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Introduction. H. Nakano in this book [1] defined the modulared
semi-ordered linear space R(m), that is, R is a universally continuous”
semi-ordered linear space where a functional m(a) (acR) is defined such
as the following seven properties are satisfied: :

1) 0m(a)<+ o for all acR;

2) if m(éa)=0 for all £=0, then a=0;

3) for any acR there exists a>0 such that m(aa)< + oo;
(M) 4) for any acR, m(fa) is a convex function of &;’ '

5) |a|=]|b]| implies m(a)=m(b);

6) a~b=0 implies m(a-+b)=m(a)+m(b);

7 0=Za,;}:c,a® implies sup m(a,)=m(a).
This functional m(a) (ecR) is called a modular on R. The well-known
space L,([0,1]) (p=1) is one of examples of the modulared semi-ordered

1
linear space, putting m,(a)= f -l—la(t) [?dt (p=1).
\ J D

Let R be a universally continuous semi-ordered linear space and R

be the conjugate space of R, that is, the space of all universally continuous®
linear functionals on R. Especially when R is a modulared semi-ordered

linear space by modular m(a) (aéR), a functional @¢ R is said to be modular
bounded if s(u)p | (@, @) | <+ . The space of all modular bounded functionals
ma)<1
R™ is a universally continuous semi-ordered linear space. When we put
for acR | |
(1) m(@)=sup {(a, @) —m(a)} @cR),
aER

1) A semi-ordered linear space R is said to be universally continuous if for any system
a1=0 (A€ A) there exists an element 1{\ a: in R ([1], p. 17).
€4

2) For any 4;, ;€A there exists 4364 such that a: ~a,=az, and U ai=a.
AE A

3) A linear functional a, (a,a) (a< R), is said to be universally continuous, if for any
ailies 0 we have zié‘f (a2, @)|=0 ([1], p. 81).
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a is modular bounded if and only if we kcan,ﬁnd a >0 such that m(aa)<< 4 o
([1], p. 169). And (@) (@<R™) is a modular on R". Namely R"(w) is
also a modulared semi-ordered linear space. This R"(m) is called a modular
conjugate spdce of ‘R(fm) and #(a) (@cR™) is called a cdnjugate modular
of m(a) (aeR). If we put R(m)=L,[0,1]) (m,) (p>1), then we have

R=R"=L,[0,1]) and ( +_q__1)

In [1] the concept of a conjugately similar trans formatwn on R was
introduced as one method to construct a modular on the universally
continuous semi-ordered linear space R and it was tried to represent the
modular as an integration of a conjugately similar transformation.

A conjugately similar transformation T is a mapping from R*, the
positive cone of R, to R’ satisfying the following two condition:

1) if a=b=>0, then Ta=Tb=0;
(2) for any acR* and a normal manifold¥ N in R we have (Ta)[N]®
=T([N]a), where [N] is the projection operator® of N.

If R is reflexive (R=R) and there exists a conjugately similar trans-
formation 7 on R such that 7 is an onto- and one to one-mapping, R
is called a conjugately similar space by T. For instance L,([0,1]) (p>1)
is a conJugately similar space by a conjugately similar transformatlon
Tla|=|a |76 L,([0,1]) (a€L,([0,1])).

Main results in [1] concerning the relation between modulars and
conjugately similar transformations are the following two: I and II.

I. If we put mp(a)= f (la], T¢[a|)dé (ac R) for any conjugately similar

transformatlon T, then we have a finite modular® m, on R.

II.. If R is a conjugately similar space by T, then .
1) m, and m, are normal® and monotone complete®;

~ 4) N is a linear manifold of R and if N=|a|=|b| then b€ N and for any a:e N (AeA)

0=ailics @ we have ac N ([1], §4).

5) For a< R the notation a[N] means (a, a[N])=([N]a, @) (a€R).

6) For any acR we have an unique decomposition of @ such that a= a1+a2, a,eN,
ase Nt={z; |o|~|y|=0 for all yeN}. We put [N]a=a; ([1], §4). :

7) The modular m is finite if and only if m(a)<—roo for all as R ([1], p. 196).

8) The modular m is normal if and only if m is finite and for any a €R m(¢a) isa
strictly convex function of ¢ ([1], p. 263). '

9) The modular m is monotone complete if and only if for any 0=ailic 4, sg% m{ar)< 4 oo

there existslUAaz in R ([1], p. 157).
(S5
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2) T-'is also a conjugately similar transformation;

3) R"r=R and my;=m,1;

9 m(la))+m(T|a])=(lal, T|a]) @cR).

Conversely for the modulared semi-ordered linear space R(m), if m
and m are normal and monotone complete, then there exists a
conJugately similar transformation 7T such that R is a conjugately
similar space by T and m=m, and m=mp-1.

The purpose of this paper is a generalization of the above results to
the most general case. We shall discuss in §1 a generalized conjugately
similiar transformation and a representation of the modular as the inte-
gration of a generalized conjugately similar transformation. In 82 we
shall generalize the concept of an inverse transformation of a conjugately
similar transformation and study the relation between a conjugate modular
and a generalized inverse transformation of a conjugately similar trans-
formation. In §8 we shall state the classification of several known types
of modulars in other words, that is, according to the types of conjugately
similar transfermations. In §4 we shall treat new types of modulars
and their conjugate types.

Throughout this paper we shall use notations and terminologies ac-
cording to H. Nakano’s book [1].

Before entering into the details I wish to express my gratitude to
Professor Nakano for his kind encouragement and advice.

§1. Modulars and Conjugately similar transformations. Let R be a

universally continuous semi-ordered linear space and R be its conjugate
space.

Definition. A mapping T from a subset M of R* into R* is called
a conjugately similar transformation on R ’and M is called the domain
of T, if the following conditions are satisfied :

1) if Maa>b>0 then be M;
2) for any a,beM we have a—belM;
3) for any acR"* there exists a>0 such that aacM;
: 4) if M3&a>0 for all £>0, then there exists £,>0 such that
(C) . T&un>0; '
5) M9a>b>0 implies Ta=Tb6=0;
6) for any aeM and normal manifold N in R we haVe T([N Ja)
=(Ta)[N]; :
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7) if M>a, (AeA), a;};e, @ and siup(a,z, Ta,)< + oo, then we have
» aaeM for all 0=<a<1. -
Evidently the above definition is a generalization of (2). We shall use
the notation (7, M) to show a conjugately similar transformation having
a domain M. |
From the definition we can see easily the following lemma. .
Lemma 1. i) If (a, Ta)=0 for some aecM, then we have Ta=0.
Especially TO=0.
ii) For any a,be M such that a ~b=0 we obtain a+beM
and T(a—+b)=Ta-+ Tb.
iii) For a,beM we have T(aXb)=Ta X Tb.
For instance, if a,beM and a~b=0, then from 2) of (C) a+beM and
from 6) of (C)
(%, T(a+b))=([a+b]x, T(a+b))=([a]x, T(a+b))+([b]w T(a+b))
=(x, T[a](a+0b))+(x, T[b](a+b))=(x, Ta+ Tb)
for all xe R. Therefore T(a+b)=Ta-+ Tb.

‘Theorem 1. For a conjugately transformation T and its domain M

ma(a)= f(lal Tlal)ds (acR)

is a modular on R, where we put (Ja}, Tg}al) + oo for Eia]qu

Proof. 1) of (M) is evident. Lemma 1 and 4) of (C) imply 2) and
6) of (M). 3) of (C) implies 3) of (M). 5) of (C) implies 4) and 5) of
(M). -We prove only 7) of (M). :

At first, for any [p,]t.c.[a@] we see SZEIA) mq([p,]a)=m(a).  Because
from 3) of (C) there exists &, 0<&;=+ o such that

{Slla]eM for all 0¢,<é&,,
&la|eM for all &> 6o
For &, 0=¢,<& we have ([p.]]ael|, Té&[p.]le])=([p.]]|a|, T¢|a|) from 6)
of (C). Therefore Szléllil)-(lzpzj lal, T&[p.] la|)=(]a], T& |a]) for all 0<&, < &,.
If for some &,, + o0 >§&,>&, we have SZIEJ:EIJ ([p.]]el, Té&[p]la])< + o, then
from 7) of (C) we obtain a&;|a|eM for all a,0=a<1. This contradicts
the property of &, Therefore we have szleuA) ([edel, Té[p]la])=+
=(la|, T&|a|) for all &, +oo>§;>&. Hence we have
%g—lj([pz:llali TE[Z)JIGI):(’GI, TEI“D for all &, &==6,.
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Therefore

sup mo([p.J0)=sup [ ((p)|al, TCpdlal)de= ["sup (Cplal, Telplads

—f(lal T¢|al)d=m(a).

