ON AN EQUIVALENCE RELATION ON SEMI-ORDERED LINEAR SPACES

By
Tetsuya Shimogaki

§ 1. Let (E, Ω, μ) be a finite measure space with a countably additive non-negative measure μ defined on a σ-field Ω. Two real-valued μ-measurable functions $f(t)$ and $g(t)$ on E are called mutually equi-measurable [14], if $\mu\{t$; $f(t)>r\}=\mu\{t ; g(t)>r\}$ holds for each real number r. If we write $f \sim g$, when f and g are mutually equi-measurable, it is observed easily that the relation \sim is an equivalence relation on the space \mathfrak{M} of all measurable functions on E. As is shown in [14], the concept of equi-measurability plays an important rôle in the theory of functions of real variables. Now let \boldsymbol{X} be a linear space consisting of real-valued measurable functions, which is semi-normal in the sense of Nakano [11], i.e.

$$
\begin{equation*}
0 \leqq f \in \boldsymbol{X}, \quad|g| \leqq f, \quad g \in \mathfrak{M} \text { implies } g \in \boldsymbol{X} \tag{1.1}
\end{equation*}
$$

where $0 \leqq f$ means that $0 \leqq f(t)$ holds almost everywhere. Evidently the function space \boldsymbol{X} is considered as a universally continuous semi-ordered linear space ${ }^{1)}$ by this order.

We say that a function space \boldsymbol{X} has the weak rearrangement invariant property (w-RIP), if $f \in \boldsymbol{X}, f \sim g$ always implies $g \in \boldsymbol{X}$, i. e. \boldsymbol{X} is closed under the relation defined by equi-measurability. In the sequel, a function space \boldsymbol{X} on E is termed to be a Banach function space ${ }^{2}$ on E, if it is semi-normal and has a complete norm satisfying

$$
\begin{equation*}
\|f\|=\sup _{\lambda \in \Lambda}\left\|f_{\lambda}\right\|, \quad \text { whenever } 0 \leqq f_{\lambda} \uparrow_{\text {ReA }} f . \tag{1.2}
\end{equation*}
$$

A Banach function space \boldsymbol{X} is said to have the strong rearrangement invariant property (s-RIP), if $f \in X, f \sim g$ implies $g \in \boldsymbol{X}$ and $\|g\| \leqq A\|f\|$, where A is a fixed constant independent on f and $g . \quad \boldsymbol{L}^{p}(E)$ spaces with $1 \leqq p$, Orlicz spaces $\boldsymbol{L}_{\boldsymbol{\phi}}(E)$ and $\Lambda(\phi)$-spaces established by G. G. Lorentz [5, 6] and I. Halperin

[^0]2.) For the detailed properties of Banach function spaces see [7] or [13].
[1] independently with much regard to this property, have all $s-R I P$ with the majorant 1 obviously. The subject of this note concerns with RIP of function spaces, but we deal with abstract semi-ordered linear spaces in the first place, since the theory of semi-ordered linear spaces can throw light on this subject by formalization and by use of representation theory of the spaces.

In §2 we generalize axiomatically the relation of equi-measurability on function spaces, to an equivalence relation (called an \mathcal{E}-relation) on abstract semi-ordered linear spaces R. Theorem 1 shows, however, that in case the space R is discrete, the equivalence relation generalized is essentially the same one as is given by equi-measurability on R considered as a discrete measure space. In the next section 3, we treat about a semi-ordered linear space R which has a certain functional ρ together with an \mathcal{E}-relation. Utilizing some topological properties of the proper space \mathfrak{F} of R, we derive a result showing that the functional ρ is uniformly bounded with respect to the \mathcal{E}-relation in a sense (Theorem 1). In § 4 we return to function spaces and applying this result, we show that if a Banach function space has $w-R I P$, then it must have $s-R I P$, in case E is a non-atomic finite measure space (Theorem 3). Furthermore, as another application of this, we state a theorem characterizing Orlicz spaces among modulared function spaces $\boldsymbol{L}_{M(\xi, t)}(E)$ in terms of $R I P$, i.e. we prove that if a modulared function space $\boldsymbol{L}_{(M \xi, t)}(E)$ has w-RIP it reduces to an Orlicz space $\boldsymbol{I}_{\boldsymbol{\oplus}}(E)$ (Theorem 4).

At the end of this paper we extend the equi-measurablity relation on finite measure spaces to the relation between two integrable functions on ρ-finite measure spaces. It is then noted that for function spaces on ρ-finite measure spaces, the above results concerning $w-R I P$ and $s-R I P$ hold all to be valid.
§ 2. It will be assumed, in the sequel, that R is a universally continuous semi-ordered linear space and $S^{+}(S \subset R)$ denotes the set of all positive parts of S, i. e. $S^{+}=\{x \cup 0 ; x \in S\}$. A linear lattice manifold M of R is called a P-manifold, if $[p] M \subset M$ for any projector $[p]^{3}(p \in R)$. A P-manifold M is called full, if $M_{\perp} x^{4}$ implies $x=0$. It is obvious that if M is a full P manifold, $0 \leqq x$ is represented as $x=\bigcup_{\lambda \in \Lambda} x_{\lambda}$, where $x_{\lambda} \in M(\lambda \in \Lambda)$. A system $\left\{x_{\lambda}\right\}_{\text {deA }}$ of elements of M is said to be M-fundamental with respect to $x \in R$, if $x=\bigcup_{\lambda \in \Lambda} x_{\lambda}$ and $[p] x=[p] x_{\lambda}$ holds for each $\lambda \in \Lambda$, whenever [$\left.p\right] x \in M$. Now we introduce an equivalence relation on R which can be considered as a generalization of that of equi-measurability in function spaces.

