## ON SOME THEOREMS OF THE FOURIER TRANSFORM

By

## Hiroshi ISHIKAWA and Sumiyuki KOIZUMI

- 1. Introduction. Some twenty years ago J. Marcinkiewicz [6] has stated a result about the interpolation of operations without proof. Recently A. Zygmund [9] has completed the theory with a certain application to the theory of Fourier series. This method can be applied to the theory of Fourier transform. This is the purpose of our paper.
- 2. The measure space which we consider is totally  $\sigma$ -finite in the sense of P. R. Halmos [3]. One of the authors [5] has extended a result of A. Zygmund [9] to the case of totally  $\sigma$ -finite measure in the following manner.

Theorem A. Let X and Y be two measure spaces with totally  $\sigma$ -finite measures  $\mu$  and  $\nu$ , respectively. Let h=Tf be a quasi-linear operation defined for all simple functions f in X, with h defined on Y. Suppose that T is simultaneously of weak types (a, a) and (b, b), where  $1 \le a < b < \infty$ . Suppose also that  $\varphi(u)$  is a continuous increasing function for  $u \ge 0$  satisfying the condition:

$$\varphi(0) = 0,$$

(2.2) 
$$\varphi(2u) = O(\varphi(u)),$$

(2.3) 
$$\int_{-\infty}^{\infty} \frac{\varphi(t)}{t^{b+1}} dt = O\left(\frac{\varphi(u)}{u^b}\right),$$

(2.4) 
$$\int_{1}^{u} \frac{\varphi(t)}{t^{a+1}} dt = O\left(\frac{\varphi(u)}{u^{a}}\right),$$

for  $u \rightarrow \infty$  and further

(2.5) 
$$\varphi(2u) = O(\varphi(u)),$$

(2.6) 
$$\int_{t}^{1} \frac{\varphi(t)}{t^{b+1}} dt = O\left(\frac{\varphi(u)}{u^{b}}\right),$$

(2.7) 
$$\int_{0}^{u} \frac{\varphi(t)}{t^{a+1}} dt = O\left(\frac{\varphi(u)}{u^{a}}\right),$$

for  $u\rightarrow 0$ . Then h=Tf belongs to the  $L^{\varphi}$  and we have

(2.8) 
$$\int_{\mathbf{r}} \varphi(|h|) d\nu \leq A_{\varphi} \int_{\mathbf{x}} \varphi(|f|) d\mu,$$

where  $A_{\varphi}$  is a constant independent of f. In particular, the operation T can be uniquely extended to the whole space  $L_{\mu}^{\varphi}$  preserving the relation (2.8).

Another theorem which we need is due to A. P. Calderón and A. Zygmund [1]. This reads as follows.

Theorem B. In the measure space of the same types as in Theorem A, let a quasi-linear operation h=Tf, which is defined for all simple functions f, be weak type (1,1). Then we have for any subset  $Y_0$  of Y with finite  $\nu$ -measure,

(2.9) 
$$\int_{\mathbf{r}_0} |h|^{1-\epsilon} d\nu \leq \frac{A}{\epsilon} \nu (Y_0)^{\epsilon} \left( \int_{\mathbf{x}} |f| d\mu \right)^{1-\epsilon},$$

where  $0 < \varepsilon < 1$  and A is an absolute constant. Further the operation T can be uniquely extended to the whole space preserving the relation (2.9).

3. We shall give a new proof of a theorem due to G. H. Hardy and J. E. Littlewood [4]. Let us suppose that X and Y are one dimensional Euclidean spaces where  $d\mu(x)$  is an ordinary Lebesgue measure on X and  $d\nu(y) = \frac{dy}{y^2}(y \neq 0)$  on Y. We consider a linear operation

(3.1) 
$$h = Tf = y\hat{f} = \frac{y}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{iyt} dt,$$

where f is simple. Then we have

Lemma 1. The operation T defined by (3.1) is of strong type (2, 2). This is equivalent to the Plancherel theorem.