Next for any O<aﬁ1€4a and 0<a<1 we put p;,=(a;—aa)*, then we
have [;]%:es[a] and a=a,=[p,]a,=al[p;]Ja. Therefore m.(a)=m(a,)
>mqy(a[p,]a) and this implies m,(a)=sup mT(az)zsup mp(a[p;,]a)=m(aa)

: ie€dq

for all 0=a<l. On the other hand supm,(aa)= sup f (a, Téa)ds =

0<a<l

= f (a, T¢a) dé. Therefore we have sup mp(a,)= mr(a) ’ Q.E.D.

For (T, M) satisfying 1)~7) of (C'), we put
M,={a; aacM for some a>1 depending on a},
(3)' M_={a; aaeM for all 0=<a<1 and | Taa exists},

0<a<Lll
T.a=[) Taa for acM,,
a>1

T.a=U Taa for aeM_.
0<a<ll

Evidently we have M, CMCM and T_-a=Ta=T.,a (acM.,). .
We can see easily (T',, M,) and (7., M_) have the following proper-
ties stronger than (C).
1) if M,3a>=b=>0, then belM,,
2) for any a,beM, we have a~baM.; -
8) for any acR* there exists «>0 such that aaecM,;
4) if M,36a>0 for all £>0, then there exists §,>0 such that
T,5a>0;
.) 5) M,3a=b=0 implies T,a=T, b>0 _.
6) for any acM, and normal manifold N in R we have T ([N ]a)
=(T.a)[N];
) (+) if M,3a,(2€4), a,}eqa and sup (a;, T.a;)< -+ oo, then we
have aacM, for all 0<a<1;
(=) if M_sa, (29/1) a;}:esa and sup (a;, T. a1)<—|—oo then we.
have acM _;

8) (+) for any acM, there exists a>1 such that aaeM and we
have T,a=T.aa; :

a>1

(=) for any acM_. we have T_a= [J T_aa.
) 0<a<ll
- From the above (C.,) we can prove
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8) (+) for a,eM (2¢d) and a.}:c,6=0 we have T.[ala}ic,T.a;

(—) for a;eM (2¢ 1) and a;t:c,0cM_ we have T_a,4c,T-a. ,

(+): Without loss of generally we can put a,<a,eM, (icAd). If we

put p,=([a]a;—aa) for a>1 such as aacM,, then we have [2:]4:2e40.

Since [a]auz:[pz]az+(1_.[pz])a1§[p2]a0+(1—[pz])aar we have from the

above 5) and 6) T,[ala, <T.[pJa;+T.1—[p.)ae<[p.]T.a0,+T.aa,

therefore ﬂ T.[a]a, < ﬂ [p:1T. a0+T aa.  Hence T+a§xg1 T,[a]a, <
N T aq = T a.

€4
" (=): For an arbltrary a such as 0=<a<1l we put p,=(a;,—aa)*,

then we have [plj?z.s,,[a] Since a,= [pxjaz—!—(l [p.])a,=[p;]aa, we have

from the above 5) and 6) T.a,>7_[p,laa=[p,]T_-aa, therefore T.a

ZUTa;EU[p,I]Taa -T _aa. HenceTa>UTaz U T-aa=T.a.
i€ 4 €4

€4 0=Lall
Lemma 2. (T,,. M +) and (T., M. ) are also conjugately similar
transformations on R and we have Mp =My, =My_.
It is clear from (C,) that (7., M.) and (T., M) are conjugately
similar transformations on R. From the definition of 7, and T. we have
for all ¢20 (lal, 7.¢|aD)=inf (|al, Tyla]) and (|al, T-¢le])=swp (fal,

T¢la]). As (|al, T{-‘la]) is a monotone function of £=>0, (|a|, Tf]af) is
equal to (|a|, T.t|a]) for almost everywheae £=>0. Therefore mz(a)
=my, (@)=m,_(a) (acR). -

If we put for a modular m on R

D, m(a)= { inf m(ga)—m(a) for m(a,)<+oo

£>1 §—1
(4) ' + oo for m(a)=+ o,
D. m(a)— { sup m(a) —m($a) for m(a)< + oo

0<E< 1—-¢
+ oo : - for m(a)=+ o,

then we can see easily
(5) Mi:{]al; DimT(a)<+00},
(a, T.a)=D,my(a) for acM,. ,

~ Next, in the following (Theorem 2 and 3) we shall prove the converse
of Theorem 1, that is, for any modulared semi-ordered linear space R(m)
there exists a conjugately similar transformation (7T, M) such that m = M.
Theorem 2 is fundamental. However we shall assume some knowledge
about the spectral theory of a semi-ordered linear space ([1], Chap. L),

At first we state the properties of D.m(a) (acR) ([4], §1).
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Let D, m(¢a) (D..m(¢a)) be the derivative at ¢ of a function m(fa)
from the right (left) side. We see easily

§D.¢m(§a)=D.m(¢a) (=0, acR),

6 . 1
() )= [ Domsayaz= [° -f?i”g(é@l dé (acR).
0 0 ’
From the convexity of m(éa) D, . m(¢a) (D_.m(a)) is a right (left) continuous
increasing function and D_.m(¢a)=<D. .m(ca).
The property that characterizes the functionals D m(a) (aeR) is the
followmg

Lemma 3. 1) OgDim(a)é—}-oo Jor all acR;
‘ 2) if D,m(Ea)=0 for all £=0, then a=0;
3) for any acR there exists a‘>0‘such that

D m(aa)<+ oo;
y D.m(éa) . . . . .
4) (+) —5— 28 a 7right continuous .increasing
(D)) - function of §>O;
(=) % 18 a left continuaus increasing

Sfunction of £>0;

5) |a|=|b| implies D ,m(a)=D ,m(b);

6) a~b=0 implies D m(a+b)=D m(a)+D, m(b);

T (+) if a=aie,a=0 and D.,m(a,)<- oo, then
inf D,m(a;)=D,m(a);

i€4qa

(=) if 0=a,tic.a, then supD m(a,)=D_m(a).

1)~4) are all evident and (M) 6) implies 6).
The proof of 5): We may put 0 <a <b, b= [a]b and D, m(b)<+oo '
from the spectral theory we can find b,>a (n=1,2- ) such that b,45..0

and b,= 36, [po]as Eon=l (n=12- -5 v=12--k,), S1[p,.]=[a]. For

any ¢>0 UALR)=MB) > i (p,) =320 me. (0., 10)=3}D. ([P, ]0)

&

—~‘Dk +m(a), on the other hand from (M ) 7)' lim m((l—l—e)b,‘,)—m(b,,)
7”00 g -
= m((1+5)b) m(b) , therefore - m((Lte)b)— m(b) = D.m(a), hence D,m(d)
5
>D .m(a). Slmllary we have D_m(b)=D _m(a).

The proof of 7) (4+): If a=0, then we have for all £>1 O<1nf D m(a,)
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<inf m§as) —m(a,) <inf —"—72’—(—@—‘)-—0 because we can prove 1nf m(éa,)=0
=V E—1 wes £—1

from (M) 7) and the assumptlon m(Eay,) <+ ([1], p. 155). For a general
case, putting p,=([e]a;—aa)* for a>1, we have a,=[p,]a,+(1—[p;])a;
+(1—T[al)a,=[p,Jac+1A—[p,aa+1—"[al)a,. Therefore from 5) and 6)
D.m(a,)=D.m([p;]a0)+ D, m((1—[p:])aa)+D.m((1—[al)a) <D, m([p:]a)
+D . m(aa)+D . m((1—[a])a,). As inf [p,]a,=0 and inf (1—[a])a,=0, we
‘ r€4 €4
have 125 D,m([p,]Ja,)=0 and inf D . m((1—[a])a,)=0. Therefore D,m(a)
€4 o ‘ .
=inf D, m(a)<D,m(aa) for all a>1. From 4) (+) we have D .m(a)=
€4 .
inf D, m(a;).
AGA
The proof of 7) (—): With the similar technique for the case of
D_ m(a)< + co we can obtain sup D_m(a;)=D_m(a). At firstif a,=[p,]a and

[p:]tiesla], then from 6) and 7) of (M) we have sup m([p;]a)l ?(EEZ)‘]“)

— m(a)—m(¢a) for 0<£<1 and therefore we have supD m([pxja)-—sup

1-¢
Sup m([p.Ja)—mElpJa) gy gup PRI —mEPde) gy
1-¢ _ 0<e<1 €4 1—-¢& ' 0<E<1
m(a) — m(§a) =D_m(a). Next, putting p,=(a;—aa)* for 0<a<1, we have

S 1—¢
[p:1teqle] and a,=[p,]a,+(A—[p.])a;=[p;]aa, therefore from the above
sup D_m(a,)= sup D_m([p;]Jaa)=D_m(aa), Hence D_m(a)=sup D_m(a,)
€4

i€q

=sup D._ m(aa) D-m(a) If D_m(a)=-+ o and Sup D _m(a,)=r<+ oo,
(=3 i : .

