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§1. Let R be a modulared semi-ordered linear space and m(x)
(xeR) be a modular® on R. Since 0<m(fx) is a non-trivial convex
function of real number £>0 for every O=xxz¢ R, we can define two
kinds of norms by the modular m as follows:

(1.1) Hx”:infﬁ_—?(@, lizlll= inf -1 (zeR).

mce<1 | €|

The former of them is said to be the first norm by m and the
latter to be the second (or modular) norm by m.

Let R™ be the modular conjugate space of R and m be the con-

. Jugate modular® of m. Then we can also define the norms on R™ by
~m as above. It is well-known [4; §40] that if R is semi-regular® the
Jirst norm by the conjugate modular i is the conjugate one of the second
norm by m and the second morm by m is the conjugate one of the first

norm by m. Since [[-]|] and [||-[|]| are semi-continuous, they are reflexive
[8]. We have always |||z []|<[|z||<2]||«]]] for all z¢ R, that is, 1< L= MZ'!‘]
<2 for all 02 ¢ R. |

When the ratios of these two norms are equal to a constant number,

'”xH’ =7 holds for each 0%« ¢ R, S. Yamamuro [8] and 1. Amemiya

[1] succeeded in showing that the modular m is of L”-type essentially,
i.e. m(éx)=¢&"m(x) for all xc R and £€>0, where 1<p. _ :
In the earlier paper [7] the author investigated the case that the

1) For the definition of a modular see [4]. The notations and terminologies used here
are the same as in [4 or 7].

2) R™ is the totality of all linear functionals @ on R such that 1in§ Ja(z:)|=0 for every
€

leIEAO and sup Ia(w)|<+°o The conjugate modular m of m on K™ is defined as
m(a)= sup {a(x)—m(2)} (@=R™).

3) R is said to be semi- regula'r 1f a(x)=0 for all @ e R™ implies x=0.
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ratios satisfy the condition:

T el
12) | L T

and proved that it is equivalent to uniform finiteness of both m and m,
provided that R is non-atomic.

In an Orlicz space L3%(G)*, which is one of the concrete examples
of modulared semi-ordered linear spaces, the similar results concerning
the ratios were found independently by D. V. Salekhov in [6] under more
restricted circumstances.

In this paper we shall consider the following conditions on the ratios
of the norms by a modular m:

(1.3) A=zl 2 for all 02ueR;
Hlxlll _
or <
| ” ”
& TN

and study their relations to the properties of the modular m. We shall
show in § 2 that if the condition (1.8) is satisfied, then either m(&x)<&*m(x)
(for all £>1 and xeR with m(x)>1), or m(éx)>&m(x) (for all £>1 and
xe R with + oo >m(x)>1) holds, provided that R is mon-atomic. And as
for (1.4) we shall show in § 3 that (1.4) implies that either m(£x)<E*m(x).
for all £€>1 and xe R with m(x)>1 or m(éx)=>&"m(x) for all £>1 and
we R with m(x)>1 holds, where p, p are real numbers with 1<p<2<p'<
—l—oo, provided that R is mom-atomic. .

The difference between the conditions (1 2) and (14) exists in the
point of their topological properties, that is, the former of them remains
valid for any modular m’ equivalent® to the original one except a.finite
dimensional space, but the later dose not hold in general. Thus we can
not obtain the explicit conditions equivalent to (1.4) with respect to the
modular m in general case. For a modular of unique spectra, however,
we shall estimate sup |4l and inf ” 2] exactly in § 4 by applying

oxacz ||| 2 |]] oxacz [|] 2 ||
the results obtained in 8§82 and 3.

Throughout this paper we denote by R a modulared semz-ordered

linear space and by m a modular on R. For any peR we denote by [p]

¥

4) For the definition of Orlicz space L3(G) see [2] or [9]. ‘.
5) Two modulars m and m’ on R are called equivalent, if their norms are equivalent
“to each other. :
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a projection operator defined by p:[p]x:fj(n[p]mx) for all 0<zeR. R

is called to be nom-atomic, if any 0=%-ac R is decomposed into a=b-+tc
such that [b]~[c[=0, b0 and c=0. Since m(x-+y)=mx)+my) for
any z,yeR with [x[~]y|=0, acR with m(a)< + < can be decomposed
into a=[pJa+(1—[p])a for some peR such that m([pJa)=m((1—[p])a),
if R is non-atomic. Here we note that m(éx) is a continuous function
of £€[0, 7] for each xe R, if m(nx)< + oo, because m(éx) is a positive convex
function of £>0 for each zcR.

