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1. Introduction. Let us denote by $Z(m, n)$ the set of all systems
of $n$ complex numbers $(z_{1}, z_{2}, \cdots,z_{n})$ with the property

(1. 1) $s_{m+1}=s_{m+2}=\cdots=s_{\text{ノ}n+n-1}=0$ ,

where $s_{\nu}=z_{1}^{\nu}+z_{2}^{\nu}+\cdots+z_{n}^{\nu}$ and $m$ is a non-negative integer. It will be
almost evident that the set $Z(m,n)$ always contains $a$ non-trivial system,

I.e. a system other than $(0,0, \cdots,0)$ : we write $Z^{*}(m,n)$ for the set of all
non-trivial systems in $Z(m,n)$ .

Vera T. S\’os and P. TUR\’AN [1] have shown that 1) the systems in
$Z(O, n)$ are given by the zeros of an equation

$z^{n}+a=0$ (a arbitrary complex),

2) the systems in $Z(1,n)$ are given by the zeros of an equation

$z^{n}+\frac{a}{1!}z^{n-1}+\cdots+\frac{a^{n}}{n!}=0$ (a arbitrary complex)

and 3) the systems in $Z(2,n)$ are formed by the zeros of an equation

$z^{n}+\frac{H_{1}(\lambda)}{1!}az^{n-t}+\cdots+\frac{H_{n}(\dot{A})}{n!}a^{n}=0$ ,

where $H_{\nu}(t)$ is the v-th HERMITE polynomial defined by

$H_{\nu}(t)=(-1)^{\nu}e^{t^{2}}\frac{d^{\nu}}{dt^{\nu}}e^{-t^{2}}$

$\lambda$ denotes any zero of the equation $H_{n+1}(t)=0$ and $a$ is an arbitrary
complex number.

A general characterization of the set $Z(m, n)$ for $m>0$ has been
given by the present author in [2], the details of which will be re-
produced later on (see Theorem 3 below). However, as a matter of
fact, it is not quite easy to find a special non-trivial system of $Z(m, n)$

even when $m=2$ .
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Now we introduce the notion of equivalence between non-trivial
systems.in $Z(m, n)$ which is substantially due to Professor P. TUR\’AN.
Any two systems $(z_{1}, \cdots,z_{n})$ and $(zI, \cdots,z_{n}^{\prime})$ in $Z^{*}(m,n)are$ said to be equivalent,
if there exist a non-zero (complex) number $\lambda$ and a permutation $\pi$ on
1,2, $\cdots,n$ such that

$z_{j}^{\prime}=\lambda z_{lr(j)}$ $(j=1,2, \cdots,n).$ .

Clearly, this induces an equivalence relation in $Z^{*}(m, n)$ and we shall
denote by $B(m,n)$ the number of inequivalent classes in $Z^{*}(m,n)$ according
to the equivalence thereby defined. The number $B(m,n)$ is easily seen
to be always finite. Thus, roughly speaking, $B(m, n)$ is the number of
$b\alpha sic$ systems in $Z(m, n)$ from which others are obtained by stretching,
with rotation, from the origin of the complex number plane.

According to the results of Sos and TUR\’AN mentioned above, we
can see at once that

$B(0,n)=1$ , $B(1, n)=1$ .
However, the determination of $B(m,n)$ will be not so trivial when
$m\geqq 2$ . We shall prove:

Theorem 1. We have

(1. 2) $B(2, n)=L^{\frac{n}{2}\rfloor+1}\lceil^{-}$

Theorem 2. We have

(1. 3) $B(3, n)=[\frac{n^{2}+3n}{6}]+1$ .
Incidentally we find that

(1. 4) $B(m, 2)=[\frac{m}{2}]+1$

and

(1. 5) $B(m, 3)=[\frac{m^{2}+3m}{6}]+1$ .
Thus we have $B(\acute{m},n)=B(n, m)$ for $m=2,3$ . It is then natural to ask
whether the relation $B(m, n)=B(n, m)$ will hold for every non-negative
integer $m$ . We can show that this is certainly the case, on inter-
preting that $B(m, 0)=1$ : indeed, we have the recurrence formula

(1. 6) $\sum_{l|(mn)}.a(d)B(\frac{m}{d},$ $\frac{n}{d})=\frac{(m+n-1)!}{m!n!}$ .
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where $a(k)=k^{-1}II(1-p)p|k$ and, in particular, when $(m,n)=1$ this implies

that

$B(m,n)=\frac{(m+n-1)!}{m!n!}=B(n, m)$ .