Lemma 2. The operation T defined by (3.1) is of weak type (1, 1). Proof of Lemma 2. We define two sets

$$(3.2) \hspace{3.1em} E_r \!=\! \{y \, \big| \, | \, y \widehat{f} \, | \! > \! r\}$$

and

(3.3) 
$$O_r = \left\{ y \middle| |y| > \frac{\sqrt{2\pi}}{||f||_1} r \right\},$$

where r is any positive number.

It is sufficient to prove that

$$(3.4) \nu(E_r) \leq \frac{M}{r} \int_{-\infty}^{\infty} |f| dx = \frac{M}{r} ||f||_1.$$

By the definition of  $\widehat{f}$ , we have

$$|\widehat{f}| \leq \frac{1}{\sqrt{2\pi}} \int_{\infty}^{\infty} |f(t)| dt = \frac{||f||_1}{\sqrt{2\pi}},$$

from which it follows easily  $E_r \subset O_r$ . Therefore we have

$$u(E_r) \!<\! 
u(O_r) \!=\! 2 \!\!\!\!\! \int\limits_{\sqrt{2\pi} \, r/||f||_1} \!\!\!\!\! rac{dy}{y^2} \!=\! rac{\sqrt{2/\pi} \, ||f||_1}{r} \,.$$

Thus we have proved Lemma 2.

By Theorem A, Lemmas 1 and 2 we get

**Theorem 1.** Let f be a measurable function such that  $\varphi(|f|)$  is  $\mu$ -integrable. Then the Fourier transform  $\hat{f}$  of f can be defined and we have

(3.5) 
$$\int_{-\infty}^{\infty} \varphi(|y\widehat{f}|) \frac{dy}{y^2} \leq A_{\varphi} \int_{-\infty}^{\infty} \varphi(|f|) dx,$$

where  $\varphi(u)$  is a function of Theorem A with a=1 and b=2.

In particular, we have

Theorem 2. If f belongs to  $L^p$  (1<  $p \leq 2$ ), then we have

$$(3.6) \qquad \left(\int_{-\infty}^{\infty} |\widehat{f}| |y|^{p-2} dy\right)^{\frac{1}{p}} \leq A_{p} \left(\int_{-\infty}^{\infty} |f|^{p} dx\right).$$

If  $\varphi(u) = u^r \psi(u)$ , where  $1 < r \le 2$  and  $\psi(u)$  is a positive slowly varying function as  $u \to 0$  and  $u \to \infty$  in the sense of J. Karamata and A. Zygmund [9], then  $\varphi(u)$  satisfies the property of Theorem A. Taking  $\psi(u) = \log^+ u$ , we get the following

Theorem 3. Let f be a function such that

then the Fourier transform  $\hat{f}$  of f can be defined and we have

(3.8) 
$$\int_{-\infty}^{\infty} |\widehat{f}|^p (\log^+ |y\widehat{f}|) |y|^{p-2} dy \leq A_p \int_{-\infty}^{\infty} |f|^p \log^+ |f| dx.$$

4. We shall now interchange the measure functions  $\mu$  and  $\nu$  on X and Y respectively, that is, we take  $d\mu = \frac{dx}{x^2}(x \neq 0)$  and  $d\nu$  as an ordinary Lebesgne measure on X and Y respectively. Then we have

**Theorem 4.** If  $|f|^{p'}|x|^{p'-2}$  belongs to L, then the Fourier transform  $\widehat{f}$  of f exists and we have

(4.1) 
$$\left( \int_{-\infty}^{\infty} |\widehat{f}|^{p'} dy \right)^{\frac{1}{p'}} \leq A_{p'} \left( \int_{-\infty}^{\infty} |f|^{p'} |x|^{p'-2} dx \right)^{\frac{1}{p'}},$$

where p'>2.

Proof of Theorem 4. We have

$$\Big(\int_{-\infty}^{\infty} \mid \widehat{f}\mid^{p'} dy\Big)^{rac{1}{p'}} = \sup_{\parallel g\parallel_{p} \leq 1} \int_{-\infty}^{\infty} \widehat{f} \cdot g \; dy,$$

where p' is a conjugate index of p.