§2. We put for every zc¢R with m(x) < 4 oo

@y v @=1nf = {m((1+¢)e) —m(@)}
“and v

(2.2) v (@)=sup -~ {m(@)—m((1— )}
and for xe¢R with m(x):+§o we put

(2.3) m @) =7 @)=+

Then it follows from the definitions that 0<rx_ (x)<7r (x) for all
xeR -and both r,(§x) and z_(&x) are non-decreasing functions of €20 for
every xcR and are orthogonally additive, that 1s, r(e+y)=r. (@)+r.(y)
of xly®, x, yeR. Furthermore r (¢x) is a right-hand continuous func-
tion of £>0 for every xcR, since m(éx) is a convex functlon of £>0. In

fact, we have for each £>0 lim n-+($x)-1nf 7r+(5:v)—1nf [ 1nf ——{m((l-l—s)fx)
BV E,

>% L &

_ m(é‘x)}] inf [mf L im(( + e)ex) — m(Sx)}] — inf —-{m((l + 5)5090) m(&,)}

=r, (&), if ’m(anx)<—|—oo for some a>1. If m(asox)——l—oo for all a>1
or m(&yx)= - oo, we have z,(§x)=+c and lim 7 (Ex) =, (&x). Similarly

7_(&x) is a left-hand continuous function of 5 Jor every xzcR, that is,
llmﬂ,' (éx)=mr_(&x) for each £,>0.
~ We put also ,
‘ ' S={x:xzeR, |||z]l]=1},

S,={x:2¢R, 'm(x)—l} and S,={x:xeS, m(x)<1}.
From the definition of the second norm it is clear that S=S,,-8S,, S,,~S,
=¢ and m(fx)=+ oo for all xeS, and £>1.

6) Two elements «, y are called mutually orthogonal, if leﬂly!—O and then we write
#.Lly. For a subset 4 of R, A+ denotes the set of all x€ R with x Ly for all yeA
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Lemma 1. We have |[z||=2 for x¢S if and only if xeS, and
n_ (%) <2<, (x). :

Proof. If |jz||=2 for xcS, then we have by the formula (1.1)
26<1+m(gx) for every £>0. This implies m(x)=1 and 1_1m_(§ﬂ<2

gl”:@_@___l_ for every 0<é<1l<zn It follows therefore = (x)<2<n-+(oc)

n—1
Conversely z_(x)<2<r,(x) implies m(oc)l 'rg(foc) <2< m(7) l'm(oc) for
v.—_
every 0<&<1<«<7y which yields 26<1+m(éx) for all £€>0 in virtue of
m(x)=1. Hence we have |[z||=2. Q.E.D.

Lemma 2. We have n_(x)>2 for aceSm, if and only if [[z]]<2 and
||| = inf 1H74ED)
+ <t<1
Proof. If =_(x)>2 for xzeS,, then we have for some 0<&<1

2<_1_—_q_n__(§aﬂ’ which implies 2>}L"?;_(E_x)_ and [|z|]<2. Since =, (x)=x_(x)

>2, we obtain 27-7’—£7ﬁ)f_—~1~27r_(90)>2 for all >1. It follows from above that
— .

L+m08) ~ 9 for y>1 and ||zl = inf TE7ED - Conversely let [|=l|<2,

3 <e<1

7
lfz|] = inf -li_—g@— and x€S,, then there exists & (0<&;<1) such that

$<t<1
>1_+’§ﬁ§§<z‘i”l. This implies 2<1_1”3(_?fl and =_(2)>2. QED.

: 0 —y

Lemma 3. We have =, (x)<2 for xeS’ if and only if []x][<2 and
[l =inf ————”’2}‘5@ '

Proof. If zeS and r,(x)<2, then we have m(&x)< +co for some
1<¢&, by the definition of z,(x). Thus we have x¢S,. The remainder of

the proof can be obtained by the similar way as above. Q.E.D.

- Now we put
_ S*z{m:xeS, [|z]|= inf _l_"“_m_(é@_}
F<z<1 £
and

* — e —_ 14 m(éx)
S —{w 1xeS, Hx.[[—-mf ———E———} .

It is clear by Lemmata 1-3 that S,~S*=8, S,C S, and that xeS r\S *
implies {|x||=2. :
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The following lemma plays essential role in this paper.

