ON SEMI-LOWER BOUNDED MODULARS

By

Masahumi SASAKI

W. Orlicz and Z. Birnbaum proved in [7]-that an Orlicz space L,(G)
is finite if and only if the function @ satisfies the following condition: for
some y>0 and t,>0, &(2t) <7r®(t) for every t=t,. (In case of mes(G)
=+ oo, O(2t) < r®(t) for all t=0.) '

This fact was generalized for arbltrary monotone complete modulars
on non-atomic space by I. Amemiya in [1], that is, suppose that R is a
universally continuous semi-ordered linear space and has no atomic element,
then every monotone complete finite modular on R is semi-upper bounded.

'T. Shimogaki showed in [8] a new simple proof of this Amemiya’s
Theorem. In this paper we investigate the properties of the conjugate
modular of a semi-upper bounded modular, i.e. the semi-lower bounded
modular. Throughout this paper we use the terminologies and notations
used in [5]. ,

In §1 we give corollaries of Amemiya’s Theorem and a theorem relate
to Amemiya’s Theorem. In §2 we investigate the relations between a
modular or the modular norms and semi-lower bounded modular. In §3 we
express the properties of a semi-upper and semi-lower bounded modular.

§1. Let R be a universally continuous semi-ordered linear space
and m be a modular on R"”. A modular m is said to be “finite”, if
m(x)<< -+ oo for every vxe R. A modular m is said to be “monotone complete”,
if for 0=<a icy, sup m(a;)< + oo there exists ac¢R for which a,t,c,a.

And a modular m is said to be “semi-upper bounded”, if for every e>0
there exists 7= 7(¢)>0 such that m(x) = implies m(2x) < rm(x).

In [1] I. Amemiya proved:

Theorem 1.1. Suppose that R has mo atomic element then every
monotone complete, finite modular on R is semi- upper bounded.

- We say a modular m on R to be “domestic”, if for any ac{a:m(a)

<+ oo, acR} there exists §=¢&(a)>1 such that m(fa)< 4. On R, we
define the two functionals ||a]|, ||[|a]|| (aeR) as follows:

1) For the definition of the modular see H. Nakano [5].
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Then it is easily seen that both [|a|| and ||| a]|| are norms on R and satisfy
always |||e]l|=Z||a||=2]||a]|]| for all acR (cf. [6]). The norms [|a|| and
llla|]] are called the first norm and the second (or modular) norm by m
respectively.

Remark 1.1. (i) If a modular m on R is finite, then m 1is domestic;

(i) of m 4s domestic, then inf m( )—1; (iii) inf m( @ >>o
~ . ovacr A [ @ | ovecz |2 ]}
implies |||-]|| is continuous; (iv) if |||-||| ¢s continuons, then m is ﬁnzte

when R has mo atomic element.
Because, .(i) is trivial. (iii) and (iv) is well known®. Therefore we

HEAH

have only to prove (ii). If m( )<1 for some x¢R, there exists

¢>0 by domesticness such that

tem (Ao )< <o

Thus there exists y<1, for which m( (14¢) | il >=1. Therefore we

”l H'——l and hence m

8

obtain 7y (1 +e) —!“ r(1 —I—s)

A modular norm |||z]||(xcR) is said to be “finitely monotone” (cf.
[9]), if for every ¢>0, there exists an integer m,=mn) such that

a=@® Dz, [[z]|<1, | ll|=c (i=12,--, ) implies #=<m, A modular
i=1
m is said to be “wuniformly finite”, if
sup m(fx)< oo for all £=0.

m(a) <1
-In [9, Theorems 1.1, 2.1 and 2.2], it is shown that if a norm on R
is uniformly monotone®, then it is finitely monotone; if a modular m is
uniformly finite, then the modular norm by m is finitely monotone; if the
modular norm by m is finitely monotone, then m is uniformly finite when
R has no atomic element; if a norm is finitely monotone, ‘then the every
norms which is equivalent to it is also finitely monotone.

e ) =1, contradicting

2) T. Andb obtained (iii). For (iv) see [1].
8) A norm on R is said to be uniformly monotone, if for any ¢>0 there exists 5 0(e)>0
such that a—~b6=0, ||a||=1, ||b||=¢ implies ||a+b||=1+0 (cf. [4]).
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R™ denotes the totality of all universally continuous linear functionals®

on R which are bounded under the modular norm [||-]|| by m. On R" the
conjugate modular of m(x) is defined as follows

m(a)=sup {a(x)—m(x)} for every acR".
zER ! :

m(a) satisfies the modular conditions and is monotone complete (cf. [5, §38]).
It has been known that if R is semi-regular®, the first norm by the
conjugate modular 7 is the conjugate norm of the second norm by m and
the second norm by the conjugate modular 7 is the conjugate norm of
the first norm by m.
Lemama 1 ([5, Theorem 39.47). If R 1is semi-regular, then R 1is
tsometric® to a .complete semi-normal ma’mfold of the congugate space

R™ of R" by the correspondence
Rsa —a®"eR", of"(F)= z(a) for weR

Corollary 1 of Theorem 1.1. Suppose that R has no atomic element
If the modular morm |||-||| by m is finitely monotone, then m is semi-
upper bounded.