Let  $\hat{g}(t, n)$  be a transacted Fourier transform of g(t), that is,

$$\widehat{g}(t, n) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{n} g(u)e^{-itu} du.$$

Since f is simple, we have

$$\int_{-n}^{n} \widehat{f} \cdot g \ dy = \int_{-\infty}^{\infty} f(t) \widehat{g}(t, n) \ dt$$
$$= \int_{-\infty}^{\infty} f x^{\frac{2}{p} - 1} x \widehat{g} \cdot x^{-\frac{2}{p}} \ dx.$$

By the Hölder inequality and Theorem 2,

$$egin{aligned} \left| \int_{-n}^{n} \widehat{f} \cdot g \; dy 
ight| & \leq \left( \int_{-\infty}^{\infty} |f| \, |x|^{rac{2}{p}-1} \, dx 
ight)^{rac{1}{p'}} \left( \int_{-n}^{n} |x| \, |\widehat{g}|^{p} \, rac{dx}{x^{2}} 
ight)^{rac{1}{p}} \ & \leq A_{p'} \left( \int_{-\infty}^{\infty} |f|^{p'} |x|^{p'-2} \, dx 
ight) \left( \int_{-n}^{n} |g|^{p} \, dx 
ight)^{rac{1}{p}} \ & \leq A_{p'} \left( \int_{-\infty}^{\infty} |f|^{p'} \, |x|^{p'-2} \, dx 
ight)^{rac{1}{p'}}. \end{aligned}$$

Hence we have

$$\left(\int_{-\infty}^{\infty} |\widehat{f}|^{p'} dy\right)^{\frac{1}{p'}} \leq A_{p} \left(\int_{-\infty}^{\infty} |f|^{p'} |x|^{p'-2} dx\right)^{\frac{1}{p'}}.$$

This completes the proof.

Here we remark that the constant  $A_{p'}$  of (4.1) is equal to  $A_p$  of (3.6). Combing Theorem A, Theorem 1 and 4, we get the following

**Theorem 5.** Let f be a measurable function such  $\varphi(|f|)$  is  $\mu$ -integrable. Then the Fourier transform  $\hat{f}$  of f is defined and we have

(4.2) 
$$\int_{-\infty}^{\infty} \varphi(|\widehat{f}|) dy \leq A_{\varphi} \int_{-\infty}^{\infty} \varphi(|xf|) \frac{dx}{x^{2}},$$

where  $\varphi(u)$  is a function of Theorem A with a=2 and b=p',  $(2 < p' < \infty)$ .

5. Finally we shall treat about the class L. Let us consider the measure spaces defined in §3. We begin with the following

**Lemma 3.** Let f belong to L, then we have for any sub-interval with finite  $\nu$ -measure

(5.1) 
$$\int_{I} |y\widehat{f}|^{1-\epsilon} \frac{dy}{y^2} \leq \frac{A}{\epsilon} \nu^{\epsilon}(I) \left( \int_{-\infty}^{\infty} |f| \, dx \right)^{1-\epsilon},$$

where  $0 < \varepsilon < 1$ .

Proof of Lemma 3. This is an immediate consequence of Lemma 2 and Theorem 3.

Let us consider the interval

(5.2) 
$$J_n = \left\{ y \left| \frac{1}{2^n} < |y| < \frac{1}{2^{n-1}} \right\}, \quad (n = 1, 2, \dots), \right\}$$

Then its  $\nu$ -measure becomes

(5.3) 
$$\nu(J_n) = 2 \int_{1/2^n}^{1/2^{n-1}} \frac{dy}{y^2} = 2^n.$$

If we take  $J_n$  as I in Lemma 3, we get

(5.4) 
$$\int_{f} y |y\widehat{f}|^{1-\epsilon} \frac{dy}{y^2} \leq \frac{A}{\epsilon} 2^{n\epsilon} ||f||_{1}^{1-\epsilon}.$$

