ for all $\overline{a}\in\overline{R}^{m}$ implies $x=0$ .
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ratios satisfy the condition:

(1.2) $\inf_{0\neq x\in R}\frac{||x|\{}{[||x\downarrow|\{}>1$ ,

and proved that it is equivalent to uniform finiteness of both $m$ and $\overline{m}$ ,
provided that $R$ is non-atomic.

In an Orlicz space $L_{\Phi}^{*}(G)^{4)}$ , which is one of the concrete examples

of modulared semi-ordered linear spaces, the similar results concerning

the ratios were found independently by D. V. Salekhov in [6] under more
restricted circumstances.

In this paper we shall consider the following conditions on the ratios
of the norms by a modular $m$ :

(1.3) $\underline{||x||}<2$ for all $0\neq x\in R$ ;
$]||x[||$

or
(1.4) $\sup_{0\neq x\in R}\frac{||x||}{[||x[||}<2$ ,

and study their relations to the properties of the modular $m$ . We shall
show in \S 2 that if the condition (1.3) is satisfied, then either $m(\xi x)<\xi^{2}m(x)$

(for all $\xi>1$ and $x\in R$ with $m(x)\geq 1$), or $m(\xi x)>\xi^{2}m(x)$ (for all $\xi>1$ and
$x\in R$ with $+\infty>m(x)\geq 1)$ holds, provided that $R$ is non-atomic. And as
for (1.4) we shall show in 93 that (1.4) implies that either $m(\xi x)\leq\xi^{p}m(x)$ .
for all $\xi\geq 1$ and $x\in R$ with $m(x)\geq 1$ or $m(\xi x)\geq\xi^{p^{\prime}}m(x)$ for all $\xi\geq 1$ and
$x\in R.$ with $m(x)\geq 1$ holds, where $p,$

$p^{\prime}$ are real numbers with $ 1\leq p<2<p^{\prime}\leq$

$+.\infty$ , provided that $R\dot{r}s$ non-atomic.
The difference between the conditions (1.2) and (1.4) exists in the

point of their topological properties, that is, the former of them remains
valid for any modular $m^{\prime}$ equivalent5) to the original one except a..finite
dimensional space, but the later dose not hold in general. Thus we can
not obtain the explicit conditions equivalent to (1.4) with respect to the
modular $m$ in general case. For a modular of unique spectra, however,

we shall estimate $\sup_{0\neq x\in R}\frac{||x||}{|||x|||}$ and $\inf_{0\neq\alpha\in R}\frac{||x||}{|||x|||}$ exactly in \S 4 by applying

the results obtained in gg 2 and 3.
Throughout this Paper we denote by $R$ a modulared semi-ordered

linear space and by $m$ a modular on $R$ . For any $p\in R$ we denote by $[p]$

4) For the definition of Orlicz space $L_{\Phi}^{*}(G)$ see [2] or [91.

5) Two modulars $m$ and $m^{\prime}$ on $R$ are called equivalent, if their norms are equivalent
to each other.
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a projection operator defined by $p:[p]x=\bigcup_{n=1}^{\infty}(n|p|\cap x)$ for all $0\leq x\in R$ . $R$

is called to be non-atomic, if any $0\neq a\in R$ is decomposed into $a=b+c$
such that 1 $b|\cap[c|=0,$ $b\neq 0$ and $c\neq 0$ . Since $m(x+y)=m(x)+m(y)$ for
any $x,$ $y\in R$ with $|x[\cap|y[=0,$ $a\in R$ with $ m(a)<+\infty$ can be decomposed
into $a=[p]a+(1-[p])a$ for some $p\in R$ such that $m([p]a)=m((1-[p])a)$ ,
if $R$ is non-atomic. Here we note that $m(\xi x)$ is a continuous function
of $\xi\in[0, \eta]$ for each $x\in R$ , if $ m(\eta x)<+\infty$ , because $m(\xi x)$ is a positive convex
function of $\xi\geq 0$ for each $x\in R$.

\S 2. We put for every $x\in R$ with $ m(x)<+\infty$

(2.1) $\pi_{+}(x)=\inf_{\epsilon>a}\frac{1}{\epsilon}\{m((1+\epsilon)x)-m(x)\}$

and

(2.2) $\pi_{-}(x)=\sup_{\epsilon>0}\frac{1}{\epsilon}\{m(x)-m((1-\epsilon)x)\}$ ,

and for $x\in R$ with $ m(x)=+\infty$ we Put
(2.3) $\pi_{+}(x)=\pi_{-}(x)=+\infty$ .