An equivalence relation \sim on R^{+}is called an \mathcal{E}-relation, if it satisfies the
3) A projector $[p]$ is a projection operator on R onto the normal manifold $\left\{p^{\perp}\right\}^{\perp}$.
4) $M \perp x$ means $|x| \cap|y|=0$ for all $y \in M$. We write $x=x_{1} \oplus x_{2}$, if $x=x_{1}+x_{2}$ and $x_{1} \perp x_{2}$.
following conditions (R.1)-(R.4):
(R.1) $x \sim y, x, y \in R^{+}$implies $\alpha x \sim \alpha y$ for each $\alpha>0$;
(R.2) if $0 \leqq x_{\lambda} \uparrow_{\lambda \in \Lambda}$ and $0 \leqq y_{\lambda} \uparrow_{i \in \Lambda}$ and $x_{\lambda} \sim y_{\lambda}$ for each $\lambda \in \Lambda$, then $\cup_{\lambda \in \Lambda} x_{\lambda} \in R^{+}$ implies $\bigcup_{\lambda \in \Lambda} y_{\lambda} \in R^{+}$with $\bigcup_{\lambda \in A} x_{\lambda} \sim \bigcup_{\lambda \in \Lambda} y_{\lambda}$;
(R.3) if $x=x_{1} \oplus x_{2}, y=y_{1} \oplus y_{2}$ and $x_{i} \sim y_{i}(\mathrm{i}=1,2)$, then $x \sim y$;
(R.4) there exists a full P-manifold $M \subset R$ satisfying the following properties:
(i) if $x \sim y, x, y \in R^{+}$, then there exists a pair of M-fundamental systems $\left\{x_{\lambda}\right\}_{\lambda \in \Lambda}$ and $\left\{y_{\lambda}\right\}_{\lambda_{1}, ~}$ with respect to x and y respectively such that $x_{\lambda} \sim y_{\lambda}$ holds for each $\lambda \in \Lambda$;
(ii) if $x \sim y, x, y \in M^{+}$and $\left\{\left[p_{k}\right]\right\}_{x \in 1}$ is a mutually orthogonal system of projectors with $\sum_{i \in \Lambda}\left[p_{\lambda}\right]=[x]$ there exists also a mutually orthogonal system of projectors $\left\{\left[q_{\lambda}\right]\right\}_{\text {i }}$ such that

$$
\sum_{\lambda \in \Lambda}\left[q_{\lambda}\right]=[y] \quad \text { and } \quad\left[p_{\lambda}\right] x \sim\left[q_{\lambda}\right] y \quad(\lambda \in \Lambda) \text { hold. }
$$

The P-manifold M satisfying the conditions (i) and (ii) in (R.4) is called the D-manifold of the \mathcal{E}-relation \sim.

It is clear that the \mathcal{E}-relation on R^{+}can be extended to R canonically, i. e. we now induce the relation \sim to be defined on R in such a way that for any $x, y \in R$

$$
\begin{equation*}
x \sim y \text { if and only if } x^{+} \sim_{y}^{+} \text {and } x^{-} \sim y^{-} . \tag{2.1}
\end{equation*}
$$

This extended \mathcal{E}-relation \sim is called an \mathcal{E}-relation on R, and R associated with an \mathcal{E}-relation is called shortly a space with an \mathcal{E}-relation. It follows from the condition (R.4) that if $x \sim y, x, y \in M$ and $[p]$ is an arbitrary projector, then we can find a projector $[q]$ for which $[p] x \sim[q] y$ and $(1-[p]) x \sim(1-[q]) y$ hold simultaneously, that is, we may say that the \mathcal{E}-relation \sim is decomposable on M.

In what follows, \sim stands for an \mathcal{E}-relation on R always.
Lemma 1. $x \sim 0$ implies $x=0$.
Proof. If $x \sim 0$ and $x \in R^{+}$, then $n x \sim 0$ for each natural number n by (R.1). Putting $x_{n}=0$ and $y_{n}=n x \quad(n=1,2, \cdots)$, we obtain increasing sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ with $x_{n} \sim y_{n}(n \geqq 1)$. Since $0=\bigcup_{n=1}^{\infty} x_{n} \in R^{+}$, we have $\bigcup_{n=1}^{\infty} y_{n} \in R^{+}$. on account of (R.2), which implies $x=0$, because R is Archimedean ${ }^{5}$. From the
5) Since R is universally continuous, $\bigcap_{\nu=1}^{\infty} \frac{1}{\nu} a=0$ must hold for any $a \in R^{+}$.
formula (2.1) it is now evident that Lemma 1 holds.
Lemma 2. If $x \sim \alpha x$ for some $0<\alpha \neq 1$, then $x \sim 0$.
Proof. If $0 \leqq x \sim \alpha \dot{x}$ for some α with $1<\alpha$, then $x \sim \alpha x \sim \alpha^{2} x \sim \cdots \sim \alpha^{n} x$ $\sim \cdots$. Thus, from (R.2) again we have $\bigcup_{n=1}^{\infty} \alpha^{n} x \in R$. Hence $x=0$ must hold. On account of (R.1) and (2.1) it is obvious that the lemma holds. Q.E.D.