This, together with (1.6), proves our assertion. Hence, if we assume
the general relation $B(m,n)=B(n,m)$ , then it turns out that, in order
to establish our Theorems 1 and 2, we have only to prove (1.4) and
(1.5): in effect, as will be seen later, it is considerably easier to prove
(1.4) or (1.5) than to prove the corresponding relation (1.2) or (1.3).
However, it will be of some interest to get direct proofs for the re-
lations (1.2) and (1.3).

Our proof of (1.6) will be published elsewhere [3].

2. Characterization of $Z(m,n)$ . In what follows we shall suppose
that $m\geqq 1$ . We define polynomials $C_{\nu}=C_{\nu}(t_{1}, \cdots,t_{m})(\nu=0,1,2, \cdots)$ in $m$

indeterminates $t_{1},$ $\cdots,t_{m}$ by the relation

(2. 1) exp $(-\sum_{\mu=1}^{m}\frac{1}{\mu}t_{\mu}x^{\mu})=\sum_{\nu\approx 0}^{\infty}\frac{C_{\nu}}{\nu!}x^{\nu}$

In the case of $m=2$ , our polynomials $C_{\nu}(t_{J}, t_{2})$ are closely connected
with those of $HF_{\lrcorner}Bp\backslash 11TE$ , since there holds the relation

$e^{\underline{9}}=tx-x^{2}\sum_{\nu=0}^{\infty}\frac{H_{\nu}(t)}{\nu!}x^{\nu}$ ,

and we have in fact

$C_{\nu}(-2u, 2v\underline’)=v^{\nu}H_{\nu}(\frac{u}{v})$ $(\nu=0,1,2, \cdots)$ .

In [2] we have proved the following

Theorem 3. All the systems $(z_{1},.\cdots,z_{n})$ of $Z(m, n),$ $m\geqq 1$ , are formed by

the zeros of an $equatq,\sigma n$

(2. 2) $\sum_{\nu\rightarrow 0}^{n}\frac{C_{\nu}(\lambda_{1},\cdots,\lambda_{m})}{\nu!}z^{n-\nu}=0$ ,

where $(\lambda_{1}, \cdots,\lambda_{m})$ is any solution of the simultaneous equations

(2. 3) $C_{n+\kappa}(t_{1}, \cdots,t_{m})=0$ $(\kappa=1,2, \cdots,m-1)$ .
We note that, if $m>n$ , then the values $\lambda_{n+1},$ $\cdots,\lambda_{m}$ among the $\lambda_{\mu}$

determined by (2.3) do not enter into the left-hand side of (2.2): in
that case the values of $t_{n+1},$ $\cdots,t_{m}$ are (uniquely) determined by those
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of $t_{1},$ $\cdots,t_{n}$ . Also, if $m>n+1$ , the Prst $m-n$ equations of (2.3) are
superfluous.

As is easily seen, if the system $(z_{1}, \cdots,z_{n})$ of $Z(m,n)$ is given by a
solution $(\grave{\Lambda}_{1}, \cdots,\lambda_{m})$ of (2.3), then we have

$z_{I}^{\mu}+\cdots+z_{n}^{\mu}=\lambda_{\mu}$ $(1\leqq\mu\leqq m)$ .
Anyway, for a non-trivial system of $Z(m,n)$ , we may assume that
$\lambda_{m}\neq 0$ .

3. A criterion of the equivalence. The following lemma is
elementary:

Lemma. Lel $(z_{1}, \cdots,z_{n})$ and $(z_{I}^{\prime}, \cdots,z_{n}^{\prime})$ be any two systems in $Z^{*}(m,n)$ .
Write

$s_{\nu}=z_{1}^{\nu}+\cdots+z_{n}^{\nu},$ $s_{\nu}^{\prime}=z_{1}^{\prime\nu}+\cdots+z_{n}^{\prime\nu}$