Proof. Since m is uniformly finite by assumption, 7 is uniformly
finite on R™ ([5, Theorems 48.4, 48.5]). Since 7 is monotone complete’
and B™ has no atomic element, we obtain by Theorem 1.1 7 is semi-upper
bounded on R". Therefore m is semi-upper bounded by Lemma 1. Q.E.D.

Remark 1.2. If a modular m is semi-upper bounded and semi-
svmple, then m is unitformly finite.

Because, if for some 7y>1 we have m(2x) < ym(x) for -every « such
that m(zx)=1, then we have obviously m(2z)<r'm(x) (»=1,2,--.) for
every « such that m(x)>=1. Since m is finite by assumption, we obtain

sup m(2’x) < sup m(2°x)
m(x) =<1 | =m(x)<2
= sup r’m@)=2r'<+4oc (»=12,--.).
| <mix)<2

- 4) A linear functional L on R is said to be universally continuous, if for any
ailie 40 we have g?/flL(ax)I:O. _
5) R is said to be semi-regular, if a[p]=0 for all acR™ implies p=0. For veR, [p]
denotes the. pro;jectlon operator defined by [p]x- U(mr\y | p]) for all x=0.
. 6) A modulared space R Wlth a modular m is said to be isometric to a modulared
space R with a modular @ by a correspondence Raa—m,RER if R is lsomorphlc to R by

this correspondence and m(a)—'m(aR) for all ac R.
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Thus, m is uniformly finite.

A norm on R is said to be “monotone”, if 0 <a<b implies ||a||<]|b .
A norm on R is said to be “wuniversally monotone complete”, if for
0=aties sup [la,|| <+ o there exists acR such that a,f.csa; if

A={1,2,.---} we say to be “monotone complete”.

Corollary 2 of Theorem 1.1. If the modular morm [||-]]| by m s
monotone and monotone complete, then m 18 uniformly simple®, and m
18 semi-upper bounded when R has mo atomic element. '

- Proof. (i) If the modular norm |||-]|| by m is monotone, than |||-||]
is continuous. :

OxreR

Because, if inf m( el ><1 there exists acR such that illell|=1
x

and m(a)< 1, therefore we can suppose [a] <1 without difficulty, and hence
there exists 0<beR such that a~b=0, m(a+b)=<1. Thus. we obtain

obviously ||a+b|[|=]|||e]||]]=1, which is contradicting |||-]|| is monotone.
Consequently we obtain inf (]”x il ):-1, and hence |||-||] is continuous by
0xxER X
Remark 1.1. ‘ ' »
- (ii) If the modular norm |||-||]] by m is monotone, then m is simple®.

Because, if m is not simple there exists acR: such that 0<a and
m(a)=0, then m(a+bd)=m(d)=<1 for any 0<b, a~b=0 and [||b]||=1.
Thus we have [||a+0b]||=]l|b]l]=1, contradlctlng assumption that [||-]|| is
monotone. Thus m is simple.

If the modular norm [||-||| by m is continuous and monotone complete,
then m is monotone complete (cf. [5, Theorems 30.20, 40.7]). Thus we
obtain m is monotone complete, simple and |||-||| is continuous by (i) and
(ii). Therefore m is uniformly simple (cf. [11, Theorem 2.1]).

If R has no atomic element, then uniformly simple modular m is
uniformly finite ([10, Theorem 1.27]), and hence we obtain m is semi-upper
bounded by Corollary 1 of Theorem 1.1. Q.E.D.

Theorem 1.2. Suppose that R has no atomic element. Each of the
following conditions implies that m is semi-upper bounded

(1): OimeR (“lx“l )

LD A modular m is sald to be uniformly simple, if gnf 1m(.fclc)>0 for all ¢>0, that is,
m(a)2,

Jor some 0<a<1,

lim m(a.)=0 implies llm [[las |]]=0.
¥ >0

8) A modular m on R is said to be simple, if m(a)=0 implies a=0.
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(2):, o OE;ER (m [” >>0' | for some a=1.

