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1. Introduction. Some twenty years ago J. Marcinkiewicz [6] has
stated a result about the interpolation of operations without proof. Recently
A. Zygmund [9] has completed the theory with a certain application to
the theory of Fourier series. This method can be applied to the theory
of Fourier transform. This is the purpose of our paper.

2. The measure space which we consider is totally o-finite in the
sense of P.R. Halmos [3]. One of the authors [5] has extended a result
of A. Zygmund [9] to the case of totally o-finite measure in the follow-
ing manner.

Theorem A. Let X and Y be two measure spaces with totally o-finite
measures p and v, respectively. Let h=Tf be a quasi-linear operation
defined for all simple functions f in X, with h defined on Y. Suppose
that T is simultaneously of weak types (a, a) and (b, b), where 1<=a<b< co.
Suppose also that ¢(w) 1s a continuous increasing function for u=0
satisfying the condition:

(2.1) ¢(0)=0,
(2.2)  e(2u)=0(p(w)),
. * () 75— of $()

@ [ a=o(£42)
- o) 2 _of 2@\

2.4) f 20 ar=o( L))

Jfor u—> oo and further ,

(2.5) o o(2u) =0(¢(w)),

| : e(t) o(u)

(2:6) [ £3a=o0 (5
| o(t) o(w)

(27) f o+t e dt=0 < u® )’
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for u—>0. Then h=Tf belongs to the L¢ and we have
(2.8) Jetrhav=a, [o(lrds
Y X

where A, is a constant independent of f. In particular, the operation T
can be uniquely extended to the whole space L preserving the relation
(2.8). |

Another theorem which we need is due to A.P. Calderén and A.
Zygmund [1]. This reads as follows.

Theorem B. In the measure space of the same types as in Theorem
A, let a quasi-linear operation h=Tf, which is defined for all stmple
Sunctions f, be weak type (1,1). Then we have for any subset Y, of Y
with finite v-measure, ’

29) Sinrav = Aury( [i51a0)7,

where 0<ec<1 and A is an absolute constant. Further the operation T
can be uniquely extended to the whole space presefrmlng the 'relation (2.9).

3. We shall give a new proof of a theorem due to G. H. Hardy and
J. E. Littlewood [4]. Let us suppose that X and Y are one dimensional
Euclidean spaces where du(x) is an ordinary Lebesgue measure on X and

dv(y)zi’g-(y:\:O) on Y. We consider a linear operation
Y

_— — /\_ y ‘oo Tyt
(3.1) h=Tf=yf=-L fw ft)e dt,

where f is simple. Then we have
Lemma 1. The operation T defined by (3.1) is of st'rong type 2, 2)
This is equivalent to the Plancherel theorem.
Lemma 2. The operation T defined by (8.1) is of weak type (1, 1).
Proof of Lemma 2. We define two sets

(3.2) | E,={y||yf|>7}
and . :
(3.3) | O, ={yl [y |>-¥2 r},

LAl

where 7 is any positive number.
It is sufficient to prove that
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CRN »<E><—~f | £ 1dw=2 11 7.

By the definition of f, we have

Pl [1r@ a=t

from which it follows easily E,.CO,. Therefore we have

WB,)<1(0,)=2 f W _y2jx||f]l

— r
~amer /11 flly

Thus we have proved Lemma 2.
By Theorem A, Lemmas 1 and 2 we get

Theorem 1. Let f be a measurable Function such that ¢(|f]) is
p-integrable. Then the Fourier transform f of f can be defined and we have

(35) S e uF L =4, ["o1 £ e,

where ¢(u) s a function of Theorem A with a=1 and b=2.
In particular, we have

Theorem 2. If f belongs to L? (1<p=2), then we have
00 A~ l (o] N
(3.6) ([T17 N ay)r =a,( 7151 da)

o(uw)=u"Y(u), where 1<r=<2 and Y(u) is a positive slowly varying
function as u—0 and u—> o in the sense of J. Karamata and A. Zygmund
[9], then ¢(u) satisfies the property of Theorem A. Taking Y (u)=log" u,
we get the following '

Theorem 3. Let f be a function such that
(3.7) [C1rP g | fldz<s Q<p=2)

then the Fourier tran.sform- f of f can be defined and we have

(3.8) [T171 Gog* uF D lylr-2dy =4, [T fIlog" | £ da.

4. We shall now interchange the measure functioné ¢ and v on X |

and Y respectively, that is, we take d/x:ig(x:\:O) and dv as an ordinary
x? _

Lebesgne measure on X and Y respectively. Then we have
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Theorem 4. If |f|”|x[”"* belongs to L, then the Fourier transform

f of f exists and we have

(4.1) (S 17 an)” s 4.( [ lf[p'mp'—zdx)”,
where p'>2.
Proof of Theorem 4. We have

(S = s [

where p’ is a conjugate index of . .
Let 9(t, n) be a trancated Fourier transform of g(¢), that is,

9@, m)= f g(u)e “* du.

Q[»ﬂ

V2

Since f is simple, we have

[ Feady= [T rtra, m at
:fmfx%—lxﬁm_% dx.

By the Holder inequality and Theorem 2,

lfnfgdyié(fwlfllxl%_ld%)%(fyblxlIaip%)%
=4,( f “Ile falerde) ( [ale dxf

=a,( 717112l i)’

Hence we have
' 1

(f Ifl”’dy) <4, (f lfip'lxlp'zdx)

This completes the proof..
Here we remark that the constant A4, of (4.1) is equal to 4, of (3.6).
Combing Theorem A, Theorem 1 and 4, we get the following

Theorem 5. Let f be a measurable function such ¢(|f|) is p-inte-
grable. Then the Fourier transform fof f is defined and we have
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(4.2) I so(ifndy<Af o(laf )25

— 00

where ¢o(u) i1s a function of Theorem A with a=2 and b=7p', (Q<p' < ).

5. Finally we shall treat about the class L. Let us consider the
measure spaces defined in §3. We begin with the following

Lemma 3. Let f belong to L, then we have for any sub-interval with
finite v-measure

6 [l s den( i)

where 0<e<1.

Proof of Lemma 3. This is an immediate consequence of Lemma 2
and Theorem 3.
Let us consider the interval

G2 Jn:{yl*zl;<ly]< -2-1—} (n=12,---),
Then its v-measure beéomes )
(5.3) W=2 [ A g,
- 1/9P Y
If we take J, as I in Lemma 3, we get
54 f yluf i S < Ao fip,
Therefore we have
(5.5) Sty llfll“dy Sz flny ‘Jyl -t dy
) ly <1
A 1-¢
=?n 12—']!(61—6) ”f”
17 (0,>¢).
S e [ RO
On the other hand if we erte |
(5.6) | IL={y|2"'<|y|<2},
then its v-measure is 2°-”. Thus by similar argument
(5.7) Sy 1Ay = — A i fl Ge<e).
‘ ly1>1 ' e(e —52)
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From (5.6) and (5.7) we get the following result.
Theorem 6. Let f belong to L, then we have

(5.8) J i =5/ lfldx)
where B(y) 18 such that

(5;9) 5(y):{51 @:f ly|<1
, 0. of |yl<1,
0, and &, being constants greater and less than ¢ respectively, and
min (|6, —¢|, |d.—e|)=0.
We remark that in the above theorem d(y) can be replaced by. any
bounded continuous funection such that d(y)>e if |y|<1, d(y)<e if |y|<1,
and o ‘

inf |a(y) —e]=71>0.
lvi<%
lyl<2
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