Then it follows from the definitions that $0\leq\pi_{-}(x)\leq\pi_{+}(x)$ for all
$x\in R$ and both $\pi_{+}(\xi x)$ and $\pi_{-}(\xi x)$ are non-decreasing functions of $\xi\geq 0$ for
every $x\in R$ and are orthogonally additive, that is, $\pi_{\pm}(x+y)=\pi_{\pm}(x)+\pi_{\pm}(y)$

if $x\perp y^{6)},$ $x,$ $y\in R$ . Furthermore $\pi_{+}(\xi x)$ is a right-hand continuous fcanc-
tion of $\xi\geq 0$ for every $x\in R$, since $m(\xi x)$ is a convex function of $\xi\geq 0$ . In
fact, we have for each $\xi_{0}\geq 0\lim_{\xi\downarrow\xi_{0}}\pi_{+}(\xi x)=\inf_{\xi>\xi_{0}}\pi_{+}(\xi x)=\inf_{\xi>\xi_{0}}[\inf_{\epsilon>0}\frac{1}{\epsilon}\{m((1+\epsilon)\xi x)$

$-m(\xi x)\}]\cdot=\inf_{\epsilon>0}[\inf_{\xi>\xi_{0}}\frac{1}{\epsilon}\{m((1+\epsilon)\xi x)-m(\xi x)\}]=\inf_{\epsilon>0}\frac{1}{\epsilon}\{m((1+\epsilon)\xi_{0}x)-m(\xi_{0}x)\}$

$=\pi_{+}(\xi_{0}x)$ , if $ m(\alpha\xi_{0}x)<+\infty$ for some $\alpha>1$ . If $ m(\alpha\xi_{0}x)=+\infty$ for all $\alpha>I$

or $ m(\xi_{0}x)=+\infty$ , we have $\pi_{+}(\xi_{0}x)=+\infty$ and $\lim_{\text{\‘{e}}+\xi_{0}}\pi_{+}(\xi x)=\pi_{+}(\xi_{0}x)$ . Similarly
$\pi_{-}(\xi x)$ is a left-hand continuous function of $\xi$ for every $x\in R$, that is,
$\lim_{\epsilon+\xi_{0}}\pi_{-}(\xi x)=\pi_{-}(\xi_{0}x)$ for each $\xi_{0}\geq 0$ .

We put also
$S=$ {$x:x\in R$ , Ml $x|||=1$},

$S_{m}=\{x:x\in R, m(x)=1\}$ and $S_{c}=\{x:x\in S, m(x)<1\}$ .
From the definition of the second norm it is clear that $S=S_{m^{\cup}}S_{c},$ $S_{m}\cap S_{c}$

$=\phi$ and $ m(\xi x)=+\infty$
“ for all $x\in S_{c}$ and $\xi>1$ .

6) Two elements $x,$ $y$ are called mutually orthogonal, if $|x|\cap|y|=0$ and then we write
$x\perp y$ . For a subset $A$ of $R,$ $A^{\perp}$ denotes the set of all $x\in R$ with $x\perp y$ for all $y\epsilon A$ .
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Lemma 1. We have $||x||=2$ for $x\in S$ if and only if $x\in S_{m}$ and
$\pi_{-}(x)\leq 2\leq\pi_{+}(x)$ .

Proof. If $||x||=2$ for $x\in S$ , then we have by the formula (1.1)

$2\xi\leq 1+m(\xi x)$ for every $\xi>0$ . This implies $m(x)=1$ and $\frac{1-m(\xi x)}{1-\xi}\leq 2$

$\leq\frac{m(\eta x)-1}{\eta-1}$ for every $ 0<\xi<1<\eta$ . It follows therefore $\pi_{-}(x)\leq 2\leq\pi_{+}(x)$ .
Conversely $\pi_{-}(x)\leq 2\leq\pi_{+}(x)$ implies $\frac{m(x)-m(\xi x)}{1-\xi}\leqq 2\leqq\frac{m(\eta x)-m(x)}{\eta-1}$ for

every $ 0<\xi<1<\eta$ . which yields $2\xi\leqq 1+m(\xi x)$ for all $\xi>0$ in virtue of
$m(x)=1$ . Hence we have II $x||=2$ . Q.E.D.

Lemma 2. We have $\pi_{-}(x)>2$ for $x\in S_{m}$ , if and only if Il $x||<2$ and

II $xI|=\inf_{*\leq\epsilon<1}\frac{1+m(\xi x)}{\xi}$ .
Proof. If $\pi_{-}(x)>2$ for $x\in S_{m}$ , then we have for some $0<\xi<1$

$2<\frac{1-m(\xi x)}{1-\xi}$ , which implies $2>\frac{1+m(\xi x)}{\xi}$ and $||x||<2$ . Since $\pi_{+}(x)\geq\pi_{-}(x)$

$>2$ , we obtain $\frac{m(\eta x)-1}{\eta-1}\geq\pi_{-}(x)>2$ for all $\eta>1$ . It follows from above that

$\frac{1+m(\eta x)}{\eta}>2$ for $\eta>1$ and $||x||=\inf_{*<\xi<1}\frac{1+m(\xi x)}{\xi}$ . Conversely let II $x||<2$ ,

$||x||=\inf_{k<\xi<1}\frac{1+m(\xi x)}{\xi}$ and $x\in S_{m}$ , then there exists $\xi_{0}(0<\xi_{0}<1)$ such that

$2>^{\underline{1+m(\xi_{0}x)}}$ . This implies $2<^{\underline{1-m(\xi_{0}x)}}$ and $\pi_{-}(x)>2$ . Q.E.D.
$\xi_{0}$ $1-\xi_{0}$

Lemma 3. We have $\pi_{+}(x)<2$ for $x\in S$ if and only if 11 $x||<2$ and

$||x||=\inf_{1<\xi}\frac{1+m(\xi x)}{\xi}$ .