Proof. (1): We prove first that the condition:

inf m(—1—1x>=$>0 for some 1>¢>0
ovacz  \ |||« || .
implies the condition:
-inf ﬁ(—lgf—azc)>0 for some ¢>¢>0.
oxzezm T ]

For Ze¢R™ with |||Z|||=1 there exists x,¢R (1€ 4) such that x,},c,%
(cf. [5, Theorem 5.847), because R is a complete semi-normal manifold of
R™ by Lemma 1. Since the modular norm is semi-continuous and reﬂex1ve
(cf. [8]), we obtain |||z, ||| t:c]l|Z |||, and hence we have

(12 ) et (1—5) -

Consequently there exists 2‘0 such that (1——2~> I xl [|| >1—¢ for 2=2,.

If inf m( Iﬁ—lll ) 5\0 we obtain easily m(x)=¢& for every « such that
x

OXxxE R

Il ]| =1—e¢, thus we have obviously m((l——;—)xl)gs for 2= A,.

1— 5
Therefore we have inf m( ) >0.

O%mER™ I”—I“

Therefore, we obtain ||| a ||| (@eR™) is contmuous by Remark. 1.1, and,
since R™ is non-atomie, 7 is finite on R" by Remark 1.1. As @ is mono-
tone complete, we obtain m is semi-upper bounded by Theorem 1.1, and
hence we obtain finally that m is semi-upper bounded by Lemma 1.

The proof for the condition (2) is similar. ‘ Q.E.D.

§2. Let R be a modulared semi-ordered linear space with a modular
m:and be semi-regular. In this section, our aim is to consider the relations
between properties of a modular or the modular norms and its semi-lower
boundedness.

A modular m on R is said to be ‘“semi-lower bounded” if for every
¢ >0, there exist 1 <a=a(e)<7(e)=r such that m(x)=¢ inmplies m(ax)=rm(x).

Theorem 2.1. If a modular m is semi-upper bounded and semi-
simple, then the conjugate modular i of m is semi-lower bounded.
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Proof. Since the case m(@)=+ o is trivial, we can assume that
m(@)< + . For every ¢>0 there exists 7y=7(¢)>0 such that Am(ac) gg

implies m(2x) < ym(x), by assumption. Then we have definition

m ( _;_ ’6,) _ sup{ a(2x) — m(2x)} = sup { 5 'd(Zx)—m(Zx)}

R
ze w2y

=7 sup {@(x)—m(z)} (@cE").
m(w)z—

For every 0<<@eR"™ such that ¢<wm(a)< + o, we have to consider the case

(@)= sup (@(x)—m(@).

For any 6>0 there exists x¢ R such that m(x) <% and a(x) — m(x) =m(a)—a.
Since m is uniformly finite by Remark 1.2 there exists f=p(a)>1 such

that o m(px)=-<

Therefore we obtain a(Bx)—m( ﬁw)‘; a(x)—m(x)— m(ﬁx) =m(a)—o— —§—
Thus we have

r sup {@(@)—m(@)) = (@ - ) Zr (@) -
m(m)g—

m(a)

3 ) 3rm(w)

and hence m(%&}g—g,—rm(ﬁ) for every @ such that m(@)=<. Q.E.D.

Theorem 2.2. If a modular m 1is semi-lower bounded, then KL is
semi-upper bounded.

Proof. If for every £>0 there exist r>a>1 such that 'm(x)>e
implies m(ax) = ym(«), then we have by definition

m (—T—a>—sup {—a(ax) m(aw)}<r sup {a(x) m('c)}—l— sup {ra(w) m(aoc)}
o reR L o
= rm(a)+7 Sup, {a(x)} < rm(@)+7r Sup {m(@)+m(x)}
= rm(a)+r(m(a)+¢)=r{2m(a)+¢},

since by definition |@(x)|=< m(@)+m(x) for acR™, zcR.
L ]

Thus we have | m(la)gsrm(a) for every a such that m(@)=e. Q.E.D.
' [24
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The “conjugate” of “wuniformly finite” is “uniformly increasing”,

ie. - lim inf ﬁ'ﬁ?ﬁ;+w ' (cf. [5, §48j).

Er00 m(m)z1
Theorem 2.3. If a modular m is semi-lower bounded, then m is
uniformly increasing.
Proof. By assumption there exist 1<a <7y such that m(x)>1 1mp11es
m(a’x) =r'm(x) (v=12,---).