0<a<l
then we have a contradiction. Because: There exists some &, 0<&,<1
such that D_m(éa)=+ o for £>¢&, and D_m(fa)< + o for 0<&<§&, And

D_m(&a) = ,Sup D-m(Ea) = ssllgo Sup D _m(¢éa,) = Sup OiggoD m(éa) = sup
D _m(&a,) < sup D m(a;)< + oco. Therefore m(&,a) < + oo and m(a,)<(1— 50)
D_ m(az)—l—m(soaz) <(1- So)r+m(50a)< +oc. Hence we have m(a)=sup
m(a;) = (1—&)r +m(§a) < +oo. This implies D_m(fa) <+ for l:,ldl
1>£=¢&,. This contradicts the property of &,.

-

- Remark. For a functional f(a) (a¢R) there exists a medular m on
R such that f(a)=D_m(a) (acR) if and only if f satisfies (D_).
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- Theorem 2. LetacR" and ([p]) be a universally additive!® finite
measure on the Boolean ring of projectors satisfying

(7) " D_om([pla)<p([p])<D,m([pla) for all [p],

then we can find uniquely acR™ such that a[a]=a and p([p])=([p]a, @)
Jor all [p]. ‘

Proof. The expression (7) implies ([p])=0 for [p][a]=0. Further
from the universal additivity of ¢ we can find a projector [a,]=[a] such
that #([»])=0 for [p][e,]=0 and ([p])>0 for 0[p]l=[a,]. For [a,]
we have also m([p]a)=0 for [p][a,]=0, because the first inequality
implies m([pla)=p([p]). »

The condition (7) means mELp ](;)-—lm([p ]a’)gp([p]) for all £>1 and
m('[p]a)l _?(S[p]a) < p([p]) for all £<1. Therefore we have p([p])
—m([p]a)—l—m(é[p]a)glél #[p]) for all &€ and [p]. Hence we obtain

(8) 1-—mdlpla) mELPIY) ) o a1l ¢ and 0k [p] = [a:]

¢([p]) w([r])
We consider the derivative of m([p]x) by #([p]), that is, for any xecR
and maximal ideal b consisting of projectors such that ps[a,] we can
define

(9) o(@, p)= lim ™[P1®) R ysla,]).
s () |

As the inverse expression of this we have
(10) m([pla)= [ oz, B) 1(dp) for all [p]=[a,].

iv1
Tending [p] to b in (8), we obtain for any maximal ideal p>[a,]

(11) 1—p(a, b)+p(Ea, P)=|£|.
Further we can prove for any x¢R and maximal ideal b>[a,]

(12) e D)o R = |( L)

’

where (%, p) means a relative spectrum of « by a at p ([1]), p. 34).

’

Because, if l(ﬁ,p0>l>0 for some p,>[a,], then for any $,0§§<K—9£, Do>
- a a

10) If [p][q]=0, then u([p]~[g])=w([p])+u([g]). And if [p:]Tic4[p], then sup AU[p2])=
#([p]). ’
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there exists [p,] such that py>[p,] <[a,] and [p]|x|=¢[pla for all
[»] = [p]. Therefore we have po(z, b,)=p(¢a, p,), hence from (11) 1—p(a, b,)

+0(x, po)=1—p(a, po)+0(¢a, bo)=|¢|, therefore 1—p(a, bo)+o(z, 330)__>_l (—z— bo>

Next the expression (12) shows that (%, p) is i.ntegrable' by z on~ [a,].
Because, for xe R we can find >0 such that m(ax)<+ o, from (12) we
have %{l—p(a, p)+ o(ax, p)}gl(%, p)’," ahd considering (10); the }left side
is . integrable by g on [a,]. Therefore

J1(Z )| ma») = Lutady—m(Ca o)+ mialajol < + oo.
[e,]

If we put L(x)= f (% p)p(dp) (zeR), evidently L is a positive linear
: [a,] .
functional and we have

L([pla)=([p][a,])=4([p]) for all [p], and
| L([p1%) | = —{([p] [an]) — ([ [aJa) +m(alp] [a,]2)).

L is universally continuous. Because for any [»;]}:c.0 we have 0 =< inf
i€4a

| L([pJ2) | = % inf {(Lp:illa,])—m([p:][a;]a)+m(a[p;][a,]2)}=0 from the
universal additivity of # and the modular condition 7) of (M). Therefore
L=ac<R. We see easily a[a]=a=>0 and ([pla, @)=p([p]) for all [p] and
for any zeR (z,a)=p([a])—m([a;]a)+m([a,]x) = m([a])+m(a)+m(x),
considering p([a;])=u([a]) and m([a,]a)=m(a). Hence from the inequality
(%, @)=(a, @) —m(a)+m(x) we have m(@)=(a, @)—m(a)< + o and acR".

(13)

Such @ is unique, because if ([p]a, @)=([p]a, d) for all [p], then from
the spectral theory we have ([a]z, @)=([a]x,b) for all zecR, that is, -
d=al[a]=b[a]=b. o . Q.E.D.

Lemma 4. For any acR* and @cR" we have D_m([pla)=([p]a, @)
=D ,m([pla) for all [p] if and only if @[a]ecR" and m(a)+m(@la])
=(a, @). - . - .

( Be)cause, let be D_m([pla)<([pla, @)<D,m([p]a) for every [»], then
we have proved in the previous theorem wm(a[a])=(a,a)—m(a) and
E[a] eR". Conversely, let be m(a)+m(ala])=(a, @), then we have m([pla)
+m(ala][p])=([plae, @) for all [p] ([1], p. 178). On the other hand for
£>1 we have m(¢[pla)+m(@lal[p])=&([pla, @) from (1). Therefore
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- m(Elp]a)—n(lP]®) ~ (111a, @) (2>1), hence D .m([pla)=([pla, ). Simi-

§—1
lary we have D_m([p]la)=<([p]a, @).
We put
19 M,={la]; D,m(a)<+ o},

M_={|a]; D.m(a)<+oo}. |
Then (DQ 7) show that for acM, D ,m([p]a) are the universally additive
finite measure on the Boolean ring of all [p]. Therefore on account of
theorem 2 we find a mapping T.(7T_.) from the domain M,(M_) into R’
such that
a5 ((#la, T.0)+D.m((pla) for all [p] and (T,a)[a]=

([pla, T_-a)+D_m([pla) for all [p] and (T_a){a]=T_a
(T,, M,) satisfies (C,) and (7_, M_) satisfies (C.).
Because, (D,) 5) imply (C,) 1). (C,) 2) are proved by (D.) 5) and 6):
For a,beM, D,m(a-—b)=D m([(a=b)']Ja+[(b—a)*]1b)=D m([(a—bd)"]a)
+D . m([(b—a)* Ib)=D . m(a)+D . m(b)<+o. (D.) 3) imply (C.) 3) and
(D,) 2) imply (C,) 4). The proof of (C,) 6): Since D m([p][N]a)
=D ,m([[N]pla) for all [p], we have ([p]1[Nla, T.([N]a)=([[N]p]e,
T.a)=([p]a, (T.a)[N]) for all [p], therefore T.([N]a)=(T.a)[N]. (C.)
7) is evident from (D_.) 7). And (C,) 7) is proved easily, because, if
- M,30a,%:¢, and Szlélz (a;, T,a;,)< + o, then we have SUp (a,, T_a,z)g%gg (aj,

T.a,)< + oo, therefore from (C_) 7) we have acM_, hence aacM, for all
0<a<1. (C.,) 8) are implied from (D,) 4). The proof of (C.) 5): If
M, 9a>b>0' then there exist b,(n=12---) such that a=b,7.b and

b,= Zé,n[p, »la, where 0=¢, ,<1 (»=1,2---, &,; n=12---) and f} [D.,n]
=[a] (n=1,2---). From (C,) 6) we obtain T.,b,= i T.(, .[p.n]a) and
T+CL: ﬁ T+(Ep,m:|a) and from (D+) 4) we have T+($v,'n|:pv,n:]a)§T+([pv,'n]a'~)

(n=12---;v=12,---,,). Therefore T.b,<T.a (n=12,---), hence ([p]b,,
T.b,)<([p]b,, T.a) for all [p]. On the other hand from (D,) 7) we have
1nf ([p]b., T.b,)=([plb, T.b), therefore ([p]d, T.b) Sinf ([p1b,, T.a)