Proof. If $x\in S$ and $\pi_{+}(x)<2$ , then we have $ m(\xi_{0}x)<+\infty$ for some
$1<\xi_{0}$ by the definition of $\pi_{+}(x)$ . Thus we have $x\in S_{m}$ . The remainder of
the proof can be obtained by the similar way as above. Q.E.D.

Now we put

$S_{*}=\{x:x\in S,$ $||x||=\inf_{4\leq\xi<1}\frac{1+m(\xi x)}{\xi}\}$

and
$S^{*}=\{x:x\in S$ , Il $x$ Il $=\inf_{1<\xi}\frac{1+m(\xi x)}{\xi}\}$ .

It is clear by Lemmata $1\leftarrow 3$ that $S_{*}\cup S^{*}=S,$ $S_{c}\subset S_{*}$ and that $x\in S_{*}\cap S^{*}$

implies 11 $x||=2$ .
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The following lemma plays essential r\^ole in this paper.

Lemma 4. If there exist mutually orthogonal elements $x,$ $y\in R$ with
$x\in S_{*}$ and $y\in S^{*}$ , then there exis $ts$ an element $z\in S$ such that II $z||=2$ .

Proof. If $||x||=2$ (or $||y||=2$) holds, then the above assertion is
clearly true. Hence we suppose $||x||<2$ and II $y||<2$ . We put for every
positive number $\alpha$ with.O $\leq\alpha\leq 1$

(2.4) $\varphi(\alpha)=\sup_{|||ax+\beta y|||=1}\beta$ .

Since $y\in S^{*}$ implies $m(y)=1$ , it is easily seen that $\varphi(\alpha)$ is a continuous
function of $\alpha(0\leq\alpha\leq 1)$ and if $\alpha$ runs decreasingly from 1 to $0,$ $\varphi(\alpha)$ does
increasingly from $\xi_{0}$ to 1, where $\xi_{0}=\sup_{m(\xi y)=1-m(x)}\xi$ .
Now we put $z_{\alpha}=\alpha x+\varphi(\alpha)y$ . It is clear that $z_{\alpha}\in S_{m}$ and
(2.5) $\pi$ . $(z.)=z.(ax)+z.(\varphi(a)y)$ for all $0\leq\alpha\leq 1$ .
By Lemma 3, II $y||<2$ and $y\in S^{*}$ imply

(2.6) $\pi_{-}(z_{0})\leq\pi_{+}(z_{0})=\pi_{+}(y)<2$ .
And if $x\in S_{m}$ , then we have by Lemma 2
(2.7) $\pi_{-}(z_{1})=\pi_{-}(x)+\pi_{-}(\xi_{0}y)\geq\pi_{-}(x)>2$ .
On the other hand, $x\in S_{c}$ implies $\pi_{+}(x)=\pi_{+}(z_{1})=+\infty$ , because $ m(\xi x)=+\infty$

for all $\xi>1$ . Thus we have Il $z_{1}||=2$ by Lemma 1, if $\pi_{-}(z_{1})\leq 2$ . There-
fore, we may also suppose that both (2.6) and (2.7) hold good.

In virtue of (2.6) we can put
$\alpha_{0}=\sup,\alpha\pi_{+}(z_{\alpha})<20\leq\alpha\leq 1$

For such $\alpha_{0}\geq 0$ there

exists a sequence of positive numbers such that $0\leq\alpha_{n}\uparrow_{n=1}^{\infty}\alpha_{0}$ and $\pi_{-}(z_{\alpha_{n}})$

$\leq\pi_{+}(z_{an})<2$ . We have by (2.5) and by the fact that $1\geq\alpha^{\prime}\geq\alpha\geq 0$ implies
$0\leq\varphi(\alpha^{\prime})\leq\varphi(\alpha)\leq 1$

$\pi_{-}(z_{a_{n}})=\pi_{-}(\alpha_{n}x)+\pi_{-}(\varphi(\alpha_{n})y)\geq\pi_{-}(\alpha_{n}x)+\pi_{-}(\varphi(\alpha_{0})y)$ .
Since $\pi_{-}(\xi x)$ is left-hand continuous, we obtain

$2\geq\varlimsup_{n\rightarrow\infty}\pi_{-}(z_{a_{n}})\geq\lim_{n\rightarrow\infty}\pi_{-}(\alpha_{n}x)+\pi_{-}(\varphi(\alpha_{0})y)=\pi_{-}(\alpha_{0}x)+\pi_{-}(\varphi(\alpha_{0})y)$
,

which implies $\pi_{-}(z_{\alpha_{0}})\leq 2$ . On the other hand, since $\pi_{-}(z_{a_{0}})\leq 2$ implies
$\alpha_{0}<1$ , we can find a sequence $\{\alpha_{n}^{\prime}\}_{n=1}^{\infty}$ such that $1\geq\alpha_{n}^{\prime}\downarrow_{n=1}^{\infty}\alpha_{t)}$ and $\pi_{+}(z_{a_{n}^{\prime}})\geq 2$ .
We have also by (2.5)