Lemma 3. If $x \sim y$ and x is an atomic element, ${ }^{6)}$ then y is also such a one.

Proof. Assume that $x \sim y, x, y \in R^{+}$and x is an atomic element. If y is decomposed into $y=z_{1} \oplus z_{2}$ with $z_{i} \neq 0 \quad(i=1,2)$, then for each M-fundamental system $\left\{y_{\lambda}\right\}_{\lambda \in \Lambda}$ with respect to y, we can find an index $\lambda \in \Lambda$ with $\left[z_{i}\right]_{\lambda} \neq 0$ ($i=1,2$). On the other hand, as M is full, $x \in M$ and also $x \sim y_{\lambda}=\left[z_{1}\right] y_{\lambda} \oplus\left[z_{2}\right] y_{\lambda}$. This implies that one of the elements $\left[z_{i}\right] y_{\lambda(i=1,2)}$, say $\left[z_{1}\right] y_{\lambda}$, must be equivalent to 0 by virtue of (R.4, (ii)) and the assumption that x is an atomic element. It follows from Lemma 1 that $\left[z_{1}\right] y_{\lambda}=0$ and it is a contradiction. Q.E.D.

Lemma 4. If $x \sim y$ and x is of finite dimension, ${ }^{7)}$ then y is also of the same dimension.

Proof. Since P-manifold M is full, each atomic element, hence each element of finite dimension belongs to M. Now the proof is easily derived similarly from Lemma 3 and (R.4).

Lemma 5. If $x \sim y, x, y \in R$ and $[p] x$ is of finite dimension, then there exists a projector $[q]$ such that $[p] x \sim[q] y$ and $(1-[p]) x \sim(1-[q]) y$ hold simultaneously.

Proof. First suppose that $x, y \in R$ and $[p] x$ is an atomic element. Then in view of (R.4), we can find a pair of M-fundamental systems $\left\{x_{\lambda}\right\}_{\lambda \in 1},\left\{y_{\lambda}\right\}_{\lambda_{\in A}}$ with respect to x and y and a system of projectors $\left\{\left[q_{\lambda}\right]\right\}_{\lambda \in A}$ such that $\left[q_{\lambda}\right] \leqq\left[y_{\lambda}\right]$, $[p] x=[p] x_{\lambda} \sim\left[q_{\lambda}\right] y_{\lambda}$ and $(1-[p]) x_{\lambda} \sim\left(1-\left[q_{\lambda}\right]\right) y_{\lambda}$ hold for all $\lambda \in \Lambda$. By Lemma 3 $\left[q_{\lambda}\right] y_{\lambda}$ is an atomic element, hence $\left[q_{\lambda}\right] y$ is also such a one, and á fortiori $\left[q_{\lambda}\right] y \in M$ and $\left[q_{\lambda}\right] y=\left[q_{\lambda}\right] y_{\lambda}$ for all $\lambda \in \Lambda$. If $\left[q_{\lambda}\right] \neq\left[q_{\lambda_{1}}\right]$ holds for a fixed $\lambda_{1} \in \Lambda$, we have by (R.3)

$$
\begin{aligned}
& (1-[p]) x_{\lambda} \sim\left(1-\left[q_{\lambda}\right]\right) y_{\lambda}=\left(1-\left[q_{\lambda_{1}}\right]-\left[q_{\lambda}\right]\right) y_{\lambda}+\left[q_{\lambda_{1}}\right] y_{\lambda} \sim \\
& \left(1-\left[q_{\lambda_{1}}\right]-\left[q_{\lambda}\right]\right) y_{\lambda}+\left[q_{\lambda}\right] y_{\lambda}=\left(1-\left[q_{\lambda_{1}}\right]\right) y_{\lambda}
\end{aligned}
$$

and $[p] x_{\lambda} \sim\left[q_{\lambda_{1}}\right] y_{\lambda}$. Consequently both $[p] x \sim\left[q_{\lambda_{1}}\right] y_{\lambda}$ and $(1-[p]) x_{\lambda} \sim(1-$
6) An element $x \in R$ is called an atomic element, if $x=y \oplus z$, implies always $y=0$ or $z=0$.
7) An element $x \in R$ is called to be of finite dimension, if it is represented as $x=\sum_{\nu=1}^{n} \xi_{\nu} e_{\nu}$, where e_{ν} is an atomic element for each $1 \leqq \nu \leqq n$.
$\left.\left[q_{\lambda_{1}}\right]\right) y_{\lambda}$ hold for all $\lambda \in \Lambda$. Then from (R.2) it follows that $(1-[p]) x=$ $\cup_{\lambda \in \Lambda}(1-[p]) x_{\lambda} \sim \bigcup_{\lambda \in \Lambda}\left(1-\left[q_{\lambda_{1}}\right]\right) y_{\lambda}=\left(1-\left[q_{\lambda_{1}}\right]\right) y$. In case x is n-dimensional, the proof is similarly obtained by use of induction and the condition (R.3). Q.E.D.