—([p]b T.a) for all [»]. Hence T, b=(T.,b)[b]=(T, a)[b]<T a. In the

same way we can prove (C_.) 5).
From the above we have obtained

Theoreth 3. For an arbitrary modulared semi-orde'red‘li'near space
R(m) (T., M.,) and (T_, M_) are conjugately similar transformations on
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R and m=m, =m,_ and we have m(a)+m(T.a)=(a, T ,a) for acM,.
We shall consider the conjugately similar transformation on the modular
function space ([1], appendix I) which is a concrete representation of a
modulared semi-ordered linear space.
Let Q2(®, 1) be a measure space, that is, 2 be a abstract space, B be
a totally additive class of subsets in 2 and p(B) (Be®B) be a finite measure
on B. Let @(¢, @) be a function on [0, + o) X 2 satisfying following conditions
1) When ¢ is fixed, @(¢, w) is a B-measurable function;
2) When o is fixed, @(¢, ») is a convex non-decreasing left continuous
function of £>0; | ‘
3) @0, w)=0 for every we;
4) lim @&, w)=+4 oo for every we;

&> +o00

5) for any we® there exists a,>0 such that @(a,, w)< + .
We shall denote by R, the class of all measurable functions a(w)

(we 2) such that for some a>0 we have f@(a |a(w) |, @) dp< + 0. Putting
2

my(a)= f ?(|a(w) |, @) dp for all acR,, R,(m,) is a modulared semi-ordered
2

linear space.
Let @(¢, ») be a complementary convex function of @(£, ») in the sense of
Young for every fixed weR. @, o) satisfies the same condisions as @(¢, w).
Therefore for @(¢, w) we obtain a modulared semi-ordered linear space
R3(m3) as we have obtained R,(m,) for @(, w). ‘
For ac¢ R putting (¢, @)= f a(w)a(w)dy (acR,), we obtain a univer-

2
sally continuous linear functional on R, and we can prove Ry(mg) is the.

modular conjugate space of R,(m,).

Since @(£, ) is a convex function of £=>0, we denote by (&, o) the
left derivative at £=0 of @(¢, w). Then ¢(¢, w) satisfies also the same
conditions as @(&, w) except the convexity about £>0 and 3) We see

eas11y D mq,(a) f | () | ¢(|a(w) ], ®)du for all acR,. Therefore we have

M_={a; a=0and f a(w)o(a(w), w)dp < + oo}, By Young S 1nequa11ty we have

for aeM_ ®(a(w), m)+q)(¢(a(w> ), ®)=a(w)p(a(s), a)) hence f D(a(w), o) dp



On Conjugately Similar Transformations 137

+ f D(o(a(w), ), ») d;{z f a(w)ga(a((u), w)dp< + . Therefore o(a(w), a))GRz.

Furthermore, sinoe for any beR, we have D _m,([b]a)= f xo(@)a(w)P(x:(w)
J ,

a(w), w)dﬂ= f ro(@)al@)p(alw), @) dp= f ([b]a)(w)¢(a(w), ®)dy, where y, is a

characterlstlc function of the set {w; b(w):kO} we see (T_a)(w)=9¢(a(w), a))
for aeM _.
Especially, if @(¢, m)=—~$” for some p=>1, that is, R, is L ,-space, then
‘ p

M_=R} and T_a=a*" ! for acRj}.

§2. Conjugate modulars. Let R(m) be a modulared semi-ordered

linear space and R™(im) be its modular conjugate space. On account of
the results in §1 we can find conjugately similar transformations .(7, M)

on R and (T, M) on R™ such that m=m, and m=mz. KEspecially if R(m)
is on dimensional, then T is a non-decreasing function and T is the inverse

function of 7. In this section this relation between T and T will be
generalized to the general case and at this point of view we shall con-

struct directly (T, M) from (T, M). However, we shall assume that R(m)
is monotone complete. '

For a conjugately similar transformation (7, M ) on R, m, is monotone
complete if and only if the following condition is satisfied:

(16) If Msa;}:e, and sup (a,, Ta,)< + o, then there exists a in R such
€A
that a= J a,.

i€4a
Because, from the expression m,(a;)= f 1(a,l, T¢a;)ds we have easily (-%—al,

0
T%ax>§_7n(a1)§(ab Ta,). (T, M) satisfying (16) is called also monotone

completes.
Through this section we shall assume R is semi-regular'¥ and (7, M)
is monotone complete and satisfies (C_). According to the assumption that

R is semi-regular R can be embedded isomorphically into Rand Ris a
semi-normal manifold of R (Nakano’b theorem about reflexibility). 'And
from the assumption that (7, M ) is monotone complete we have R”"7 —R

([1], p. 178).
‘ 11) For any a>0, a€ R we can find some a <€ R such as (a, @)= 0 ([1], p. 92).
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We introduce a notation @b for &, be B* having the following meaning:
(17)  For all [N] we have a[N]>b[N] or a[N]= b[N]—O

We see easily for a, b, ¢eR’

1) if @>5, then G[N]>-6[NT for all [N],
2) if @>b=>¢ or @a=>b>¢, then @>¢,.

- 8) if @>b and @>¢, then a>b-¢,

(18) 4) if 6>a and 6-@, then 5~5-a, . |
-5) we have always a>-0 and aa>a for all a>1,
6) if @>b, then [@a—b]*=[a]",'?
7) - if €=(@—b)*, then a[c]*>b[¢]%.

For instance, the proof of 8): If @a[N]=(b-—¢)[N], putting (b—¢)* =d,
we have (b—0)[d]*=b[d]*® and (b—e)1—[d]®)=¢(1—[d]%), therefore
a[N][d]®=b[N][d]*=0 and &[N]J(1— [d]R) ¢[N](1—[d]®)=0, hence
d[N]=(—¢)[N]=0. Similarly we can see 4). The proof of 6): Since
0<d—b=<a, we have [a—bl*<[a]*. If we put [N]=[a]®— [a—b]%, then
[N][@]*=[N] and [N][@—b]*=0. [N][@—b]*=0 implies &[N]=b[N],
therefore a[ N]=0 from the assumption. Hence [a@]®*[N]=[N]=0, that
is, [@]*=[a— b]R The proof of 7): Evidently E[E]R>5[6]R If a[c]®[N]
=b[€]*[N], then (@—b)[c]*[N]=¢[N]=0, therefore [c]” [N 1=0 and
G[E]*[N]1=b[c]*[N]= 0.

For (T, M) we define a mapplng T from the domain MCR" into R*:

- Msa if and only if a=0 and {{a]%a; a>Ta} is bounded in R,
(19) | Ta= | [@]%a.
. a>Ta
Lemtna 5. : .
iy T(M)CM and TTa<<a for all acM.
i) T(M)CM and TTa<a for all aeM.

i) If Ta>Tb, then we see [Ta]®a=[Ta]®b. Because, if [Ta]%a
£[Ta]%b, then there exists [N] such, as [Ta]?[N]a<[Ta]*[N]b,
therefore (Ta)[N]=T([Ta]l?*[N]a)=<T([Ta]*[N]b)= T([N]b)=(Tb)[N]
and hence (7a)[N]=(Tb)[N]=0, therefore [Ta]®*[N]=0 and hence

-12) If we put N={a; (|al|, |@]|)=0} for a fixed a, then N is a normal manifold of R.
We denote [a]B=[N] ({1]). '
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[Ta]?[N]a=[Ta]*[N]b=0, this is a contradiction. Therefore TacM and
TTa= |J [Ta]®b<[Ta]*a=<a for acM.

Ta>Td
ii): As Ta= U [@]%a for e M, we have sup ([@]"a, T[a,] 2g)< (TG, &)
a>Ta a>Ta
< + oo, therefore from (16) | [@]*acM and TTa= | T[a]*a=<ad (8’)(——)
. a>Ta a>Ta
of (C.)).

Lemma 6. We have (a, @)<(a, Ta)+(Ta, @) for acM and Gel.

- Because: If we put b=(Ta—a)*, then @[b]®=(Ta)[b]? hence we
have ([b]*a, @)=(a, &[b]%) < (a, (Ta)[b]*). On the other hand we can
decompose 1—[b]* into [N,] and [N,] such that 1—[b]*=[N,]+[N,],
(Ta)[N,]J=a[N,] and (Ta)[N,]<a[N,]<a, and we have Ta=> [N:][a]%a.
Therefore ([N,]a, @)=(a, a[N,])=(a, (Ta)[N,]) and ([N;]a, @)=([a]*[N:]a,
a)<(Ta, a). And we have (a, @)=([b]%a, &)+ ([N]a, a)+([N2]a a) = (a,
(Ta)[6]%)+(a, (Ta)[N,])+(Ta, &)=(a, Ta)+(TG, @).

Theorem 4. (T M) is a monotone complete conjugately szmzlar
transformation on R and satisfies (C.).

Proof. 1), if M>@=>b=>0, then evidently be M.

2), if M@, b, then for any acM such as a—b>Ta we have a[(@—b)*]"
=(@—b)[(@—b)*1*~(Ta)[(@—b)*]*, therefore we have [@]*[(@—b)*]"a<Ta.
Similarly we have [b]%[(b—a)*]%a<Tb. Hence ([a]“v [6]%)a= [avb]"
<Ta,v Tb, therefore a—be .