$2\leq\pi_{+}(z_{\alpha_{n}^{\prime}})=\pi_{+}(\alpha_{n}^{\prime}x)+\pi_{+}(\varphi(a_{n}^{\prime})y)\leq\pi_{+}(\alpha_{n}^{\prime}\dot{x})+\pi_{+}(\varphi(\alpha_{0})y)$ .
Since $\pi_{+}(\xi x)$ is right-hand continuous, we obtain

$2\leq\varliminf_{n\rightarrow\infty}\pi_{+}(z_{\alpha_{n}^{\prime}})\leq\lim_{n\rightarrow\infty}\pi_{+}(\alpha_{n}^{\prime}x)+\pi_{+}(\varphi(\alpha_{0})y)=\pi_{\vdash}(\alpha_{0}x)+\pi_{+}(\varphi(\alpha_{0})y)$
,

which yields $\pi_{+}(z_{a_{0}})\geq 2$ . Therefore we have $\pi_{-}(z_{a_{0}})\leq 2\leq\pi_{+}(z_{\alpha_{0}})$ and $a$
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fortiori 11 $z_{\alpha_{0}}\{|=2$ by Lemma 1. Q.E.D.
We denote by $S_{xy}$ the totality of all elements zeS such that $z=\alpha x$

$+\beta y$ for some $0\leq\alpha,$ $\beta$ .
Lemma 5. If there exist mutually orthogonal elements $x,$ $y\in S$ and

$z\in S_{x,y}$ such that $x,$ $y\in S^{*}$ and $z\in S_{*}$ , then there exists $z_{0}\in S_{x,y}$ such that
11 $z_{0}|$ ] $=2$ .

Proof. Here we may also assume without loss of generality that
$\pi_{+}(x)<2,$ $\pi_{+}(y)<2$ and $\pi_{-}(z)>2$ . We also define $\varphi(\alpha)$ by the formula (2.4)
and put $z_{\alpha}=\alpha x+\varphi(\alpha)y$ for $0\leq\alpha\leq 1$ . It follows from $x,$ $y\in S^{*}$ that $z_{a}$ be-
longs to $S_{m}$ for each $0\leq\alpha\leq 1$ . Since there exists some $1>\alpha^{\prime}>0$ such that
$\pi_{-}(z)=\pi_{-}(z_{a^{\prime}})>2$ we can put $\alpha_{0}=$

$inf\alpha$ . Then we can find a sequence
$\pi_{-}(z_{a})\geq 2$

of positive numbers $\{\alpha_{n}\}_{n=1}^{\infty}$ such that $1\geq\alpha_{n}\downarrow_{n=1}^{\infty}\alpha_{0}$ and $\pi_{-}(z_{\alpha_{n}})\geq 2(n=1,2$ ,
$)$ . Since

$2\leq\pi_{+}(z_{\alpha_{n}})=\pi_{+}(\alpha_{n}x)+\pi_{+}(\varphi(\alpha_{n})y)\leq\pi_{+}(\alpha_{n}x)+\pi_{+}(\varphi(\alpha_{0})y)$

implies
$2\leq\varliminf_{n\rightarrow\infty}\{\pi_{+}(\alpha_{n}x)+\pi_{+}(\varphi(\alpha_{0})y)\}=\pi_{+}(\alpha_{0}x)+\pi_{+}((\alpha_{0})y)=\pi_{+}(z_{\alpha_{0}})$ ,

we have $2\leq\pi_{+}(z_{a_{0}})$ . On the other hand, $\pi_{+}(z_{a_{0}})\geq 2$ implies $\alpha_{0}>0$ and
hence we can find also a sequence of positive numbers $\{\alpha_{n}^{\prime}\}_{n=1}^{\infty}$ such that
$0\leq\alpha_{n}^{\prime}\uparrow_{n=1}^{\infty}\alpha_{0}$ and $\pi_{-}(z_{\alpha^{\prime}n})<2(n=1,2, \cdots)$ . Since

$2>\pi_{-(z_{\alpha_{n}^{\prime}})=\pi_{-}(\alpha_{n}^{\prime}x)+\pi_{-}(\varphi(\alpha_{n}^{\prime})y)\geq\pi_{-}(\alpha_{n}^{\prime}x)+\pi_{-}(\varphi(\alpha_{0})y)}$

implies
$2\geq\varlimsup_{n\rightarrow\infty}\{\pi_{-}(\alpha_{n}^{\prime}x)+\pi_{-}(\varphi(\alpha_{0})y)\}=\pi_{-}(a_{0}x)+\pi_{-}(\varphi(\alpha_{0})y)$ ,

we have $2\geq\pi_{-}(z_{\alpha_{0}})$ . Therefore we obtain $\pi_{-}(z_{\alpha_{0}})\leq 2\leq\pi_{+}(z_{\alpha_{0}})$ , which implies
$]|z_{a_{0}}]|=2$ . Q.E.D.