Then, $(z_{1}, \cdots,z_{n})$ and $(z\int, \cdots,z_{n}^{\prime})$ are equivalent if and only if
$s_{\nu}^{\prime}=\lambda^{\nu}s_{\nu}$ $(\nu=1,2, \cdots,n)$

for some non-zero $\lambda$ .
Proof. Let $a_{i}$ and $a_{i}^{\prime}$ be the i-th elementary symmetric functions

of $z_{1},$ $\cdots,z_{n}$ and $z_{1}^{\prime},$

$\cdots,$
$z_{n}^{\prime}$ , respectively. Then, by the definition, $(z_{1}, \cdots,z_{n})$

and $(z_{1}^{\prime}, \cdots,z_{n}^{\prime})$ are equivalent if and only if $a_{\ell}^{\prime}=\lambda^{f,}a_{t}(i=1,2, \cdots,n)$ for some
non-zero $\lambda$ . Hence, by the NEWTON-GrRARD formulae, $(z_{1}, \cdots,z_{n})$ and
$(z_{1}^{\prime}, \cdots,z_{n}^{\prime})$ are equivalent if and only if $s_{\nu}^{\prime}=\lambda^{\nu}s_{\nu}(\nu=1,2, \cdots,n)$ for some
non-zero $\lambda$ .

In the proofs of Theorems 1 and 2 we shall make use of this
lemma as the criterion of the equivalence in $Z^{*}(m,n)$ .

4. Proof of Theorem 1. By Theorem 3, any system of $Z(2,n)$ is
given by the zeros of an equation

$\sum_{\nu-0}^{n}\frac{C_{\nu}(\lambda 1\lambda_{2})}{\nu!}z^{n-\mu}=0$ ,

where $(\lambda_{1}, \lambda_{2})$ is a solution of

$C_{n+1}(t_{1}, t_{2})=0$ .
Now we have

$C_{n+1}(-2u_{J}2v^{9}\cdot)=v^{n+1}H_{n+1}(\frac{u}{v})$ .
Since each root is a simple one, there are exactly $n+1$ distinct (real)
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roots of $H_{n+1}(t)=0$ . We distinguish two cases.
(Case 1) $n$ even: Then $H_{n+1}(t)$ is an odd function of $t$ and we have

$H_{n+1}(\{))=0$ . Hence, corresponding to $\lambda_{1}=0,$ $\lambda_{2}\neq 0$ we have a non-trivial
system of $Z(2, n)$ . By the Lemma, all such systems are mutually
equivalent. Next, we take a non-zero root $\rho$ of $H_{n+1}(t)=0$ . Then $\lambda_{1}=$

$-2u\rho\lambda_{2}=2u^{\Omega}\rightarrow(u\neq 0)$ gives $a$ non-trivial system of $Z(2,n)$ , all such systems
again, being mutually equivalent. On the other hand, we have

$H_{n+1}(-\rho)=-H_{n+1}(\rho)=0$ ,

and hence $\lambda_{1}^{\prime}=-2u^{\prime}(-\rho),$ $\lambda_{2}^{\prime}=2u^{;2}(u^{\prime}\neq 0)$ gives another non-trivial system
of $Z(2,n)$ ; but this is actually equivalent to a system corresponding to
the $\lambda_{1},$ $\lambda_{2}$ , since $\lambda_{1}^{\prime}=-2(-u^{\prime})\rho,$ $\lambda_{2}^{\prime}=2(-u^{\prime})^{2}$ . Also, the different $\rho’ s$ with
different absolute values give inequivalent systems. .Thus, there exist
$\frac{n}{2}$ inequivalent classes in $Z^{*}(2, n)$ corresponding to $n$ non-zero roots $\rho$

of $H_{n+1}(t)=0$ . Hence $B(2,n)=\frac{n}{2}+1$ in this case.
(Case 2) $n$ odd: Then $H_{r\iota+1}(t)$ is an even function of $t$ and we have

$H_{n+1}(0)\neq 0$ . Hence, the $n+1$ roots of $H_{n+J}(t)=0$ may be paired according
to $the\ddagger r$ absolute values, and, by a similar argument to that of the
(Case 1), we can prove that $B(2,n)=\frac{n+1}{2}$ in this case.

This completes the proof of Theorem 1.
5. Proof of Theorem 2. By Theorem 3, any system of $Z(3, n)$ is

given by the zeros of an equation

$V=0\angle_{-}=n\frac{C_{\nu}(\lambda_{1\prime}\lambda_{\underline{\supset}},\lambda_{3})}{\nu!}z^{n--\mu}=0$ ,

where $(\lambda_{1}, \lambda_{2}, \lambda_{3})$ is a solution of
(5. 1) $C_{n+1}(t_{I}, t_{-},, t_{3})=C_{n+\rightarrow}0(t_{I}, t_{2}, t_{3})=0$ .
As was noted above, we may assume that $\lambda_{3}\neq 0$ for a non-trivial

system of $Z(3, n)$ . Hence $C_{n}(\lambda_{1},\lambda_{2},\lambda_{3})\neq 0$ for any solution $(\lambda_{1}, \lambda_{2}, \lambda_{3})$ of (5.1)
with $\lambda_{3}\neq 0$ ; For, otherwisg, at least one of the numbers $z_{j}$ from the
system $(z_{1}, \cdots,z_{n})$ corresponding to $(\lambda_{1}, \lambda 9, \lambda_{3})$ by Theorem 3 must be equal
to zero, which would actually imply in turn that all the $z_{j}$ are zero.
This is impossible since $z?+\cdots\dotplus z_{n}^{3}=\lambda_{3^{\backslash }}\mp 0$ .