8), for any @cR" there exists a>0 such that ade M. Because: We
can find a>0 such that D ,m (ad)<+ . If a&@>Ta, then we have
D, my(Ta)<D, m(a@). On the other hand m, (a)+m(Ta)=(a, Ta) from
theorem 3 and hence in the same way in lemma 4 we obtain (e, Ta)

=D.,m(aq). Therefore sup (a, Ta)<D W, (a@)<+ . On account of (16)
-~ aa>Ta

there exists U [@]®a, therefore aac M.

aa>:‘l"a

4), if M>éa and Tta=0 for all £>0, then @=0. Because: From
lemma 5 we have (a, £@)<(a, Ta) for all ae M and $>O therefore (a, a) 0
for all ac M. Hence a=0.

5), if M>@=b=>0, then evidently Ta=>T5b=>0. : »
6), for any @M and [N] we have T(G[N])=[N](Ta). Because: If
@>Ta, then G[N]>(Ta)[N]=T([Nla), therefore T@[N7])=I[N](Ta).
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N

Conversely if @[N]>7Tb, then @>Tbh and [@]"b<Ta and [N][a]*b=<
[N1(T@), therefore T(@[N])=[N1(Ta).
T, if M>8,4,e, and sup (T@,, @)< + oo, then we find @cM such that
A€ 4

a= |J @,. Because: For any a<R* there exists a>0 such that aae M and
=W t.

from lemma 5 we have (aa, @,)<(aa, Taa)+(Ta,, @,), therefore sup (a, @)
A€ 4

< +co for all aeR*, hence there exists c—zeﬁ such that a,t;c,a. We may
put @>0 and prove acM. From lemma 6 (Ta, TTa,) =< (Ta, a@,), hence
s;gB(Taz, TTa,)< + o, on account of (16) we have Ta.f,eqac M. If @>Th
and [a@]fbx a, then there exists [N] such that 0=x:[N] < [a]®[b] and
[N]b>[Nla. As a[N]>T([N1b) and a;[N]t:c,a[N] there exist @,, and
[N,] such that 0[N, ]=[N] and 0=+a,[N,] >-»T([N0]b), therefore
T(@:,[ No]) = [No][@3,]7 > [No][@,,]%a = [N][@,,]"Ta,, = T(@,[N]), - and
hence T(a; [N,])=[No][a,]1*6=0 and a,[N,]=0. This is a contradiction.
From the above if @>Tb, then [G]?b=<a, therefore ac M.

8), if 0=<@,}.c,@ and @eM, then Ta,},c,Ta. Because: Evidently
UTa,<Ta. Let be @> Ta, putting b,=(@,— Ta)*, we have @, =>a,[b;]"

€4

>(T[b;]%a) from (18) 7). Therefore Ta,>[b,]%a and U Ta,= U [b,]"a.
) : €4 €4
On the other hand from b,},5,8— Ta we have AU [b,]*=[a—Tal*=[a]*
. E ) . . €4 .
((18), 6), therefore |J [b,]%a=[a]®a< | Ta,, hence Ta< U Ta,. Q.E.D.
€4 €4

ic4q

In the above theorem it is more desirable to show 3) directly from
the property of (7, M). However, we did not success in it and we used
the property of i,

Lemma 7. .

i) my(a)+m(Ta)=(a, Ta) for all acM,
i) m(Ta)+my(@)=(Ta, a) for all aeM.

i) was proved in lervnma‘ 4. The proof of ii): At first we prove
T([p(Ta)) <a[p] < T.([p](Ta)) for all [p] such that [p]=<[7&] and
[p1(Ta)e M,. T([p](Ta))=T(T(@[p]))<a&[p] was proved in lemma 6. For
a>1 we have @[p]=<T(a[p](Ta)). Because, if @[p]=c T(a[p](Ta)), then
from (18) 7) there exists [p,] such that 0 [p, |<[»] and a[p,]>T(a[p,]
(Ta)), therefore T(@[p,])=a[p,](T@)=aT(@[p,]) and hence T(G[p,]
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=[p0](Ta,')'—O and hence [p,]=0, this is a contradiction. Therefore alp]
=T(a[p](Ta)) for all a>1 and a[p]< ﬂ T(a[p](Ta))=T.([p](T&)). From
the above for all [p] we obtain D mT([p](Ta)) ([»](Tw®), T([p](Ta)))
é([p]T% alp])=([p](Ta), T.([p]1(Ta)))=D,m([p](Ta)). On account of
lemma 4 we have m,(Ta)+m.(@)=(Ta, a). .
Theorem 5. The modular mz on R generated by (T, M) is the
conjugate modular w, of my, that is, M,=msz.
~ Proof. For Gell we have My(@)=mz@); Because, from the above
lemma 7 m(T&)+m(@)=(T&, @) and from the definition of 7, ((2)) we
have for all £€=0 m,(Ta)+m (c8)>=(Ta, £a). Therefore M (EQ)— T (@)
>(¢—1)(Ta, @) for all £=>0 and we see D (@) =(Ta, a)=D,m,(a), hence
D_cm,(¢@) <(T¢8, W=D, ,(c8) for all 0=E=1 and mz@)= f (Tza, @)ds

=% (@). Next if mz@)< -+, then adeclM for all O<a<1 therefore
mz(@)=sup mz(a@)= sup m(aa)=m(&). Remembering the proof of 3)
0<a<l 0<alll .

in theoremv4 we see acM for all D, (@)< + oo, therefore for D.. m(a)
<+ we see My(a)=mz(@). If My (@)<+ o, then D M (a@)< + o for
all 0=<a<1 and hence M, (a@)=mz(aq) for all 0<a<1, therefore i, (a)

= sup 'mT(aa)— sup mT(aa)—-mT(a) mr,=mz has been proved. Q.E.D.
0<all

Essentially theorem 5 has been proved independently from the results
of theorem 4. And it is ease to prove theorem 4 from theorem 5. How-
ever, it seems to be 1nterest1ng for us to show theorem 4 1ndependently
from theorem 5.

Theorem 6. We l_w/ve ﬁ =M and T= T, that is,

i) Msa if and only if ¢=0 and {@[a]; a>Ta} is order bounded
in R,
ii) Ta= |J a[a] for acM.
a>Ta

Proof. This fact is evident from theorem 5 and Nakano’s theorem
about the reflexibility of a modular ([1], p. 175). But in the following
we shall prove this theorem directly without using the reﬂex1b111ty of a
modular.

i) We put M the totality of a such that a=0 and {a[a]; a>Ta} is
order bounded in R and Ta= Ueale]. If aeM and a>Ta, then we can

a>Ta
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see Ta=a[a] and hence aeﬁ namely MC M. Because, if TaZzal[a], then
there exists [p] such that 03[p]=<[a] and T[pla<ea[p], therefore
T(E[p])g[p]a>75[p] and hence [p]a=0 namely [p]=0, this is a con-
tradiction. Next for aeM and [p]lacM we have ([pla, T[pla)<([p]a,

T;[p]a)<(a Ta) (Ta= Ta for all ae M will be proved after in ii)), there-
fore[ sup ([pla, T[pla)<+c. From (16), putting [N]— [p] we have

[N]aeM Further we can proved [N]a=a and. therefore a< M namely

McCM. Because, let be apy=a—[N]a>0, as [a,]M>x implies x=a, [a,]M

is upper bounded. If we put b= |J x, we see easily b<a, On account
. xe[aojM

of the assumptlon that R is semi-regular there exists @c R" such as (a,, @) >0
and [@]®<[a,]=[a]—[N][a]. Therefore for any £¢=>0, if éa@> Tx, then
[@]%% < [a,]x <b, hence M3&a and T¢a <b<a, for all £=>0. Therefore
aoeM This contradicts aoﬁaeM

ii): For any acM we have ac M from the first part of i) and. evidently
Ta >Ta from the definition of T. Conversely for 0<a <1 we have

TTac<aa<a, therefore Taa<Ta and hence Ta= | Taa<Ta." Q.E.D.

0<Call
3. Types of corljugately similar, transformationS'. Through this
section (T, M) is a 'conjugate_ly similar transformation on R satisfying (C_).
And we assume that the following definitions about types of modulars and

classifications of modulars are known. We shall state in the following the
relation between types of a modular m, and types of (7, M), where m,(a)

:fl([al, Tz|a|)dé for all acR, putting (Ja|, T¢|a|)=+oco for &|a|eM.