Lemma 4. If there exist mutually orthogonal elements x,ye B with
xeS, and yeS*, then there ewists an element zeS such that ||z||=2.

Proof. If |jz]]=2 (or [Jy]|=2) holds, then the above assertion is
clearly true. Hence we suppose |[[z]|<2 and |[y||<2. We put for every
positive number a with 0<a<1
(24) o(a) = sup

, Wl ez + By =1

Since yeS* implies m(y)=1, it is easily seen that ¢(a) is a continuous
function of a (0<a<1) and if « runs decreasingly from 1 to 0, ¢(«) does

increasingly from &, to 1, where §,= sup ¢&.
. m(Ey)=1 —m(z)

Now we put z,=ax+e¢(a)y. It is clear that z. eS and

(2.6) 7.(2.)=m.(ax)+r . (p(a)y) for all 0<a<1.
By Lemma 3, ||¥||<2 and yeS* imply

(2.6) r_(20) <7, (2o)=m. . (¥)<2.

And vif xzeS,, then we have by Lemma 2 _

2.7 z_(2)=n_x)+r_(Ey)>7_(x)>2.

On the other hand, z¢S, implies 7 (x)=r,(%;)=+ oo, because m(Ex) =+ oo
for all £>1. Thus we have [[z]|=2 by Lemma 1, if = _(2,)<2. There-
fore, we may also suppose that both (2.6) and (2.7) hold good.

In virtue of (2.6) we can put @p = sup «. For such a,>0 there
. 1r+(za)<2,05crs1

exists a sequence of positive numbers such that 0<a,t7 @, and 7_(2,))
<r.(z.,,)<2. We have by (2.5) and by the fact that 1>a’>a>0 implies
0<o(a’ )<g0(a)<1
T _(Za) =7 (0, @) +7_ (S/J(crn)y)/7r (ax)+m_ (90(%)2/)

Since =_(¢x) is left-hand continuous, we obtain

2>1lim 7 _(2, )>11m7z' (@, ) +7 _(p(a)y) =7 _(ae®) + 7 _(p(a0)y) ,
which implies 7_(2.,)<2. On the other hand, since n_(z,)<2 implies
a,<1, we can find a sequence {a4}2, such that 1>aniil.a, and 7, (2.,)=>2.
We have also by (2.5) '

2<7.,(2x, )—m(anw)+7r+(s0(a”)y)<r+(anw)+n+(<p(ao)y)
Since z,(&x) is right-hand continuous, we obtain
2<limr, (z.,)<lim 7, (o) + .. ((aro)y) =7 . (ag) + 7, (P(a0)y)

'n—)oo

which yields =,(2.)>2.° Therefore we have 7_(2,,)< 2<x +.(2.,) and a
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Sfortiori ||z,,||=2 by Lemma 1. Q.E.D.
We denote by S,, the totahty of all elements zeS such that z=ax
+,8y for some 0<a, .

Lemma 5. If there exist mutually orthogonal elements «, yeS and
zeS,,, such that x,yeS* and zeS,, then there exists 2,€S,,, such that
[]20[|=2. . -

Proof. Here we may also assume without loss of generality that
7. (2)<2, 7. (¥)<2 and z_(2)>2. We also define ¢(a) by the formula (2.4)
and put z,=ax+¢(a)y for 0<a<1. It follows from z, ycS* that 2, be-
longs to S,, for each 0<a<1. ~Since there exists some 1>a’>0 such that

r_(8)=n_(2+)>2 we can put oy = inf a«. Then we can find a sequence
7 (Zg)22

of positive numbers {«,};; such that 1>01mlm 1w, and 7_(z, )>2 (n=1,2,
-+). Since
2<n,(z.,)=n (a,®)+7,(p(a,)y) <7, (a,2)+7.(¢(a)y)
implies : ,
2<lim {z, (a,2) +7. (p(an)y)} =7, (a®) +7 . (a)y) =7, (2,)

we have 2<r,(z,). On the other hand, =, (z,)>2 .implies a,>0 and
hence we can find also a sequence of positive numbers {al}>, such that
0<antiid, and 7_(2. )<2 (n=1,2,---). Since '

2>n_(2.,)=n_(ahx)+7n_(p(ad)y) =7 _(al) +r. (plan)y)
implies ’

2zﬁﬁhx%@+wiﬂ%wﬂ=nl%@+wiﬂ%W%

we have 227r_(z,,,°) Therefore we obtaln 7_(24,) <2<r,(2,,), which implies
IEMIES | Q.E.D.