Here we note that if there exist mutually orthogonal elements
$x,$ $y\in S$ and $z\in S_{x,y}$ such that $z\in S^{*}$ then $m(x+y)>1$ . Hence applying the
similar method as in the proof of Lemma 5, we have

Lemma 6. If there exist mutually orthogonal elements $x,$ $y\in S$ and
$z\in S_{x,y}$ such that $x,$ $y\in S_{*}$ and $z\in S^{*}$ , then there exists $z_{0}\in S_{x,y}$ with II $z_{0}||=2$ .

Collecting the results of the above Lemmata, we have
Theorem 2.1. In order that the condition (1.3) is satisfied, that $\dot{r}s$ ,

$\frac{||x||}{|||x|||}<2$ for all $0\neq x\in R$ , it $r\dot{s}$ necessary and sufficient that either

(2.8) $\pi_{+}(x)<2$ for all $x\in S$

$or$
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(2.9’)
$\llcorner$

(
$\pi_{-}(x)>2$ for all $x\in S_{m}$

holds.
Proof. Necessity. When $R$ is one-dimensional, the assertion comes

directly from Lemmata 2 and 3. Thus we m\‘ay assume that the dimen-
sion of $R$ is greater than two. Now let $R=N_{1}\oplus N_{2}$ , where $N_{i}(i=1,2)$

are normal manifolds and $N_{1}^{\perp}=N_{2}$ . For an element $x_{0}\in N_{1\cap}S$ the con-
dition (1.8) implies either $x_{0}\in S_{*}$ or $x_{0}\in S^{*}$ .

First let $x_{0}\in S_{*}$ . Then Lemma 4 and the condition (1.3) imply $N_{2\cap}S$

$\subseteq S_{*}$ , which implies also $N_{1\cap}S\subseteq S_{*}$ by Lemma 4. Therefore we obtain
$S\subset S_{*}$ by Lemma 6. Thus we can see that (2.9’) holds good in virtue of
Lemma 2.

Secondly let $x_{0}\in S^{*}$ , then we have by the same manner $N_{2\cap}S=S^{*}$

and $N_{1\cap}S=S^{*}$ . This implies that (2.8) holds good in virtue of Lemmata
3 and 5. Q.E.D.

Sufficiency. Since $x\in S_{c}$ implies $1+m(x)<2$ , we have $||x||<2$ for all
$x\in S_{c}$ . Thus we can see that Lemmata 2 and 3 assure that (2.8) (or $(2.9^{\prime})$ )
implies the condition (1.3). Q.E.D.

A modular $m$ on $R$ is said to be finite if $ m(x)<+\infty$ for all $x\in R$ .
Since we have $S=S_{m}$ , in case $R$ is finite, we have immediately from
Theorem 2.1

Corollary 1. Let a modular $m$ be finite. In order that the condi-
tion (1.3) holds, it is necessary and sufficient that either the condition
(2.8) or
(2.9) $\pi_{-}(x)>2$ for all $x\in S$

holds.
In order that we discuss the condition (1.3) more precisely in case

of non-atomic $R$, we need to prove
Lemma 7. If $R$ non-atomic and $S=S^{*}$ , then the modular $m$ is

finite.
Proof. If there exists $0\leq x\in R$ with $ m(x)=+\infty$ , we put $0_{0}=\inf_{m(\Phi)=+\infty}\xi$

and $x_{0}=\alpha_{0}x$ . It follows $ m(\eta x_{0})=+\infty$ for all $\eta>1$ and $ m(\xi x_{0})<+\infty$ for
all $0\leq\xi<1$ . When $ m(x_{0})<+\infty$ holds, $v^{7}e$ can find an element $p\in R$ such
that $ m(\eta[p]x_{0})=+\infty$ for all $\eta>1$ and $m([p]x_{\sigma})\leq 1$ , since $R$ has no atomic
elements. For such $[p]x_{0}$ we have $[p]x_{0}\in S_{c}$ , which is inconsistent with
$S^{*}=S$. Now let $ m(x_{0})=+\infty$ hold. Since $R$ is non-atomic, we can find

$p\in R$ with $m(\frac{2}{3}[p]x_{0})\leq\frac{1}{4}$ and $\lim_{\xi\uparrow 1}m(\xi[p_{0}]x_{0})=+\infty$ . Now we put
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$\alpha=\frac{1}{|\Vert\frac{2}{3}[p]x_{0}|\Vert}$

and $y=\alpha\frac{2}{3}[p]x_{0}$ . Then -we have $1<\alpha<\frac{3}{2}$ and $y\in S_{m}$ ,

hence

$\pi_{-}(y)=\pi_{-}(\alpha\frac{2}{3}[p]\pi_{0})\geqq\frac{m(\alpha\frac{2}{3}[p]x_{0})-m(\frac{2}{8}[p]x_{0})}{\frac{\alpha-1}{\alpha}}\geq\frac{1-\frac{1}{4}}{\frac{1}{3}}>2$ .