1) m, is singular® = T(M)={0}.
. If m, is singular, then D_m,(a)< + o implies D_m.,([p]a)=0 for all
[p], and hence ([p]|a|, T|a|)=0 for all [p], that is, T|a|=0. Conversely

if T(M)={0}, then mT(a).—_f(Ja], Té|a])dé=0 or +oo for all ackR.

a) m, is semi-simple'® = for any a>0 we can find a>0 and [p]
such as Ta[p]la>0.

If m, is semi-simple, then for any a>0 there exist a>0 and [p]

such that 0<m,(a[pla)<+ o and a[p]a is domestlc ( 'mT(Sa[p]a)<+oo

13) For any asR(m) m(a)=0 or +< ({1], p. 157)
14) For any a>0 there exist §>0 and [p] such that O<m(§[p]a)< +oo ([1]; p. 156).
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for some £>1), therefore we have a[placM and Ta[a]>0. Conversely
if m, is not semi-simple, there exists a>0 such that [a¢]R is singular,
therefore for any a>0 and a[pJlacM implies Ta[p]a=0.

We see easily a is a simple domestic element if and only if |a|eM,
and T[p]|a|>0 for all 0=-[p]=[a].

3) m, is linear'® = M=R* and T¢a=Ta for all £>0 and acR".

If a is a positive linear element: m,(fa)=¢&m(a) for all £=0, then
we have D-.m, (§[pla)=D_m,([pla)< + o for all £>0 and [p], and hence
([pla, T¢a)=([pla, Ta) for all £>0 and [p], hence Téa=Ta for all & >0.
Conversely if T¢éa=Ta for all £>0, then m,(éa)=m,(a) for all £=0 namely
a is a linear element.

If m, is linear, then [a]=[b] implies T|a|=T]|b|. Since [a]]b]
=[b]|b|=|b] we have |b|~v|a|4>,|b], and hence T([b|~v|a|)t:, T|b]
and T(Jb|~v[a|)<Tv|a|=T|a|, therefore T|b|=T|a|. Similarly T|a|
<T|b].

Since m, is non-linear if and only if there ex1sts no linear element
except O, ~

4) m, it non-linear'® = if M>sfa for all £=0 and Téa=Ta, then

a=0.
Since m(a)=0 if and only if 7|a|=0,
5) m, is simple'™ = Ta=0 implies a=0.
6) m, is semi-singular'® = {a; Ta=0} is complete in R.
7)) m, is monotone'® = (] Taa=0 for all a=0.

a>0
For any aeM we have (aa, [ Taa) < m(aa)=<(aa, Taa) (0 =a =<1),
' ’ Toa>0

therefore lim &’(a—a):(a, N Taa). ﬂence lim M:O if and only if

a->0 (44 a>0 a->0 o
N Taa=0.
a>0 AN
We have also,
8) m, is assending®® = () Taa>0 for all a=>0.

a>0
a is a finite element if and only if Ms&|a] for all £=0. Therefore

9) m, is finite” = M=R".

15) m(éa)=ém(a) for all a € R(m) and é=0 ([1], p. 183).

16) If m(éa)=¢ém(a) for all £=0, then a=0, ([1], p. 183).

17) m(a)=0 if and only if a=0 ([1], p. 187))

18) The set of zero units ([1], p. 125) is complete ([1], p. 187).

19) legfo m(¢a) =0xfor all asR(m). ([1], p. 189).

© 20) inf
>0

mME2) 0 for all >0 ([1], p. 188).
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10) m, is almost finite®” = {a; M>&a for all £=0} is complete in R.
11) m, is infinite’®® = for any a >0 there exists a >0 such as aa ¢ M.
Since (1¢lal, ——slal)<mT<5a><<s|a; T¢|a|), lim mT@a) = sup
- =
(Jal, Té]a[) Therefore a is a 1nﬁn1te1y linear element 1f and only if
sup(lal Télal)<+°°

" 12) m, is wnfinitely linear®® = {a; sup (a, Téa)< + oo} is complete in R.

"13) my is tnereasing® (not 1nﬁn1te1y llnear) = sup (a, Téa)=+  for
a>0.
my is called strictly convex if for any a>0 m (€a) is a strictly convex
function of £=0. ‘
Ev1dent1y we see
14) my is stmctly convex = Téa>TEa for O<aeM and O<$2<51<1
'14) T is one to one mapping on M if and only if m, is strlctly
convex. _
Because, if m, is strictly convex, for any a,beM and a=:b there
exist [p] and 0=<a <1 such that [pJa >a[pla=[p]b (or [Pla=<a[p]b
< [p]b), therefore T[pla> Ta[p]a>T[p]b and hence T[pJla==T[p]b and
then Ta ==Tb.
15) m, is concave type%’ = M=R"* and T(a§1+,852)a>aT{=1a+,8T$2a
for any =0, §,=>£=0 and a+p8=1, a, =0.
We see m, is concave type if and only if for any a=>0 D_.m,(¢a) is
a finite concave function of & on 0<&< 4 oo, therefore if and only if
M=R* and T(a&,+B&)a=aTéa+pTEa for any a=0, & =& >0 and
a+p=1, a,=0. Further from this we can prove T(a$1+ﬁ$2)a>aT$1a
+BT¢&a for &, =&, =0 and a+,3 1, a, 5=0.
16) m, is convex type*® = T(a&, + B&)a<aTta+BTEa for any aecM,
1=6,=6=0 and a+£=1, a, $=0. :
We see m, is convex type if and only if mT is monotone and

21) The set of finite elements (m(¢a)<-+oo for all £=0) is complete in R ([1], p. 194).
22) There exists no finite element except zero ([1], p. 197).

23) The set of infinitely linear elements (Elé%) m(:a) <+oo> is complete in B ([1], p
~200). ’ - |
24) sup T4 _ 4 o for all >0 ([1], p. 200).

>0 &

25) Die¢m(éa) is a concave function of ¢ on [0, +oo) for all aeR ([11, p. 224).

26) For all aeR inf m{ta)
§>0

=0 and D+¢m(éa) is a convex function of ¢ on [0, +co).
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D_.m.(¢a) is a convex function of £ on 0<&=1, therefore if and only if
[1T¢a=0 and T(a&,+B&)a=aTéa+pTEa for any ae M and 0<é,<6,=1

and a+£=1, a, 8==0. These two conditions are equivalent to 7(a&,+ B&;)a
<aT&a+BTéa for any ae M and 0<&,<¢,<1 and a+8=1, a, =0.
17) m, is upper bounded*” = there exist 7, 7,>1 such that for all
acM we have r,ae M and Tr,a<y.Ta.

If m, is upper bounded, then from the definition there exists 7>2
such that m,(4a) < ym,(a) for all acR. Therefore D_mT<%4a,> = mr(4a)

=<ymy(@)<rD_m.(a). Hence acM implies 2ac M and we have ([p]a, T2a)

=—;—D_mT(Z[p]a)S__%D_mT([p]q):%([p]a,, Ta) for all [p] and acM, that

is, T2a< %Ta for all ac M. Conversely, if we have raeM for all ae M,

then M=R", and Tr,a=r.Ta implies (r,a, T¢r,a)=71.7:(a, Téa) for all £=0

and acR", therefore mT(rla)zfl(rllqi, TErlla])dsgrlrz,fl(]a], T¢|a|)de
) / ;o

=r,7.my(a) for all acR.

18) m, is lower bounded?®® = there exist 0<7,, 7o<1 such that T7,a
=7r:Ta for all acM.

If m, is lower bounded, then there exist y>a>1 such that m,(aaq)
=imy(a) for all acR. Since m (a’a)=7'm,(a) for all v=12,.--, we can
put £<ik. Therefore lD_’mT(a)g-1~'mT(a)__>_'mT(—1—a)gl)_mT(-}—a> for

r 2 7 7 Na 2a
all ae R, hence we have »2—a-TagT?1—a for all ae M. Conversely, if T7,a

7 a
=<7.Ta for all aec M, then we have m,(r,a)<7r,r:m(a) for all ac R, that is,

mT<la)z 1 ng(a) for all acR.
71 12 :

§4. Some types of modulars. In this section we shall define some
new types of a modular and decide these conjugate types.
~ 4.1. We shall state some conditions about bounded modulars.

( Definition. A modular is said to be d-upper bounded, if there exists
a number p>1 such that D_m(éa)=&’D_m(a) for all ac R and £§=>1.
Easily we see

27) There exist «, r>1 such that m(ax)<rm(m) for all xeR ([1], p. 214).
28) There exist 7, «>1 such that m(ex) =rm(x) for all xeR ([1], p. 215).
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1) m, is d-upper bounded = M=R"* and there exists a>0 such'that
Téa<&*Ta for all acR* and §=1. v

If m(a) (acR) is d-upper bounded, then evidently m(a) (aeR) is upper
bounded. However, generally the converse is not true. For example, let
R be one dimensional and m(§)=¢ (0<<£=<1) and m(§)=2¢—1 (£=1), then
m is upper bounded, but not d-upper bounded.