Therefore we have

$$(5.5) \qquad \int_{|y|<1} |y|^{\delta-\epsilon-1} |\widehat{f}|^{1-\epsilon} dy = \sum_{n=1}^{\infty} 2^{-n\delta_1} \int_{J_n} |y\widehat{f}|^{1-\epsilon} |y|^{-2} dy$$

$$\leq \frac{A}{\epsilon} \sum_{n=1}^{\infty} \frac{1}{2^{-n(\delta_1-\epsilon)}} ||f||_1^{1-\epsilon}$$

$$\leq \frac{A}{\epsilon(\delta_1-\epsilon)} ||f||_1^{1-\epsilon} \quad (\delta_1 > \epsilon).$$

On the other hand if we write

$$I_n = \{y \mid 2^{n-1} < |y| < 2^n\},$$

then its  $\nu$ -measure is  $2^{-n}$ . Thus by similar argument

(5.7) 
$$\int_{|y|>1} |y|^{\delta-\varepsilon-1} |\widehat{f}|^{1-\varepsilon} dy \leq \frac{A}{\varepsilon(\varepsilon-\delta_2)} ||f||_1^{1-\varepsilon} (\delta_2 < \varepsilon).$$

From (5.6) and (5.7) we get the following result.

**Theorem 6.** Let f belong to L, then we have

(5.8) 
$$\int_{-\infty}^{\infty} |\widehat{f}|^{1-\epsilon} |y|^{\delta(y)-\epsilon-1} dy \leq \frac{A}{\epsilon \cdot \delta_0} \left( \int_{-\infty}^{\infty} |f| dx \right)^{1-\epsilon},$$

where  $\delta(y)$  is such that

$$\delta(y) = \begin{cases} \delta_1 & if \quad |y| < 1 \\ \delta_2 & if \quad |y| < 1, \end{cases}$$

 $\delta_1$  and  $\delta_2$  being constants greater and less than  $\epsilon$  respectively, and

$$\min(|\delta_1-\varepsilon|, |\delta_2-\varepsilon|)=\delta_0.$$

We remark that in the above theorem  $\delta(y)$  can be replaced by any bounded continuous function such that  $\delta(y) > \varepsilon$  if |y| < 1,  $\delta(y) < \varepsilon$  if |y| < 1, and

$$\inf_{\substack{|y|<\frac{1}{2}\\|y|<2}}|\delta(y)-\varepsilon|=\eta>0.$$

## References

- [1] A. P. CALDERÓN and A. ZYGMUND: On the existence of certain singular integrals, Acta Math., 88, (1952), pp. 85-139.
- [2] A. P. CALDERÓN and A. ZYGMUND: A note on the interpolation of linear operations, Studia Math., 12 (1951), pp. 194-204.
- [3] P.R. Halmos: Measure theory, New York, (1950).
- [4] G. H. HARDY and J. E. LITTLEWOOD: Some new properties of Fourier constants, Math. Annallen, 97 (1926), pp. 159-209.
- [5] S. Koizumi: On Hilbert transform to appear Journ. Faculty of Science, Hokkaidô Univ., Japan.
- [6] J. MARCINKIEWICZ: Sur l'interpolation d'opérations, C.R. Acad. Sc., t. 208 (1939), pp. 1272-1273.
- [7] E.C. TITCHMARSH: A contribution to the theory of Fourier transforms, Proc. London Math. Soc., (2), 23 (1923), pp. 279-289.
- [8] E.C. TITCHMARSH: Introduction to the theory of Fourier integrals, Oxford (1937).
- [9] A. ZYGMUND: On a theorem of Marcinkiewicz concerning interpolation of operations, Journ. Math., 35 (1956), pp. 223-248.
- [10] A. ZYGMUND: Trigonometrical series, Wasazawa (1935).

DEPARTMENT OF MATHEMATICS, HOKKAIDO UNIVERSITY