Here we note that 1f there exist mutually orthogonal elements
x,yeS and z€S, , such that z¢S* then m(x+y)>1. Hence applying the
similar method as in the proof of Lemma 5, we have

Lemma 6. If there exist mutually orthogonal elements x,yeS and
zeS,,, such that x,yeS, and zeS*, then there exists 2,eS, , with ]]20”=2.

Collecting the results of the above Lemmata, we have v

Theorem 2.1. In order that the condition (1.3) 1s satisfied, that 18,
el <2 for all 0=x-x¢ R, it is mecessary and suﬁiczent that either

i |if
2.8) | 7. (r)<2 for all xeS

or
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(2.9
holds.

Proof.- Necessity. When R is one-dimensional, the assertion comes
directly from Lemmata 2 and 3. Thus we may assume that the dimen-
sion of R is greater than two. Now let R=N,®N,, where N, (2=1, 2)
are normal manifolds and N{=N,. For an element x,¢N, S the con-
dition (1.8) implies either z,eS, or x,eS*.

First let x,¢S,. Then Lemma 4 and the condition (1.8) imply N, S
= S, which implies also N, S S, by Lemma 4. Therefore we obtain
SCSx by Lemma 6. Thus we can see that (2.9") holds good in virtue of
Lemma 2.

Secondly let x,¢S*, then we have by the same manner N, S=S8*
and N, S=S*. This implies that (2.8) holds good in virtue of Lemmata
8 and 5. " Q.E.D.

Suﬂiczency Since z¢€S, 1mphes 1+m(x)<2, we have [|x|[|<2 for all
xeS,. Thus we can see that Lemmata 2 and 3 assure that (2.8) (or (2.9)
implies the condition (1.3). Q.E.D.

’ A modular m on R is said to be ﬁnzte if m(x)<+ o for all zeR.
Since we have S=S,, in case R is finite, we have immediately from

Theorem 2.1

Corollary 1. Let a modular m be finite. In order that the condi-
tion (1.8) holds, it is mecessary and sufficient that either the condition
(2.8) or
(2.9) . n_(x)>2  for all xzeS
holds. ' : '

In order that we discuss the condition (1.3) more precisely in case
of non-atomic R, we need to prove

r_(x)>2 for all xeS,,

Lemma 7. If R mnon-atomic and S=S*, then the modular m 18
finite.
Proof. If there exists 0<xe R with m(x)= -+ o, we put a,= inf §

} m(Ex)=+oo
and z,=a,x. It follows m(yx,)= -+ for all »>1 and m(éx,)<<+ o for

all 0<£é<1. When m(x,)< 4 o holds, we can find an element pecR such
that m(p[p]r,) =+ for all »>1 and m([p]z,) <1, since R has no atomic
elements. For such [p]x, we have [p]x,€S, which is inconsistent with
S*=S. Now let m(x,)=-+ o hold. Since R is non-atomie, we can find

peR with m( [p]wo) % and lim m(&[p,]x,) = + . Now we put
. €A1 :
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and y=a—§—[p]x0.v Then we have 1<a<—2— and yeS,,

m—[p]xo

hence
0 ) m(av%[p]x(,)—m(%[p]xo) 1-—% ,
= “ >
7_(y) 7r_<oz 3 [p]no/_; | o > T >2,
't 3

This contradicts the assumption: S=S* by Lemmata 1 and 2. There-
fore we have proved that m(x)< + o for all z¢R. - Q.E.D.

Thoreme 2.2. Let R be non-atomic and the condition (1.8) be satis-
fied, then the modular m satisfies one of the following conditions:

(2.10) m(éx)<&m(x) for all £>1 and xe R with m(x)=>1;
(2.11) m(ex)>Em(x)  for all E>1 and with + o >m(x)=1.

Proof. In virtue of the foregoing theorem we know that one of
the conditions (2.8) or (2.9') is true. First we suppose that (2.8) holds.
Then Lemma 7 together with Lemma 38 implies that m is ﬁnite. If

m(x)=N —}——@- (where N m and 7 are natural numbers with m <), we can

decompose orthogonally x into x= le + Zy, such that m(z,)=1 (i=1,
-, N—1) and m(y,)—— (7=1, 5 n+m). The number of j satis-
fying =.,(y;)>2m(y,) is less than =, because if there‘ exist 7y, Ja ) Jn
with =#.(y;)>=2m(y;,) (k=1,2,---,n), we have ’gyjkeSm and z+(]§1yjk>
_-:)ém(y,-k)2]%2m(:zk/,-k)=2m<k§z_‘|'1 y,-k>:2, which is inqonsistent with (2.8)‘.
Hence we can find {J,} (1<p<m) such that =.(y;)) <2m(y;,) (»=1,2, - -, m).
Putting y,= Z Y;,» We obtain m(”ﬁl Y;— ) =1 and =« (mzwyj y0\< 2.