Lemma 8. If m is d-upper boulnded:' D_m(éa)=<&*D_m(a) for all
acR and £=1, then we have for any 0<y<x and £=>1
(20) m(§x) +EPm(y) <EPm(x) +m(Ey).

From the assumption easily we have m(féa)=<&?m(a) for all acR and
£§2=1, therefore m is finite. If y=nx for some 0=<9=<1, then m(éx)—m(cy)

_ f Domlta) gy f Dmeta) gy - f spo(m) = & {m(x) — m(7w)} = &

{m(x) m(y)} Next for any 0 <y < <9c we can find 0=y, <2 such that
YAy and y,= Zf,n[p,,,]w and 0<&,,<1 (v=1,2,---,%,; n=12,- ).

From the above we obtain m(&x)-{— s2m(y,) =< EPm(x) +m(§y,) (n=12,---),
therefore m(§x) + &'m(y) = lim {m(¢w) + §*m(y,)} < lim {£2m(z) + m(Ey,)} =
erm(@)+mEy).

Definition. A modular is said to be d-lower bounded, if there exists
a number p>1 such that D_m(éa)=&*D_m(a) for all ac R and £>1.

2) m, is d-lower bounded = there exists a > 0 such that T¢a <&°Ta

. for all aeM and 0=¢6<1.

Similarly in lemma 8 we obtain -

Lemma 9. If m is d-lower bounded, then for any 0<y<z and £=>1
we have : ‘

1) m(ED) +Em(y) =E7m(@) + m(£y).

Theorem 7. If a modular m(a) (acR) is d-upper bounded, then its
conjugate modular m(@) (@cR™) is d-lower bounded. And if m(a) (acR)
is d-lower bounded, then (@) (@cR™) is d-upper bounded.

Proof. Let m(a) (acR) be d-upper bounded. Then there exists p>1
such that D;m(&a)gspD_m(a) for all ae.Rb and £=>1. For any 0 <acR",
z, YR, £=1 and 0<7=<1 we can prove

e7(x, @) —&rm(x) +E79(Y, @) —m(En) ST(EP ') +EP7(7@).
Because: For x,y=0 we can find [N] such that [Nly=[N]= and
[N+]Je=<[N+']y. Therefore from lemma 8 we have
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erm([NJx)+m(E[N]y) =" m([NJy)+m(& EN 1@).
And, since [NtJe<[Nil]lyand 071 imply [INL]z+9p[NL]y <»[Ni]x
4+ [N4Li]y, we have |
EP([N+]w, @)+ &2p([N L]y, @)<&*n([N+]x, a)+£*([N*]y, a).
Hence we obtain
£7(x, &) — E2m(x) +E71(y, T)—m(Ey)
<&/([N]z+[N+]y, @)—m(E[N]e+E[N+]y)

+&([N]y+ [N L], @)—&*m([N]y+ [N+]x)

- =W a) +EPm(na).

Therefore
EP7(@) 4 (&P @) = Sup Ng7(x, @)— Epm(ﬂG)Jrf” t(y, B)—m(y))
= sup {&%(x, @)— S"M(w)+5”>7(y, a)—m(£y)}
) z,yERT
S - ZwErTe) +Erm(na).

This inequality implies for any §>1 adecR™ and 0=<75=1, putting q-——p~

grm(a)+ 77%(577&) <m(£a)+E&m(na). ,
Therefore D_mi(a)=¢*D_i(a) for all ac R™ and £=1. In the same way
we can prove the dual relation. Q.E.D.

4.2. We shall state some types which are -related to continuous
modulars and totally discontinuous modulars. '

Definition. An element a¢>>0 is said a d-discontinuous wunit, if
D_m(a)<+ o, and if D_ m(oc)<—!—oo implies [a]x=a.

By definition we have :

1) if a is a d-discontinuous unit, then a is a discontinuous unit,*”

2) for a d-discontinuous unit @ [N]e is also a‘d-discontinuous unit,

3) for d-discontinuous units a, and a, we have [a;]a.=[a;]a;=a;~a;,

4) for any system a,};c, of discontinuous units, if a,ticq@ and

D_m(a)< + o, then a is also a d-discontinuous unit.

1): Evidently m(a)<D_m(a)< + o, and if m(x)< + oo, then D_m(ax)
<+ o for all 0=a<1, therefore [a]ax=<a for all 0<=a<1 and [a]rx=a.
2) is evident. 3): By definition [a;]a, <a,, hence [a,]a, =a;~a,. How-
ever, a;,~a; = [a,]a,. Therefore [a;]a,=a,~a,. 4): If D_m(x)<+ oo,
then [aljl x|<a, (1€4), therefore [a]|x ]= [ax] | © |S U a,=a.

29) a=0 is called a discountinuous umt when m(a)<+oo and m{x)<+oo 1mphes [a]x
=a ([1], p. 191).
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" Definition. A modulared semi-ordered linear space R(m) is said to
be totally d-discontinuous, if the set of all d-discontinuous units is complete
in B. And R(m) is said to be d- contznuous if there exists no d-disconti-
nuous unit except 0.

Obviously for any R(m) there exists unlquely a normal manifold R,
such that R,(m) is totally d-discontinuous and Ri(m) is d-continuous.

Theorem 8. In order that R(m) is d-continuous, it is necessary and
suﬁicwnt that D m(a)— sup D_m(x) for all acR*.
.D f,:%:j<+oo ’ ;
Proof. Necessity: Let R(m) be d-continuous and for some a>0
D _m(a)=—+ o and _sup D_m(x)<<+ oo. Then if we put X, (ZGA) all elements
D m(-’v)<+oo

such as 0<rx<a and D: “m(x)<+ oo, we have w/l‘ze,,b<a As D_m(b)
=sup D_m(x;)< + o, we see b<a. If we put [a—blb=d, then we can
i€4

see d>0 and d is a d-discontinuous unit. Because, we can find «>0 such
as D_m(aa)< + oo, therefore aa=<b and 0<a[a—bla<[a—b]lb=d, further
if D_m(x)<+ oo, then x~a=<b, and hence (x—b)~(a—b)=<0 and (x—b)*
~(a—b)=0, therefore [a—b]z<[a—blb=d. This contradicts that R(m)
is d-continuous. ,

Sufficiency: Let ¢ be a>0 and d- dlscontmuous unit, then obviously
D_m(aa)=+ o for all a>1. However, if 2a=x=>0 and D_m(x)<+ o,
then x=[a]zx<a. Therefore sup D _m(x)= D_m(a)< -+ oo =D_m(2a).

0<w<2a
Domlx)< 400

Therefore the sufficiency is clear. ' Q.E.D.
Evidently the property to be totally d-discontinuous is weaker than
to be singular'® and stronger than to be totally discontinuous.’® And the
property to be d-continuous is weaker than to be continuous®’ and stronger
than to be semi-simple.'®
In the following we shall decide the conjugate type of a totally d-
discontinuous R(m).

Definition. An element acR is called a semi-linear element, if there
exist positive numbers &, and 7, such that m(§,a)< + o and m(éa)=(&—&)n,
+m(&,a) for all £=¢&,. :

By definition easily we have

'1) if a is a seml—hnear element, then a is an asymptotlcally hnear

- 80) The set of all discontinuous units is complete in R ([1], p. 193)
31) There exists no discontinuous unit except zero ([1], p. 193).
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element.?®
2) for semi-linear elements a;, and a, such as |a, Ir\[azl—O a,+a, is
also a semi-linear element. -
3) for semi-linear element a [N]a is also a semi-linear elem_ent

1) and 2) are evident. 3): As 7,= lim ﬂgﬂ, we have pozelim ML?T:IG,_)
£>+o0 > +o0o ’
+1lim m(-&[]s\'/'i]a) =n,+7, from the additivity of a modular, and by the
§>+o0

convexity of m(éx) we have m(§[N]a)=<(§—&)n+m(&[N]a) and m(E[N+]a)
=(E—¢&n+m(&[N+L]a) for all £=¢&. Therefore m(§[N]a)=(§—E&)n
+m(§[N]a) and m(E[NL]a)=(§—E&)n+m(§[N+]a) for all §=¢,.

Definition. A modulared semi-ordered linear space R(m) is called
semi-linear, if the set of all semi-linear elements is complete in R. And
R(m) is called non-semi-linear, if there exists no semi-linear element
except 0. - '

Obviously for any R(m) there exists uniquely a normal manifold R,
such that R,(m) is semi-linear and Ry(m) is non-semi-linear.