Now we put

(5. 2) $f_{\nu}(\tau_{1}, \tau_{2}, \tau_{3})=C_{\nu}()$ $(\nu=0,1,2, \cdots)$
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and consider the curves defined by

(5. 3) $f_{n+1}(\tau_{1}, \tau_{2\prime}\tau_{3})=0$

and by

(5. 4) $f_{n+}-,(\tau_{\rceil}, \tau_{2},. \tau_{3})=0$

in a projective plane over the complex numberfield.
It can be easily verified that the number of points of intersection

of those curves is finite and hence, by virtue of B\’EZOUT’S theorem, is
equal to $(n+1)(n+2)$ , the multiple points of the intersection being
counted with their multiplicities. Moreover, if $(\tau_{1}, \tau_{2}, \tau_{3})$ is a point of
the intersection of (5.3) and (5.4) then we may assume that $\tau_{3}\yen 0$ .

By differentiation with respect to the $\tau_{\mu}$ and to $x$ in turn we
obtain from (5.2) and (2.1) with $m=3$ that

(5 $\cdot$ 5) $\left\{\begin{array}{l}\frac{\partial}{\partial\tau_{1}}f_{\nu}(\tau_{\rceil},\tau_{2}, \tau_{3})=-\nu f_{\nu-1}(\tau_{1},\tau_{2},\tau_{3})\\\frac{a}{\partial\tau}f_{\nu}(\tau_{J},\tau_{2},\tau_{3})=-\nu(\nu-1)\tau_{2}f_{\nu--}\Omega(\tau_{1},\tau_{2}, \tau_{3})\\\frac{8}{\partial\tau_{3}}f_{\nu}(\tau_{1},r\underline{.,}, \tau_{3})=-\nu(\nu-1)(\nu-2)\tau_{3}^{2}f_{\nu- 3}(\tau\sim\prime\tau_{3})\end{array}\right.$

and
$f_{\nu+1}(\tau_{1},\tau_{2},\tau_{3})+\tau_{1}f_{\nu}(\tau_{1}, \tau_{2},\tau_{3})$

(5. 6)
$+\nu\tau_{\underline{o}}f_{\nu-1}(\tau_{12’:}\tau\tau,)+\nu(\nu-1)_{T_{3}^{3}}f_{\nu-\underline{o}}(\tau_{I},\tau_{2},\tau_{3}1=0$ .

Hence, if $(\tau_{1},\tau_{2},\tau_{3})$ is a multiple point of the intersection of (5.3) and (5.4),
then necessarily $\tau_{2}=0$ . Thus, using (5.5) and the recurrence formula
(5.6) with $\tau_{2}=0$ , we can show that there are no multiple points of the
intersection with multiplicities $>2$ , since $f_{0}(\tau 1’\tau_{2},\tau_{3})\equiv 1$ .

We now write
$f_{\nu}(t)=f_{\nu}(t, 0, -3^{1/3})$ .

Then, by (2.1) with $m=3,$ $t_{1}=t,$ $t_{\rightarrow},=0,$ $t_{\delta}=-3$ , we have

$f_{\nu}(t)=\sum_{0\leqq\mu\leqq\frac{\nu}{o}}.,$

$\frac{\nu!}{\mu!(\nu-3\mu)!}(-t)^{\nu-3\mu}$ ,

which may be rewritten in the form

$f_{\nu}(t)=t^{\kappa}g_{\nu}(t^{3})$ ,
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where $\nu\equiv\kappa(mod 3),$ $0\leqq\kappa\leqq 2$ , and $g_{\nu}(t)$ is a polynomial of degree $[\frac{\nu}{3}]$

in $t$ such that $g_{\nu}(0)\neq 0$ .
Thus we have proved that the point $(0,0, \tau_{3})$ is a double point of

the intersection only if $n\equiv 0(mod 3)$.
Note that if $(\tau_{1}, \tau_{2}, \tau_{3})$ is a point of the intersection of (5.3) and (5.4),

then so is also each one of the points

$(\tau_{1\prime}(-1)^{\alpha}\tau_{2}, \omega^{8}\tau_{3})$ $(a=0,1;\beta=0,1,2)$ ,

where $\omega=e^{27fi/3}$, and these points correspond to one and the same solution
$(\lambda_{1},\lambda_{2},\lambda_{3})$ of (5.1). Hence, denoting by $N$ the number of possible double
Points $(\tau_{1},0,\tau_{3})$ with $\tau J\neq 0$ of that intersection, we thus have if $3fn$ ,