Now we establish a theorem which reveals the structure of an \mathcal{E}-relation in the case of discrete spaces. Suppose that R is discrete. Then there exists a mutually orthogonal system of positive atomic elements $\left\{e_{r}\right\}_{r \in r}$ such that each element $x \in R^{+}$is uniquely represented as $x=\sum_{r \in T} \xi_{r} e_{r}$, where $\xi_{r} \geqq 0$. We call the system $\left\{e_{\gamma}\right\}_{r \in \Gamma}$ above the natural basis of R. We put further $I(x, \xi)=\{\gamma ; \gamma \in \Gamma$, $\left.\xi_{r}=\xi\right\}$. For any subset $J \subset \Gamma$ we denote by $n(J)$ the number of elements belonging to J, that is, $n(J)=k(k=0,1,2, \cdots)$ or $+\infty$ if J contains an infinite number of elements.

Theorem 1. Let R be a discrete space with an \mathcal{E}-relation \sim, Then there exists a natural basis $\left\{d_{\gamma}\right\}_{r \in \Gamma}$ and a partition of the index set $\Gamma=\sum_{\alpha \in \mathscr{l}} \Gamma_{\alpha}$, $\Gamma_{\alpha} \cap \Gamma_{\alpha^{\prime}}=\phi$ for $\alpha \neq \alpha^{\prime}$, such that $x=\sum_{r \in \Gamma} \xi_{r} d_{r}$ and $y=\sum_{\gamma \in \Gamma} \eta_{r} d_{r}$ stand in the relation if and only if $n\left(\Gamma_{\alpha} \perp I(x, \xi)\right)=n\left(\Gamma_{\alpha} \frown I(y, \xi)\right)$ for all real number ξ and $\alpha \in \mathfrak{A}$.

Proof. Let $\left\{e_{r}\right\}_{r \in \Gamma}$ be an arbitrary natural basis. Since \sim is an equivalence relation, we can classfy Γ as $\Gamma=\sum_{\alpha \in \mathscr{2}} \Gamma_{a}, \Gamma_{\alpha} \frown \Gamma_{\alpha^{\prime}}=\phi$ for $\alpha \neq \alpha^{\prime}$ in such a way that for any $\gamma, \gamma^{\prime} \in \Gamma_{\alpha}, e_{r} \sim \xi e_{r^{\prime}}$ holds with some $\xi>0$, and there exists no real number $\xi>0$ for which $e_{r} \sim \xi e_{r^{\prime}}$ holds, whenever γ and γ^{\prime} do not belong to the same class. Then, by Choice Axiom, we can find a subsystem $\left\{e_{r_{\alpha}}\right\}_{\alpha \in \mathscr{H}}$ of $\left\{e_{r}\right\}_{r \in \Gamma}$ with $e_{\gamma_{\alpha}} \in \Gamma_{\alpha}$ for every $\alpha \in \mathfrak{A}$. Here for any fixed α, we define $d_{r}\left(\gamma \in \Gamma_{\alpha}\right)$ by

$$
\begin{equation*}
d_{r}=\xi e_{r} \tag{2.2}
\end{equation*}
$$

where ξ is a positive number satisfying $e_{r_{\alpha}} \sim \xi e_{r} . \quad d_{r}$ is atomic and uniquely determined for each $\gamma \in \Gamma_{\alpha}$ on account of Lemma 2 and the construction of Γ_{α}. Repeating this process to whole $\alpha \in \Gamma$, we obtain a natural basis $\left\{d_{r}\right\}_{r \in \Gamma}$ for which $d_{r} \sim d_{r^{\prime}}$ stands if and only if γ and γ^{\prime} belong to the same class Γ_{α}. Assume now $x=\sum_{r \in T} \xi_{r} d_{r}, y=\sum_{r \in \Gamma} \eta_{r} d_{r}$ and $x \sim y$. For any fixed $\alpha_{0} \in \mathfrak{A},\left[\left\{d_{r_{1}}, d_{r_{2}}, \cdots, d_{r_{k}}\right\}\right] x \in M$ $\left(\gamma_{i} \in \Gamma_{\alpha_{0}}, 1 \leqq i \leqq \kappa ; \kappa=1,2, \cdots\right)$, and furthermore there exists a collection of elements of $\Gamma_{\alpha_{0}}: \gamma_{1}^{\prime}, \gamma_{2}^{\prime}, \cdots, \gamma_{k}^{\prime}$ such that both $\sum_{i=1}^{k} \xi_{r_{i}} d_{r_{i}} \sim \sum_{i=1}^{k} \eta_{r_{i}^{\prime}} d_{r_{i}^{\prime}}$ and $\left(1-\left[\left\{d_{r_{1}}, \cdots, d_{r_{k}}\right\}\right]\right) x$ $\sim\left(1-\left[\left\{d_{r_{1}^{\prime}} \cdots, d_{r_{k}^{\prime}}\right\}\right]\right) y$ hold at the same time in accordance with Lemmas 4 and 5. Then, on account of the construction of the basis $\left\{d_{\gamma}\right\}_{r \in \Gamma}$, we can infer from Lemma 4 that $n\left(\Gamma_{\alpha_{0}} \frown I(x, \xi)\right)=n\left(\Gamma_{\alpha_{0}} \frown I(y, \xi)\right)$ holds for each real number ξ and $\alpha \in \mathfrak{Y}$.
Q.E.D.