The property to be semi-linear is weaker than to be linear'® and
stronger than to be asymytotically linear.’?® And the property to be non-
semi-linear is ‘weaker than to be increasing®” and stronger than to be
non—lmear 16>

Theorem 9. If R(m) is totally d-discontinuous, then its modular

conyugate space R™() is semi-linear. :
Proof. We can represent R as direct sum of two normal mamfolds
R, and R, such that R,(m) is singular and R,(m) is semi-simple. ‘As B™
=R @ R; and Ry (@) is linear, we may assume further R(m) is semi-
simple. :
Let a>0 be d-discontinuous unit, on account of theorem 2 we find
@eR™ such that m(a)+m(a)=(a, @) and ([p]a, @)=D_m([pla) for all [p].
And for any £>1 we see D_m([pla)=([p]ae, &&)<D,m([pla) for all [p],
because a is a d-discontinuous unit and we see D.,m([pla)=-+ o for
[»]a=3=0. Therefore from lemma 4 we have m(¢a)+m(a)=(a, éa) for all
€1 and hence wm(éa)=(a, fa)—m(a)=(E—1)(a, a)+m(a) for all £=1.
Therefore a is a semi-linear element. On.the other hand, if [p]'a>0
then D_ m([p]a)>0 Because: If D_m([pla)=0 and [p]la>0, then we

m(éa)
¢

32) a is called asymptotlcally 11near When sup
&>

33) The set of all asymptocally linear elementsf is eomplete in R ([1], p. 203).

=7 <+oo and sup {&r—m(¢a)} <+ oo,
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have D_m(£[q]a)=0 or + o forall [¢] = [25] and £20, therefore [[p]a] R(m)

is singular. This contradicts R(M) is semi-simple. And as f (—g—c—,p>
‘ , a

[a]
D _m(dqa)=(z, a) (theorem 2), we see [a]®=[a]. Therefore the set of all

semi-linear elements in RB™ (m) is complete. Q.E.D.

Theorem 10. If R(m) 1s semi-linear, then R"‘(m) 28 totally d-dis-
continuous.

Proof. Let a>0 be semi-linear and m(éa)=(&— 1)§+m(a) for all £¢>1
and m(a)<-+oo. Evidently n=D,m(a) and m(&[pla)=(E—1)D,m([p]a)
+m([pJa) for all [p] and £=1. Therefore D, m([p]a)=0 implies [p]a=0,
for D, m([p]a)=0 implies m(¢[pla)=m([pla) for all £=>1, namely [p]a=0.
From theorem 2 we can find 0=a<R"™ such that m(@)+m(a)=(a, & and
([pla, @)=D,m([pJa) for all [p]. Further we see [@]®=[a], because

(x, @)= f ( , p) D,m(dga) and D, m([p]la)=0 implies [p]a 0. From the
[a]

equality m(a)+m(a)=(a, @) we have" D(_m(a)g(a, a)< -+ o, And for any

&>1 and a[p] >0 we see

m(¢a[p])= sup (&([p]e, &) —m([ 1)} = sup (&(p[#]a, @) —m(o[p]a)) = sup

{o(§—1) D, m([pla)} + D, m([p]la) — m([pla) = sup {o(§—1) D.m([p]a)}

=40, v = .
because a[p] >0 implies [a]®[p]>0, therefore [a][p]>0 namely [p]a=>0
and D, m([p]a)>0. Therefore @ is a d-discontinuous unit: If D_7(%)< + =
and z[a]”? = a, then we can find £>1 and [p] such that Z[a]?[p]=&a[p] >0,
hence + oo >D_m(%)=D. m(z[a]*[p])=D.m(a[p])=m(a[p])=+ oo, this
is a contradiction. As [E]Rz[a], the set of all d-discontinuous units in
R™ is complete. Q.E.D.

Finally we state one theorem concerning a d continuous modular.

If we put F={a; a=>0, m(a)< + =}, then evidently we see M, C M. CF.
When M, =F, namely m(a)< + oo implies D,m(a)< + o, T. Andd named
that type domestic and he proved the interesting theorem: A modular is
is domestic if and only if a modular is continuous and its modular norm3*
is continuous.?® In this result the most interesting point is that M, =F
-implies the continuity of a modular norm. Recently further he showed

34) H!aHI— nf (aeR) ([2], p. 212).
gad<1 Ifl

35)- We have llmlllav [1/=0 for any .|_,0 ([1], p. 127)
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the weaker condition than M,=F implies the continuity of a modular
norm. By the similar method we can see M,=M_ implies the continuity
of a modular norm. Therefore in the following we shall prove

Theorem 11. Let R(m) be a modulared semi-ordered linear space.
Then M, . =M_ +f and only if the modular norm is continuous and the
modular is d-continuous. :

At first we remark that the modular norm [|{a ||| (a€R) is continuous
if and only if for any system [p,}47.,0 and ac R we have 1nf D_m([p,]a)

=0. Because; if the norm |||a||| (aeR) is continuous then for [P, 430
and acR we can find v, (n 1,2-..) such that ]HZn[p,n]a|H<1 hence

D_m([p., ]a)<’m(2[p, Jay== m(2n[p, :la,)<L for every n=1,2,---, there-

fore 1nf D_m( [p Ja)=0. Conversely, if we have 1nf D_m( [p,]a,) 0 for
every [p,,]t‘f_ 0 and acR, then we find v, (n—l 2,- ) such that m(n[p, la)

=D_ m(n[p, ]a,)<1 hence Il [o. ]a[[|<—~ for every n=1,2,---, therefore

1nf||| [pv]aIH—O Th1s implies the contlnulty of the norm [||a ||| (aeR)

([1], p. 128).

Next we assume the following lemma that was proved by Ando ([5D):

Lemma. Let R(m) be a modulared semi-ordered linear space. If
the modular morm is mot continuous, then we can find a closed subspace
S of R satisfying following conditions: S(m) is a monotone complete
modulared semi-ordered linear space and there exist normal manifolds
N, of S (v=1,2,---) such that N, (v=1,2,---) are orthogonal each other
and the modular norm s not continuous on all N, (»=1,2,-~-).

Proof of theorem 10. Let R(m) be d-continuous and its modular norm
is continuous. For acM_ let [p,](A€ 4) be all projectors such that [p,]JacM,,
we see easily [p.]t.c,. If we put b:/ngA [p,]a, then we can find 2,€4

(n=1,2,---) [p, Jat..b ([1], p. 128), therefore [p:, 1ta-1[6]. We have
[a]=[b], because, if [b]<[a], then for every [¢g] such that 0<[q]=
[a]—[b] we have [qJa¢M,, therefore ([a]—[b])a is a d-discontinuous
unit and non-zero. This fact contradicts the assumption. We put [q,]
=[a]—[p,,], then we have [g,]i:..0, hence from the continuity of the
modular norm we have inf D_m(2[q,]a)=0. Therefore we can find =,

such that D_m(2[q, la)< + oo, hence [¢g, Jae M, and a=[g., Ja+ [201,, JaeM,.
Thus we have M, =M _.
Conversely, let be M,=M_. Evidently if a is non-zero d-discontinuous
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unit, then acM_ and a¢M,, therefore M,=M_ implies that the modular
is d-continuous. Next we see the continuity of the modular norm.
If the norm is not continuous, then without loss of generality from
the above lemma we can assume that R(m) is monotone complete and
there exist normal manifolds N, (»=1,2,-- -) of R such that the norm
is not continuous on every N, (»=1,2---). From the property that the
norm is not continuous on N; we can find [p,,]2.0 and 0=<a,cN, such
that [N, ]=[p,,.] and D_m([p,,.]a,)=+ o for every #=1,2,--.-. We put
&; the infimum of £=0 such that ixg D _m(&[p, ,]a,)=+ oo, then evidently

0<&,=<1 and we have il;_f D_m(¢,[p,,,]a;)= + oo, because, if D_m(&,[p, , Ja,)

<+ oo for some p, then &fp, ,Ja,e M_=M,, hence we find & >¢&, such
that &'[p, ,]a,€ M_, therefore igf D_m(¢&'[p,,.]a;)=0. This implies & <¢g,,
=1

it is a contradiction. Thus we can find [p, .]I3.0 and 0<a,eN, (v=1,2,

---) such that [N,]=[», .] and D_m([p, .]a,)=+ o for every p=1,2,---,

v=12,--- and inf D_m({[p, .]Ja.)=0 for every 0<£6<1 and v=12,---.
a3

For a sequence of positive numbers such that a;<a;<---<1 and lim a,=1

y->o0

we can find g, (v=1,2,---) such that D-m(a,[p,,,,v]a,)g—zl—. Then we have
Y

iD_m(d,[pu,p,]ay)gl, therefore from the monotone completeness there

ve=1 P . .
exists a=>la,[P,,]a, and D_m(a)=<1, hence acM_. However, for any
yv=1 . '

a>1 we find d,,o such that aa,,>1, therefore D_m(aa)=D_m(aa,,[D.,,., 2.,
=4 oo, hence a¢M,. This is a contradiction. Q.E.D.
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