Therefore we have o
N—1 m+m
77.'_,_(%): E 7r+(xi)+7r+(§ yj_yo)+75+(yo)
< 2(N— 1)'+2+2m(y9) = Z(N —|—~%7’—> =2m(x) ,

hence =, (x)<2m(x). " In general, if l<m(x), we can find {an},‘f;1 with
a1 and m(a,x) is a rational number for each n>1. It follows

7, (@)=lim 7, (a,x) <lim 2m(a,x) =2m(x), -
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hence :
(2.12) r.(@®)<2m(x) for all ze R with 1<m(x).
Now we put
(2.18) ‘ m(&)=lim m((§+e)x) —m(Ex)
E>0 &

for each xe¢R and £>0. It isclear that S-m;($)=7t+($x) for all £>0 and
zeR. (2.12) implies ‘

4
2
2.14 Mal®) <2 (e>1
) memy ~ & OV
for every xe R with m(x)>1. Integrating both sides of (2.14) from 1 to
7>1 with respect to & we have :

2.15) log ™) <210g e (>1).
T m(x)

In formula (2.15), however, the equal sign does not hold in any case.
Indeed, since as is shown above, the set of all ¢ satisfying &mi(¢)=r,(éx)
<2m(éx) is dense in [1, + ) and m(éx) is a continuous function of &,
there exists an interval (&0 1) = (1, ) such that '

Emi (&) ==, (§x) <2m(§x)
holds for all &¢(&, 7,). Therefore we have
m(nw) < 7°m(x)
for all »>1 and zc¢ R with m(x)>1.

By the quite same manner we can prove that the condition (2.11) is

satisfied, if we assume that the condition (2.9’) is true.. Q.E.D.

§3. Here we consider the case that the norms defined by a modular

m satisfy (1.4), that is, sup —I—lx—”—<2. From the results proved in §2
owacx [ ] »

we have | _
Theorem 3.1. If the condition (1.4) is satisfied, then either
3.1) , " sup w,.(x) < 2
xzES
or
(8.2) | inf =_(x) > 2
mESm
holds.

Proof. In virtue of Theorem 2.1, we can see that either (2.8) or

(2.9) holds. First let (2.8) be true and set y= sup 1Ed] . Then for
e Tl T
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<r-+e by

each xeS and >0, there exists £>1 such that _—._1"’_7;(596)

Lemma 3. From this

T (x)<

m(éx) 1<r—|—s
£—

1

follows, if y+e<2. Hence we have r>r (x) for all xzeS.
v On the other hand, We can prove by the same way” that (2.9)
together with (1.4) implies (3.2). Q.E.D.

Remark 1. The converse of Theorem 3.1 does not remain true in
general. It is easily verified that there exists a modular which does not
fulfil (1.4) but satisfies (3.1) (or (3.2)). '

Remark 2. As is seen in the proof of Theorem 3.1, it is clear that

r holds respectively, where y= sup ” I
r—1 oo [|[ ]

sup . (@)<y or inf z_(x)>
TESy,

<2
-As for non-atomic R, correspondlng to Theorem 2.2, we have

‘Theorem 3.2. Let R be non-atomic and the condition (1.4) be satis-
fied, then either ' - .

(3.3) m(§x)<&’m(x) for all £=1 and xe R with m(x)>1;
(84) 7 mEx)>e"m(x) for all £>1 and reR with m(x)>1,
where p and p’ are real numbers with 1<p<2<p’' <+ 0¥,

7 Proof. 1In virtue of the preceding theorem we need only to verify
implications: (3.1)—(3.3) and (8.2) >(3.4). And these implications can
be ascertained by the same manner as in the proof of Theorem 2.2.
' T
r—1

o 2] | o
" Tle | D

'Here we may choose p, p' as p=r and p'= respectively, where

Remark 8. As is easily verified by calculatmg [[x]} of xeS, the con-
dition (8.3) is the sufficient one for (1.4) at the same time. On the
other hand, (3.4) is not such a one in general.