Conversely suppose that a partition of Γ exists. We obtain an equivalence relation \sim on R in such a way that $x=\sum_{r \in \Gamma} \xi_{r} d_{r}$ and $y=\sum_{r \in \Gamma} \eta_{r} d_{r}$ stand in the
relation \sim if and only if $n\left(\Gamma_{\alpha} \frown I(x, \xi)\right)=n\left(\Gamma_{\alpha} \frown I(y, \xi)\right)$ for each ξ and $\alpha \in \mathfrak{A}$. For the D-manifold we take a linear subset S of all elements of finite dimension. Now it is evident that the equivalence relation thus defined is an \mathcal{E}-relation with the D-manifold S, i.e. it satisfies the conditions (R.1)-(R.4).
§3. Here we deal with R which has a certain functional ρ together with an \mathcal{E}-relation \sim. The end of this section is to show, in a sense, uniform boundedness of a ρ-functional with respect to an \mathcal{E}-relation (Theorem 2).

A functional ρ defined on R is called a ρ-functional, if it satisfies
($\rho .1) \quad 0 \leqq \rho(x)=\rho(|x|) \leqq+\infty$ for all $x \in R$;
($\rho .2) \quad \rho(x+y) \leqq \rho(x)+\rho(y)$, if $x \perp y$;
($\rho .3$) $\inf _{\alpha>0} \rho(\alpha x)<+\infty$ for every $x \in R$;
($\rho .4$) $0 \leqq x_{\lambda} \uparrow_{\lambda \in \Lambda} x$ implies $\rho(x)=\sup _{\lambda \in \Lambda} \rho\left(x_{\lambda}\right)$;
($\rho .5$) if $\left\{x_{\nu}\right\}_{\nu=1}^{\infty}$ is a mutually orthogonal sequence with $\sum_{\nu=1}^{\infty} \rho\left(x_{\nu}\right)<+\infty$, then $x_{0}=\sum_{\nu=1}^{\infty} x_{\nu}$ belongs to R.
From the definition it follows immediately

$$
\begin{equation*}
\rho([p] x) \leqq \rho(x) \quad \text { for every } \quad x, p \in R \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[p_{\lambda}\right] \uparrow_{\lambda \in \Lambda}[p] \quad \text { implies } \rho([p] x)=\sup _{x \in \Lambda} \rho\left(\left[p_{\lambda}\right] x\right) \tag{3.2}
\end{equation*}
$$

ρ-functionals thus defined are sufficiently general to include known functionals on semi-ordered linear spaces For instance, the following functionals are all ρ-functionals respectively.
(i) a semi-continuous and complete norm or quasi-norm on R;
(ii) a monotone complete modular in the sense of Nakano [11] or of Orlicz and Musielak [9], a concave modular of Nakano [10] and a quasimodular in [2,3]. We shall establish the following basic result on R with a ρ-functional and an \mathcal{E}-relation:
 Then there exist positive numbers $\alpha, \gamma, \varepsilon$ and a finite co-dimensional ${ }^{8)}$ normal manifold N of R such that

$$
\begin{equation*}
\rho(x) \leqq \varepsilon \quad \text { implies } \quad \rho(\alpha y) \leqq \gamma \tag{3.3}
\end{equation*}
$$

[^1]for any $x, y \in N$ with $x \sim y$.
For the proof of this theorem, we need to prove a number of auxiliary lemmas whose proofs are based on the topological properties of the proper space of semi-ordered linear spaces. In the sequel, \mathfrak{F} denotes the proper space of R, i.e. the Boolean lattice of all maximal ideals \mathfrak{p} consisting of normal manifolds $N \subset R$, equipped with the topology generated by the neighbourhood system $\left\{U_{[N]}\right\}_{N \subset R}$, where $U_{[N]}$ is the set of all $\mathfrak{p} \in \mathfrak{F}$ such that $N \in \mathfrak{p} . \quad U_{[N]}$ is both open and compact in \mathbb{C} for any normal manifold N, hence \mathfrak{F} is itself compact, because $\mathfrak{F}=U_{[R]}$. An element $\mathfrak{p} \in \mathfrak{F}$ is called non-atomic, if for any $N \in \mathfrak{p}$, there exists $M \subset N$ such that $M \in \mathfrak{p}$.

Lemma 6. Let $x, y \in R$ satisfy $\rho(x)<+\infty, \rho(y)<+\infty$ and $x \sim y$. Then for any non-atomic $\mathfrak{p}_{0}, \mathfrak{p}_{0}^{\prime} \in \mathcal{F}$ and $\varepsilon>0$, there exist two elements $x_{0}, y_{0} \in R$ such that (i) $\rho\left(x_{0}\right)>\rho(x)-\varepsilon, \rho\left(y_{0}\right)>\rho(y)-\varepsilon$; (ii) $\left[x_{0}\right] R \notin \mathfrak{p}_{0}, \quad\left[y_{0}\right] R \notin \mathfrak{p}_{0}^{\prime}$; and (iii) $x_{0} \sim y_{0}$ hold.