This contradicts the assumption: $S=S^{*}$ by Lemmata 1 and 2. There-
fore we have proved that $ m(x)<+\infty$ for all $x\in R$ . Q.E.D.

Thoreme 2.2. Let $R$ be non-atomic and the condition (1.3) be satis-
fied, then the modular $m$ satisfies one of the following conditions:

(2.10) $m(\xi x)<\xi^{2}m(x)$ for all $\xi>1$ and $x\in R$ with $m(x)\geq 1$ ;

(2.11) $m(\xi x)>\xi^{2}m(x)$ for all $\xi>1$ and with $+\infty>m(x)\geq 1$ .
Proof. In virtue of the foregoing theorem we know that one of

the conditions (2.8) or (2.9’) is true. First we suppose that (2.8) holds.
Then Lemma 7 together with Lemma 3 implies that $m$ is finite. If

$m(x)=N+\frac{m}{n}$ (where $N,$ $m$ and $n$ are natural numbers with $m\leq n$), we can

decompose orthogonally $x$ into $x=\sum_{t=1}^{N-1}x_{i}+\sum_{j=1}^{n+m}y_{j}$ such that $m(x_{i})=1(i=1$ ,

2, $\cdots,$ $N-1$ ) and $m(y_{j})=\frac{1}{n}(j=1,2, \cdots, n+m)$ . The number of $jsatiS_{-}^{-}$

fying $\pi_{+}(y_{j})\geq 2m(y_{j})$ is less than $n$ , because if there exist $j_{1},$ $j_{2},$
$\cdots,$

$j_{n}$

with $\pi_{+}(y_{j_{k}})\geq 2m(y_{j_{k}})(k=1,2, \cdots, n)$ , we have $\sum_{k=1}^{n}y_{j_{k}}\in S_{m}$ and $\pi_{+}(\sum_{k=1}^{n}y_{j_{\dot{k}}})$

$=\sum_{k=1}^{n}\pi_{+}(y_{j_{k}})\geq\sum_{k=1}^{n}2m(y_{j_{k}})=2m(\sum_{k=1}^{n}y_{j_{k}})=2$ , which is inconsistent with (2.8).

Hence we can find $\{j_{p}\}(1\leq p\leq m)$ such that $\pi_{+}(y_{j_{p}})<2m(y_{j_{p}})(p=1,2, \cdots, m)$ .
Putting $y_{0}=\sum_{p=1}^{m}y_{Jp}$ , we obtain $m(\sum_{j=1}^{m+n}y_{j}-y_{0})=1$ and $\pi_{+}(\sum_{j=1}^{m+n}y_{j}-y_{0})<2$ .
Therefore we have

$\pi_{+}(x)=\sum_{i=1}^{N-1}\pi_{+}(x_{i})+\pi_{+}(\sum_{j=1}^{m+n}y_{j}-y_{0})+\pi_{+}(y_{0})$

$<2(N-1)+2+2m(y_{0})=2(N+\frac{m}{n})=2m(x)$ ,

hence $\pi_{+}(x)<2m(x)$ . In general, if $1<m(x)$ , we can find $\{\alpha_{n}\}_{n=1}^{\infty}$ with
$\alpha_{n}\downarrow_{n=1}^{\infty}1$ and $m(\alpha_{n}x)$ is a rational number for each $n\geq 1$ . It follows

$\pi_{+}(x)=\lim_{n\rightarrow\infty}\pi_{+}(\alpha_{n}x)\leq\lim_{n\rightarrow\infty}2m(\alpha_{n}x)=2m(x)$ ,
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hence
(2.12) $\pi_{+}(x)\leq 2m(x)$ for all $x\in R$ with $1\leq m(x)$ .

Now we put

(2.13) $m_{x}^{\prime}(\xi)=\lim_{\epsilon+0}\frac{m((\xi+\epsilon)x)-m(\xi x)}{\epsilon}$

for each $x\in R$ and $\xi\geq 0$ . It is $\wedge clear$ that $\xi\cdot m_{x}^{\prime}(\xi)=\pi_{+}(\xi x)$ for all $\xi>0$ and
$x\in R$ . (2.12) implies

(2.14) $\frac{m_{x}^{\prime}(\xi)}{m(\xi x)}\leq\frac{2}{\xi}$ $(\xi>1)$

for every $x\in R$ with $m(x)\geq 1$ . Integrating both sides of (2.14) from 1 to
$\eta>1$ with respect to $\xi$, we have

(2.15) log $\underline{m(\eta x)}\leq 2$ log $\xi$ $(\eta>1)$ .
$m(x)$

In formula (2.15), however, the equal sign does not hold in any case.
Indeed, since as is shown above, the set of all $\xi$ satisfying $\xi m_{x}^{\prime}(\xi)=\pi_{+}(\xi x)$

$<2m(\xi x)$ . is dense in $[1, +\infty$ ) and $m(\xi x)$ is a continuous function of $\xi$ ,
there exists an interval $(\xi_{0}, \eta_{0})\subseteq(1, \eta)$ such that

$\xi m_{x}^{\prime}(\xi)=\pi_{+}(\xi x)<2m(\xi x)$

holds for all $\xi\in(\xi_{0}, \eta_{0})$ . Therefore we have
$m(\eta x)<\eta^{2}m(x)$

for all $\eta>1$ and $x\in R$ with $m(x)\geq 1$ .
By the quite same manner we can prove that the condition (2.11) is

satisfied, if we assume that the condition (2.9) is true. Q.E.D.