§4. At last we deal with a modular of unique spectra [4; §54]

and estimate exactly sup ” I and inf [ ] as applications of the
owsn Tl = o il |

7) We note that 2—r
8) When p'=-+o0, we put £°°—<><> if ¢>1.
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preceding theorems and those of [7]. An element OSSGAR is said to be
simple, if m(s)<+oo and m([p]s)=0 implies [p]s=0. And a modular

m is said to be of unique spectra if m(&s)= f 5”<”>m(dps)95 for all £>0
' ts]

and simple elements scR. Function spaces L?® [5] (where p(t) is a
measurable function with p({)>1 (O<t<1)) the totality of all measur-
able functions ¢(t) such that : o

4.1) f |ap(®)|?Pdt<+ o0  for some a>0,

and sequence spaces [?¥ (Where p,>1 (v=>1)): the totality of all sequences
r=(,)wz1, such that

4.2) i |ag,|?»<+o0  for some a>0.

are the examples of modulared spaces whose modulars are of unique
e .
spectra, where the modulars are defined as m(p) = f | e(t) [P dt and

o . 0 ]
m(r)=D1|&.|?» respectively. When m is of unique spectra, we denote
y=1 . .

by p., o, the upper exponent of m: p,=sup p(p) and the lower exponent
pee

of m: pl_mf o(b) respectively. There exist normal mamfolds N,, N, such
pee

that R=N,®N, and o(p) is finite for all pe Uy, and p(h)=+ o for all

peUpy,;, that is, m is singlar in N,. For any O=x¢ N, we have ||z]]

=|l|=]]] and S=S.. Therefore we obtain ,
Theorem 4.1. If a modular m is of unique spectra, then we have

( with the conventions 1 =0 and o°=1

o0
=2, if m<2<p,,
1

su ” ” ZPuF;qu%‘:y . ’Lf pu<2’
etz (=l | L

=p,719,%, f 0.>2,

~where q, and q, are real numbers with ;‘ —l-‘; =1 and -;—+—(—11—=1.
u u l
Proof. . As leHI =1 for all 0<%x¢ N, we may consider only the
x

9) pis a pomt of frepresentatwn space € of R, i.e. the maximal ideal of normal mani-
folds of R. For N, we denote by Urny the totality of all pe€ with Neyp, o(p) is a con-
tinuous function on € with e(p)=>1.
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ratios of the norms in N,. When y<p(p)<y’ for all pe U, S U,y then

we have for all ze R e'm([ple) <m(g[p]r) <& m([p]x) (6>1) and p"m([p]x)

>m(p[p]e)>7"m([ple) (0<n<1). From this and Lemma 4 we have
[E2| =2, if p,<2<p,. Since supr,(x)<2 if and only if p,<2

ea |[ ] R

and inf = (w)>2 if and only if 0,>2 for m, we have by Lemmata 2 and

xES
8 that ||z]|< pupuququ(xeS) and |[z]|<p, "qu% respectively according to (3.1)
and (8.2). Therefore we complete the proof. Q.E.D.

Similarly we can conclude by Theorem 3.1 in [7]
Theorem. 4.2. If a modular m is of unique spectra, then we have

inf Al = Min {plpiqu?lz, puiq,ﬁl;} . )
oxscr ] 2 [f]
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Hokkaido University, Sapporo..

References

[1] I. AMEMIYA, A characterization of the modulars of Lp-type, Jour. Fac. Sci.
Hokkaido Univ., 13 (1954).
[2] W.A.J. LUXEMBURG, Banach function spaces, Thesis, Delft (Netherlands) (1955).

[3] T. Mori, I. AMEMIYA and H. NAKANO, On the reflexivity of semi-continuous
“norms, Proc. Japan Acad., 31 (1955). : .

[4] H. NAKANO, Modulared semi-ordered linear spaces, Tokyo (1950).

[5] H. NAKANO, Topologies and linear topological spaces, Tokyo (1951).

[6] D.V.SALEKHOV, Omn the norm of the linear functional in the Orlicz space and
on a certain internal characteristic of the Lp-spaces, Dok. Acad. Nauk,

\ URSS, 111, No. 5 (1956). o

[7] T. SHIMOGAKI, On certain property of the norms by modulars, Jour. Fae. Seci.
Hokkaido Univ., 13 (1957).

[8] S. YAMAMURO, On linear modulars, Proc. Japan Acad. 27 (1951).

[9] A.C. ZAANEN, Linear analysis, Amsterdam. Groningen, New York (1953).