Proof. It is sufficient to prove the lemma, when $[x] R \in \mathfrak{p}_{0}$ and $[y] R \in \mathfrak{p}_{0}^{\prime}$. Assume $x \sim y, x, y \in R^{+}$and $\varepsilon>0$. In view of the conditions (R.4) and ($\rho .4$), there exist elements x^{\prime}, y^{\prime} of the D-manifold M such that $0 \leqq x^{\prime} \leqq \dot{x}$, $0 \leqq y^{\prime} \leqq y$ and $\rho\left(x^{\prime}\right)>\rho(x)-\varepsilon, \quad \rho\left(y^{\prime}\right)>\rho(y)-\varepsilon$ with $x^{\prime} \sim y^{\prime}$. Since \mathfrak{p}_{0} is nonatomic, we can find a system of mutually orthogonal projectors $\left\{\left[p_{r}\right]\right\}_{r \in \Gamma}$ with $\underset{r \in \Gamma}{\cup}\left[p_{r}\right]=\left[x^{\prime}\right]$ and $\left[p_{r}\right] R \notin \mathfrak{p}_{0}(\gamma \in \Gamma)$. On account of (R.4 (ii)), there exists an orthogonal system $\left\{\left[q_{r}\right]\right\}_{\gamma \in \Gamma}$ such that $\bigcup_{\gamma \in \Gamma}\left[q_{\gamma}\right]=\left[y^{\prime}\right]$ and $\left[p_{r}\right] x^{\prime} \sim\left[q_{r}\right] y^{\prime}(\gamma \in \Gamma)$ hold. By virtue of ($\rho .4$) we have for suitable chosen $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{k}\left(\gamma_{i} \in \Gamma\right)$

$$
\rho\left(\sum_{i=1}^{k}\left[p_{r_{i}}\right] x^{\prime}\right)>\rho(x)-\varepsilon \text { and } \rho\left(\sum_{i=1}^{k}\left[q_{r_{i}}\right] y^{\prime}\right)>\rho(y)-\varepsilon .
$$

Putting $x^{\prime \prime}=\sum_{i=1}^{k}\left[p_{r_{i}}\right] x^{\prime}$ and $y^{\prime \prime}=\sum_{i=1}^{k}\left[q_{i_{i}}\right] y^{\prime}$, we now have by (R.3)

$$
x^{\prime \prime} \sim y^{\prime \prime}, \quad \rho\left(x^{\prime \prime}\right)>\rho(x)-\varepsilon, \quad \rho\left(y^{\prime \prime}\right)>\rho(y)-\varepsilon
$$

and $\left[x^{\prime \prime}\right] R \in \mathfrak{p}_{0}$. If [$\left.y^{\prime \prime}\right] R \in \mathfrak{p}_{0}^{\prime}$, then applying the quite same argument (only changing the rôle of x^{\prime} and y^{\prime} into $y^{\prime \prime}$ and $x^{\prime \prime}$ respectively), we can show that we get two elements x_{0}, y_{0} which fulfil the requirement of Lemma 6. Q.E.D:

Lemma 7. For any non-atomic $\mathfrak{p}, \mathfrak{p}^{\prime} \in \mathfrak{F}$ there exist normal manifolds $N_{¥} \in \mathfrak{p}$ and $N_{\mathfrak{p}} \in \mathfrak{p}^{\prime}$ and positive numbers $\alpha, \dot{\gamma}, \varepsilon>0$ such that $x \in N_{\mathfrak{p}}, \rho(x) \leqq \varepsilon$ implies

$$
\begin{equation*}
\rho(\alpha y) \leqq \gamma \quad \text { for each } y \in N_{p} \text {, with } x \sim y . \tag{3.3}
\end{equation*}
$$