$B(3,n)=\frac{(n+1)(n+2)-2N}{3!}+\frac{N}{3}=\frac{(n+1)(n+2)}{6}$

and if $3|n$ ,

$B(3,n)=\frac{+1)(n+2)-2-2N}{3!}+1+\frac{N}{3}\underline{(n}=\frac{(n+1)(n+2)+4}{6}$ .
The proof of Theorem 2 is now complete.

6. Case of $n=2$. In this case we have only to consider the single
equatiom

$z_{1}^{m+1}+z_{2}^{m+1}=0$ .
Since

$z_{1}^{m+1}+z_{d}^{m+1}=II(z_{1}-co^{\underline{?}_{\hslash}}m+1\kappa=1^{\backslash }\leftrightarrow Jz_{2})$ $(\omega=e^{\mathfrak{l}ti/(m+1)})$ ,

any system in $Z(m, 2)$ is of the form
$(Z, \omega^{2\kappa-1}z)$ ,

where $z$ is a complex number and $1\leqq\kappa\leqq m+1$ . The $m+1$ systems cor-
responding to these $\kappa$ are not all inequivalent.

If $m$ is even, the system $(z,-z)$ (with $\kappa=m/2+1$) is inequivalent to
any other $(Z, \omega^{2\kappa-1}z)$ with $\kappa\neq m/2+1$ . We find easily that $(Z, v^{2\kappa-J}z)$ and
$(z^{\prime}, \omega^{2\kappa^{\prime}-1}z^{\prime})$ are equivalent if and only if $\kappa=\kappa^{\prime}$ or $\kappa+\kappa^{\prime}\equiv 1(mod m+1)$ .
Thus there are $B(m,2)=\frac{m}{2}+1$ inequivalent classes in this case.

On the other hand, if $m$ is.odd, we can show that $B(m, 2)=\frac{m+1}{2}$ ,

by a similar argument, completing the proof of (1.4).

7. Case of $n=3$. Any system $(z_{1},z_{2},z_{3})$ of $Z(m, 3)$ is determined
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by the conditions
(7. 1) $z_{1}^{m+1}+z_{2}^{m+1}+z_{i}^{m+I}=0$

amd
(7. 2) $z_{1}^{m+2}+z_{\underline{\supset}}^{m+2}+z_{3}^{m+2}=0$ .
It is easy to show on applying B\’EZOUT’S theorem that there exist

exactly $(m+1)(m+2)$ distinct points of intersection of the curves defined
by (7.1) and (7.2) in a projective plane over the complex numberfield.

Now, let $\pi$ be a permutation on 1, 2, 3, which is not the identical
one. Suppose that, for such a $\pi$ , we have

$(z_{1}, z_{2}, z_{3})=(z_{lI(1)}, z_{7f(2)}, z_{iI(\S)})$

as the points of the projective plane, where $(z_{1}, z_{2},z_{3})$ is a point of the
intersection of (7.1) and (7.2). Then there must be a $\lambda\neq 0,1$ such that

(7.3) $z_{tt(1)}=\lambda z_{1}$ , $z_{tt(2)}=\lambda z_{2}$ , $z_{\iota t(3)}=\lambda z_{3}$ .
Hence $\pi$ is $necessari\Gamma y$ cyclic, and it follows from (7.3) that $\lambda$ is a cubic
root of unity satisfying the condition

$1+\lambda^{m+1}+\lambda^{2(m+l)}=1+\lambda^{m+2}+\lambda^{2(m+2)}=0$ ,

which is impossible unless 3 $|m$ .
Since there are exactly six possible permutations on 1, 2, 3, we

thus have proved that

$B(m,3)=\left\{\begin{array}{ll}\frac{(m+1)(m+2)}{6} & if 3fm,\\\frac{(m+1)(m+2)-2}{6}+1 & if 3 |m.\end{array}\right.$

This is equivalent to (1.5).
Department of Mathematics,
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