\S 3. Here we consider the case that the norms defined by a modular

$m$ satisfy (1.4), that is, $\sup_{0\neq x\in R}\frac{||x||}{|||x|||}<2$ . From the results proved in & $2$

we have
Theorem 3.1. If the condition (1.4) is satisfied, then either

(3.1) $\sup_{x\in}\pi_{+}(x)<2$

$or$

(3.2) $\inf_{x\in s_{m}}\pi_{-}(x)>2$

holds.
Proof. In virtue of Theorem 2.1, we can see that either (2.8) or

(2.9) holds. First let (2.8) be true and set $\gamma=\sup_{0\neq x\in R}\frac{||x||}{|||x|||}$ . Then for
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each $x\in S$ and $\epsilon>0$ , there exists $\xi>1$ such that $\frac{1+m(\xi x)}{\xi}<\gamma+\epsilon$ by
Lemma 3. Frcm this

$\pi_{+}(x)\leq\frac{m(\xi x)-1}{\xi-1}<\gamma+\epsilon$

follows, if $\gamma+\epsilon<2$ . Hence we have $\gamma\geq\pi_{+}(x)$ for all $x\in S$.
On the other hand, we can prove by the same way7) that (2.9)

together with (1.4) implies (3.2). Q.E.D.
Remark 1. The converse of Theorem 3.1 does not remain true in

general. It is easily verified that there exists a modular which does not
fulfil (1.4) but satisfies (3.1) (or (8.2)).

Remark 2. As is seen in the proof of Theorem 3.1, it is clear that
$\sup_{x\in}\pi_{+}(x)\leq\gamma$ or $\inf_{x\in s_{m}}\pi_{-}(x)\geq\frac{\gamma}{\gamma-1}$ holds respectively, where $\gamma=\sup_{0\neq x\in R}\frac{||x|[}{[||x\}||}$

$<2$ .
As for non-atomic $R$, corresponding to Theorem 2.2, we have
Theorem 3.2. Let $R$ be non-atomic and the condition (1.4) be satis-

fied, then either
(3.3) $m(\xi x)\leq\xi^{p}m(x)$ for all $\xi\geq 1$ and $x\in R$ with $m(x)\geq 1$ ;
(3.4) $m(\xi x)\geq\xi^{1)^{\prime}}m(x)$ for all $\xi\geq 1$ and $x\in R$ with $m(x)\geq 1$ ,
where $p$ and $p^{\prime}$ are real numbers with $1\leq p<2<p^{\prime}\leq+\infty^{8)}$ .

Proof. In virtue of the preceding theorem we need only to verify
implications: $(3.1)\rightarrow(3.3)$ and $(3.2)\rightarrow(3.4)$ . And these implications can
be ascertained by the same manner as in the proof of Theorem 2.2.

$Herew\gamma=\sup_{0\neq x\in R}\frac{emay||x||}{|||x|||}$.
choose $p,$

$p^{\prime}$ as $ p=\gamma$ and
$p^{\prime}=\frac{\gamma}{\gamma-1}respectivelyQE.D$

.
where

Remark 3. As is easily verified by calculating 11 $x|$ } of $x\in S$, the con-
dition (3.3) is the sufficient one for (1.4) at the same time. On the
other hand, (3.4) is not such a one in general.

\S 4. At last we deal with a modular of unique spectra [4; \S 54]

and estimate exactly $\sup_{0\neq x\in R}\frac{||x||}{|||x|||}$ and $\inf_{0\neq x\in R}\frac{||x||}{|||x|||}$ as applications of the

7) We note that $2-\gamma\xi\geq\frac{\gamma}{\gamma-1}(1-\xi)$ holds if $1<r<2$ and $ 1<\gamma\xi$ .
8) When $ p^{\prime}=+\infty$ , we put $\xi^{\infty}=\infty$ if $\xi>1$ .
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preceding theorems and those of [7]. An element $0\leq s\in R$ is said to be
simple, if $ m(s)<+\infty$ and $m([p]s)=0$ implies $[p]s=0$ . And a modular
$m$ is said to be of unique spectra if $m(\xi s)=\int_{[s]}\xi^{\rho(\phi)}m(d\mathfrak{p}s)^{9)}$ for all $\xi\geq 0$

and simple elements $s\in R$ . Function spaces $L^{p(t)}$ [5] (where $p(t)$ is a
measurable function with $p(t)\geq 1(0\leq t\leq 1))$ : the totality of all measur-
able functions $\varphi(t)$ such that