Therefore we obtain —]‘—m(a x)>< > m(x) (v=1,2,--.) for every 2 such
a’ a

that m(x)>1 and consequently m is umformly increasing. Q.E.D.

Since the “conjugate” of “finitely monotone” is “finitely flat”, i.e.
for every y>0 there exists s=¢(7) such that

.’E:@Ewi’ ”x“gl, ”xzués (7::1’2,..,’%)

implies ng—r—llxll (cf. [9, §1]), we have immediately by Corollary 1 of
- €

Theorem 1.1, Theorem' 2.1 and Lemma _'1 the following
Theorem 2.4. Suppose that R has no atomic element. If the modular
norm |||-||]| by m is finitely flat, then m is semi-lower bounded.

- Remark 2.1. If a modular m is uniformly increasing, then the
modular norm 1is finitely flat. The converse of this is valid, zf we suppose
that R has nmo atomic element (cf. [9]).

A norm ||-|| on R is said to be “flat”, if for any aﬂFO a~b=0 we have

1 laebll—llall _,,
&0 &g

The “conjugate” of ‘“uniformly simple” is * unzformly monotone”

ie. | hm% sup m(Gx)=0 (cf. [5, §48]).
D £->0 m(x) <
Theorem 2.5. If the first norm H” by m s flat and the first norm

[[7]] by conjugate modular w of m is continuous, then m is unrformly
monotone, and m is semi-lower bounded when R has no atomic element.

Proof. Using Banach’s theorem (cf. [6, §44]) and reflexivity of the
norm [|-||, we can prove that flatness of ||-|| implies monotony of [||~]|].
Thus we have 7= is simple by (ii) in proof of Corollary 2 of Theorem 1.1.
Since ||@]|| is contiguous by assumption and # is monotone complete, we
- obtain % is uniformly simple ([11, Theorem 2.1]). Thus m is uniformly
monotone.
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On the other hand, if m is uniformly monotone then m is uniformly
increasing when R has no atomic element ([10, Theorem 1.3]). By Theorem
2.4 and Remark 2.1 the proof is completed. Q.E.D.

A manifold K of R is said to be *“equi-continuous”, if for any

a,y>., 0, @,cR™ and ¢>0 there exists v, for which we have @, (x) <e¢ for
all ze K. . .
- Theorem 2.6. If a modular m is semi-lower bounded, then a mani-
fold K={x:m(x) <1, xecR} s equi-continuous. The converse of this 1s
true, if we suppose that R has mo atomic element.
Proof. If m is semi-lower bounded, m is uniformly increasing by
Theorem 2.8. Then we have m is uniformly finite, and hence the conjugate
norm of the modular norm by m is coritinuous by Remark 1.1. There-

fore we obtain for any ¢>0 and R">5a,{>.; 0 there exists v, such that
a,(x)=<e¢ for all xeK ([5, Theorem 31.12]). That is, K is equi-continuous.

Conversely we suppose that R has no atomic element and the manifold
K={x:m(x) <1} is equi-continuous. Since we have obviously by definition
{z:[llz]]] < 1}={x: m(z) <1}, the first norm by  is continuous ([5, Theorem
31.12]). Thus we obtain 7 is monotone complete and finite, because R"
is non-atomic by assumption. Thus we have 7 is semi-upper bounded by
Theorem 1.1, therefore we obtain by Theorem 2.1 and Lemma 1 m is
semi-lower bounded. ' Q.E.D.

A manifold K of R is said to be “weakly bounded”, if

sug[&(x)|<+oo for all @aecR".
e

Theorem 2.7. If a modular m 1is semi-lower bounded, then every
weakly bounded manifold is equi-continuous.. The converse of this 1s
truth, 1f we suppose that R has no atomic element. '

Proof. 1If m is semi-lower bounded, the conjugate norm of a norm by
m is continuous. Consequently every manifold K for which sup [fe||< 4+

is- equi-continuous ([5, Theorem 33.10]). Therefore we have sup | a(x) |
— xe
= su}g]”&[” -||x|| for all @ R™, and hence K is weakly bounded by definition.
e .

Convérs‘ely we suppose that R has no atomic element. Since the norm
-] is reflexive (ef. [8]), if a manifold K is weakly bounded, then K is
norm bounded, i.e. sup |||z]|||< + e ([5, Theorem 32.6]), and equi-continuous

e XK -

by assumption. Then the first norm by the conjugate modular i of m
is continuous ([5, Theorem 33.10]. Thus we have obviously our conclusion
by the method applied to Theorem 2.6. Q.E.D.