Proof. Assume that the lemma is not valid. Then for a pair of non-
atomic maximal ideals $\mathfrak{p}, \mathfrak{p}^{\prime} \in \mathfrak{F}$, there exists no pair of normal manifolds ($N_{\mathfrak{p}}$, $\left.N_{p^{\prime}}\right)$ and positive numbers α, γ and ε which satisfies (3.3) above. Now we can start with a pair of elements $\left(x^{\prime}, y^{\prime}\right)$ with $x^{\prime} \sim y^{\prime}, \rho\left(x^{\prime}\right)<\frac{1}{2}, \rho\left(y^{\prime}\right)>1,\left[x^{\prime}\right] R \in \mathfrak{p}$ and $\left[y^{\prime}\right] R \in \mathfrak{p}^{\prime}$. From Lemma 6 it follows that there exist elements x_{1}, y_{1} $\left(x_{1}, y_{1} \in M\right)$ such that $\rho\left(x_{1}\right)<\frac{1}{2}, \rho\left(y_{1}\right)>1,\left[x_{1}\right] R \notin \mathfrak{p}, \quad\left[y_{1}\right] R \notin \mathfrak{p}^{\prime}$ and $x_{1} \sim y_{1}$. Since \mathfrak{p} and \mathfrak{p}^{\prime} are maximal ideals of normal manifolds of $R,\left(1-\left[x_{1}\right]\right) R \in \mathfrak{p}$ and $\left(1-\left[y_{1}\right]\right) R \in \mathfrak{p}^{\prime}$ stand. Again we can find also $x^{\prime \prime}, y^{\prime \prime} \in R$ with $x^{\prime \prime} \sim y^{\prime \prime}$, $x^{\prime \prime} \in\left(1-\left[x_{1}\right]\right) R$ and $y^{\prime \prime} \in\left(1-\left[y_{1}\right]\right) R$ satisfying $\rho\left(x^{\prime \prime}\right)<\frac{1}{2^{2}}$ together with $\rho\left(\frac{1}{2} y^{\prime \prime}\right)>2$. by the assmuption. In view of Lemma 6 again, there exists a pair of elements $\left(x_{2}, y_{2}\right)$ such that $\rho\left(x_{2}\right)<\frac{1}{2^{2}}, \rho\left(\frac{1}{2} y_{2}\right)>2,\left[x_{2}\right] R \notin \mathfrak{p}, \quad\left[y_{2}\right] R \notin \mathfrak{p}$ and $x_{2} \sim y_{2}$. Proceeding this argument, we obtain two sequences of mutually orthogonal positive elements $\left\{x_{\nu}\right\}_{\nu=1}^{\infty}$ and $\left\{y_{\nu}\right\}_{\nu=1}^{\infty}$, for which $x_{\nu} \sim y_{\nu},\left[x_{\nu}\right] R \notin \mathfrak{p},\left[y_{\nu}\right] R \notin \mathfrak{p}^{\prime}$, $\rho\left(x_{\nu}\right) \leqq \frac{1}{2^{\nu}}$ and $\rho\left(\frac{1}{\nu} y\right) \geqq \nu$ hold for each $\nu \geqq 1$. From ($\rho .4$) it follows

$$
\bigcup_{\nu=1}^{\infty} x_{\nu} \in R
$$

which implies $\bigcup_{\nu=1}^{\infty} y_{\nu} \in R$ on account of (R.2). This is, however, a contradiction, since $\rho\left(\frac{1}{n} \bigcup_{\nu=1}^{\infty} y_{\nu}\right) \geqq \rho\left(\frac{1}{n} y_{n}\right) \geqq n$ holds and it is inconsistent with ($\rho .3$).
Q.E.D.

Lemma 8. For any non-atomic $\mathfrak{p}_{0} \in \mathfrak{F}$, there exists a finite number of normal manifolds $N_{0}, N_{1}, \cdots, N_{k}, N^{\prime}$ such that $N_{0} \in \mathfrak{p}_{0}, R=N_{1} \oplus N_{2} \oplus \cdots N_{k} \oplus N^{\prime}$, N^{\prime} is of finite dimension and for any $x \in N_{0}$ with $\rho(x) \leqq \varepsilon$

$$
\begin{equation*}
\operatorname{Max}_{1 \leqq i \leqq k}\left\{\sup _{x-y, y \in N_{i}} \rho(\alpha y)\right\} \leqq \gamma \tag{3.4}
\end{equation*}
$$

holds, where α, γ and ε are all fixed positive constants.
Proof. Let $N_{\mathfrak{p}_{\mathfrak{p}}, \mathfrak{p}}$ and $N_{\mathfrak{p}}$ be two normal manifolds and $\alpha_{\mathfrak{p}}, \gamma_{\mathfrak{p}}$ and $\varepsilon_{\mathfrak{p}}>0$ be positive numbers which satisfy the formula (3.3) corresponding to nonatomic maximal ideals \mathfrak{p}_{0} and \mathfrak{p}. Let \mathfrak{G} denote the set of all non-atomic elements of \mathfrak{F}. As the set $\left(\sum_{\mathfrak{p} \in \mathbb{E}} U_{\left[N_{\mathfrak{p}}\right]}\right)^{-}$is both open and compact in \mathfrak{F}, $\left(\sum_{\mathfrak{p} \in \mathbb{E}} U_{\left[N_{\mathfrak{p}}\right]}\right)^{-}=U_{[N]}$ holds for a normal manifold $N \subset R$ and clearly $(1-[N]) R$ is of finite dimension.

On the other hand, if \mathfrak{p} belongs to the set $U_{[N]}-\sum_{p \in \mathbb{E}} U_{\left[N_{\mathfrak{p}}\right]}$ it must be non-
atomic as easily seen, whence it follows $U_{[N]}=\sum_{p \in \mathbb{E}} U_{[N \ngtr]}$. Thus we can find a finite number of $\mathfrak{p} \in \mathbb{C}$, say $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \cdots, \mathfrak{p}_{k}$, such that $U_{[N]}=\sum_{\nu=1}^{k} U_{\left[N_{\mathfrak{p}_{\nu}}\right]}$ holds. Now we put $N_{0}=\bigcap_{\nu=1}^{k} N_{\mathfrak{p}_{0}, \mathfrak{p}_{\nu}}, N^{\prime}=(1-[N]) R, \varepsilon=\operatorname{Min}_{1 \leqq \nu \leqq k}\left\{\varepsilon_{\mathfrak{p}_{\nu}}\right\}, \alpha=\operatorname{Min}_{1 \leqq \nu \leqq k}\left\{\alpha_{\mathfrak{p}_{\nu}}\right\}$ and $\gamma=$ $\operatorname{Max}\left\{\gamma_{p_{\nu}}\right\}$, and also we choose a set of mutually orthogonal normal manifolds: $\left\{N_{\nu}\right\}_{\nu=1}^{k^{\prime}}$ such that $N=N_{1} \oplus N_{2} \oplus \cdots \oplus N_{k^{\prime}}$ and $N_{\nu} \subset N_{\mathfrak{p}_{\nu}}$ for each ν with $1 \leqq \nu$ $\leqq k^{\prime} \leqq k$, by use of the usual orthogonalization method. It is now clear that (3.4) is valid for normal manifolds and the positive numbers thus constructed.