(4.1) $\int^{1}|\alpha\varphi(t)1^{p(t)}dt<+\infty$ for some $\alpha>0$ ,

and sequence spaces lpv (where $P.\geq 1(\nu\geq 1)$): the totality of all sequences
$\mathfrak{x}=(\xi_{\nu})_{(\nu\geq 1)}$ such that

(4.2) $\sum_{\nu=1}^{\infty}|\alpha\xi_{\nu}|^{p_{\nu}}<+\infty$ for some $\alpha>0$ .
are the examples of modulared spaces whose modulars are of unique

spectra, where the modulars are defined as $m(\varphi)=\int_{0}1|\varphi(t)|^{p(t)}dt$ and

$m(\mathfrak{x})=\sum_{v=1}^{\infty}$ I $\xi_{\nu}|^{p_{\nu}}$ respectively. When $m$ is of unique spectra, $we\backslash $ denote

by $\rho_{u},$ $\rho_{l}$ the upper exponent of $m:\rho_{u}=\sup_{\mathfrak{p}\in\in}\rho(\mathfrak{p})$ and the lower exponent

of $m:\rho_{l}=inf\rho(P)$
respectively. There exist normal manifolds $N_{1},$ $N_{2}$ such

that $R=N_{1}\oplus N_{2}$ and $\rho(\mathfrak{p})$ is finite for all $\mathfrak{p}\in U_{[N_{1}]}$ and $\rho(\downarrow))=+\infty$ for all
$\mathfrak{p}\in U_{[N_{2}]}$ , that is, $m$ is singlar in $N_{2}$ . For any $0\neq x\in N_{2}$ we have 11 $x||$

$=|||x|||$ and $S=S_{*}$ . Therefore we obtain

Theorem 4.1. If a modular $m$ is of unique spectra, then we have

$(with$ the conventions $\frac{1}{\infty}=0$ and $\infty^{0}=1)$

$\sup_{0\neq x\in R}\frac{||x||}{|||x|||}\left\{\begin{array}{ll}=2, & if p_{\iota}\leq 2\leq\rho_{u},\\=\rho_{u^{\frac{1}{\rho_{u}}}}q_{u^{\frac{1}{q_{u}}}}, & if \rho_{u}<2,\\=\rho_{l^{\frac{1}{\rho_{l}}}}q_{l^{\frac{1}{q_{l}}}}, & if \rho_{l}>2,\end{array}\right.$

where $q_{u}$ and $q_{l}$ are real numbers with $\frac{1}{\rho_{u}}+\frac{1}{q_{u}}=1$ and $\frac{1}{\rho_{l}}+\frac{1}{q_{l}}=1$ .

Proof. As $\frac{||x||}{|||x|||}=1$ for all $0\neq x\in N_{2}$ , we may consider only the

9) $\mathfrak{p}$ is a point of representation space $\in$ of $R$ , i.e. the maximal ideal of normal mani-
folds of $R$ . For $N$, we denote by $U_{[N]}$ the totality of all $\mathfrak{p}\in\in$ with $N\in \mathfrak{p}$. $\rho(\mathfrak{p})$ is a con-
tinuous function on $\in$ with $\rho(\mathfrak{p})\geq 1$ .
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ratios of the norms in $N_{1}$ . When $\gamma\leq\rho(\mathfrak{p})\leq\gamma^{\prime}$ for all $\mathfrak{p}\in U_{[p]}\subseteq U_{[N_{1}]}$ , then
we have for all $x\in R\xi^{\gamma}m([p]x)\leq m(\xi[p]x)\leq\xi^{\gamma^{\prime}}m([p]x)(\xi\geq 1)$ and $\eta^{\gamma}m([p]x)$

$\geq m(\eta[p]x)\geq\eta^{\gamma^{\prime}}m([p]x)$ $(0\leq\eta\leq 1)$ . From this and Lemma 4 we have
$sup\underline{||x||}=2$ , if $\rho_{l}\leq 2\leq\rho_{u}$ . Since $\sup_{x\in s}\pi_{+}(x)<2$ if and only if $\rho_{u}<2$

$0\neq x\in R|||x|||$

and $\inf_{il\in S}\pi_{-}(x)>2$ if and only if $\rho_{\iota}>2$ for $m$, we have by Lemmata 2 and

3 that $||x||\leq\rho_{u^{\frac{1}{\rho_{u}}}}q_{u^{\frac{1}{q_{u}}}}(x\in S)$ and 11 $x||\leq\rho_{l^{\frac{\iota}{\rho_{l}}}}q_{l^{\frac{1}{q_{l}}}}$ respectively according to (3.1)

and (3.2). Therefore we complete the proof. Q.E.D.
Similarly we can conclude by Theorem 3.1 in [7]

Theorem 4.2. If a modular $m$ is of unique spectra, then we have

$\inf_{0\neq x\in R}\frac{||x||}{|||x|||}={\rm Min}\{\rho_{l^{\frac{1}{\rho_{l}}}}q_{l^{\frac{1}{q_{l}}}},$
$\rho_{u^{\frac{1}{\rho_{u}}}}q_{u^{\frac{1}{q_{u}}}}\}$ .

Department of Mathematics,
Hokkaido University, Sapporo..
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