122 : M. Sasaki

4 Theorem 2.7. Supposé that R has mo atomic element. Fach of the
Jollowing conditions tmplies m 1s semi-lower bounded

| e 1) o
(‘1) : oifgza ; (l”x”l ) 1+0 for some r,5>0,
(2) o oil‘é’gm(”x“-)d

Proof. (1) For every acR" with || @||=1, we have
(1+o)a(ta)—m(§a) = £(1+0)—£(1406)=0
for every acR, |lla]]|=1 and £=7.
Thus we have m((1+5)a)= sup {(1+0)a(x)—m(x)} < r(1+9).

Suppose that R”La_,¢,=10 and 1nf|[a “—-a>0
then there exist ¢,>0, v, such that

=1+0 for every v=>v,.

H a—eg,

-Since we have 1—]—7’1—z< @, )g’ a. >_¢ for every v=>y,.
a_eo a'“-‘&‘o a_ao
. .. —( a, : a
we obtain _ 1+1lim m( )_2__ >1.
»>00 a—egg a—gg \
Since lim fT)i( 2. >:O, this is a contradiction.
v->00 a—gg

Therefore ||@ || is continuous. Thus we have our conclusion by the method
applied to Theorem 2.6.
The proof for the condition (2) is similar. Q.E.D.

8§3. Let R be a modulared semi-ordered linear space with a sem1-81mp1e
modular m. In this section, we express the properties of a semi-upper
and semi-lower bounded modulars.

If a modular m is semi-upper and semi-lower bounded, then m is said
to be “semz-bounded”

Lemma 3.1. Suppose that R has no atomic element. If the morms
by a modular m have the property: '

1 =7y, where y>1 s a fivred constant, then m 1is semi-
Joxzen [|[ @] | o

bounded.
Proof. We have m is uniformly finite and uniformly increasing by
the assumption (ef. [10, Theorem 1.1]). Therefore we obtain our conclu-
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sion by- Corollary 1 of Theorem 1.1 and Theorem 2.4. ‘ Q.E.D.
Lemma 3.2. If a modular m 1is semi-bounded, then the norms by
m have the property ’

Jnf l”x}:l =7 fo'r 'some r>1

Proof. Since m is unlformly finite and uniformly increasing by Remark
1.2 and Theorem 2.3, we have our conclusion (c¢f. [10, Theorem 1.47).
. _ Q.E.D.
From these Lemmata, we obtain the following theorem ‘
Theorem 3.1. Suppose that R has no atomi¢ element. A modular
18 semi-bounded, if and only if the worms by the modular have the
property: S

M=l | r some
AT =7 | Jor some y>1.

In the case when a modular m on R is of unique spectra (cf. [5,
§54]), semi-boundedness of m implies boundedness® of m. In fact we have

Theorem 3.2. If a modular m on R is of um,que spectfraw’, then
semi-boundedness of m is equivalent to boundedness of m.

Proof. If m is semi-bounded, then m is uniformly finite and uniformly
increasing by Remark 1.2 and Theorem 2.8. Therefore m has the upper
exponent'” p, and the lower exponent!® p, such that 1<<p,<p,<+ o (cf.
[5, Theorems 54.8, 54.10]). Thus m is bounded ([5, Theorems 54.4, 54.51]).

‘ ' Q.E.D.

A modular m of unique spectra is umformly convex!? (or uniformly
even'”) if and only if 1<p,<p,< +  for the upper exponent p, and the
lower exponent p, (cf. [5, §50, §564]). Therefore we obtain also:

Theorem 3.3. A modular m of unique spectra is uniformly convex
(o'r uniformly even), if and only if m-is semi-bounded.

Theorem 3.4. Suppose that R has no atomic element. If a modular
m is uniformly convex (or uniformly even), then m is semi-bounded.

Proof. Let m be uniformly convex. Then m is uniformly simple
([5[Theorém 50.1]). Since R is non-atomic by assumption, m and 7 are
uniformly finite ([10, Theorem 1.27]), and hence m and # are semi-upper

9) A modular m on R is said to be upper bounded, if there exist o, y>1, for which we
have m(ox)<ym(x) for all xzeR; and m is said to be lower bounded. if there exist r>w>1
such that m(ox) =7m(x) for all x=R; if a modular m is upper and lower bounded, then m
is said to be bounded. -

10) For the definitions see [5].
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bounded by Corollary 1 of Theorem 1.1. Thus m is semi-bounded.

Let m be uniformly even. Then m is uniformly finite and uniformly
monotone ([5, Theorems 51.1, 51.2]), and hence m is semi-bounded by
Corollary 1 of Theorem 1.1 and Theorem 2.4. , Q.E.D.
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