> Q.E.D.

Lemma 9. For any non-atomic $\mathfrak{p}_{0} \in \mathcal{F}$ there exists a normal manifold N_{p}, a finite co-dimensional normal manifold N_{p}^{\prime} and positive numbers $\alpha, \gamma, \varepsilon$ such that $x \in N_{\mathfrak{p}}, \rho(x) \leqq \varepsilon$ implies

$$
\begin{equation*}
\sup _{x-y, y \in N^{\prime}}^{p} 10(\alpha y) \leqq \gamma^{\prime} \tag{3.5}
\end{equation*}
$$

Proof. Let $N_{0}, N_{1}, \cdots, N_{k}, N^{\prime}$ be normal manifolds and α, γ and ε be positive numbers which statisfy (3.4) in the preceding lemma. Suppose $x \sim y$, $x \in\left[N_{0}\right] M, y \in\left[N^{\prime \perp}\right] M$ and $\rho(x) \leqq \varepsilon$. Then, on account of (R.4), we can find a mutually orthogonal set of projectors $\left\{\left[p_{\nu}\right]\right\}_{\nu=1}^{k}$ for which $\left[p_{\nu}\right] x \sim\left[N_{\nu}\right] y$ holds $(1 \leqq \nu \leqq k)$. Since $\rho\left(\left[p_{\nu}\right] x\right) \leqq \varepsilon$ for all $1 \leqq \nu \leqq k$, we have $\rho\left(\alpha\left[N_{\nu}\right] y\right) \leqq \gamma$ and

$$
\rho(\alpha y) \leqq \sum_{\nu=1}^{k} \rho\left(\left[N_{\nu}\right] y\right) \leqq k \cdot \gamma
$$

Since ρ is semi-continuous and M is full, putting $\gamma^{\prime}=k \gamma$ and $N_{p}^{\prime}=\left(N^{\prime}\right)^{\perp}$, we obtain the proof.
Q.E.D.

Proof of Theorem 2. For any $\mathfrak{p \in C}$, we denote by $N_{\mathfrak{p}}, N_{\mathfrak{p}}^{\prime}, \alpha_{\mathfrak{p}}, \gamma_{\mathfrak{p}}$ and $\varepsilon_{\mathfrak{p}}$ be the same as in Lemma 9, corresponding with \mathfrak{p}. Then, as above, there exists a finite co-dimensional normal manifold N_{0} satisfying $U_{\left[N_{0}\right]}=\sum_{\mathfrak{p} \in \mathbb{E}} U_{\left[N_{\mathfrak{p}}\right]}$. Hence we can find a finite number of $N_{\mathfrak{p}_{\nu}}, \mathfrak{p}_{\nu} \in \mathbb{C}(\nu=1,2, \cdots, k)$ for which $U_{\left[N_{0}\right]}=\sum_{\nu=1}^{k} U_{\left[N_{\mathfrak{p}_{\nu}}\right]}$ hold. Now we put $N=N_{0} \frown \bigcap_{\nu=1}^{k} N_{\mathfrak{p}_{\nu}}^{\prime}, \alpha=\operatorname{Min}_{1 \leqq \nu \leqq k}\left\{\alpha_{\mathfrak{p}_{\nu}}\right\}, \gamma=\sum_{\nu=1}^{k} \gamma_{\mathfrak{p}_{\nu}}$ and $\varepsilon=\operatorname{Min}_{1 \leqq \nu \leqq k}\left\{\varepsilon_{\bar{F}_{\nu}}\right\}$ respectively. It is evident that N is a finite co-dimensional normal manifold, and we can find again normal manifolds $M_{1}, M_{2}, \cdots, M_{k^{\prime}}$ such that $N=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{k^{\prime}}, M_{\nu} \subset N_{\mathfrak{p}_{\nu}}$ and $M_{\nu} \frown M_{\mu}=\{0\}$ for $\nu \neq \mu$. Now suppose that $x \sim y, x, y \in[N] M$ and $\rho(x) \leqq \varepsilon$. Since $x=\sum_{\nu=1}^{k^{\prime}}\left[M_{\nu}\right] x$ and $\left[M_{\nu}\right] x \in N_{\mathfrak{p}_{\nu}}$, there exists mutually orthogonal projectors $\left\{\left[p_{\nu}\right]\right\}_{\nu=1}^{k^{\prime}}$ such that $\left[M_{\nu}\right] x \sim\left[p_{\nu}\right] y$, $\sum_{\nu=1}^{k^{\prime}}\left[p_{\nu}\right]=[y] . \quad$ As $\left[M_{\nu}\right] x \in N_{\mathfrak{p}_{\nu}}$ and $\left[p_{\nu}\right] y \in N_{\mathfrak{p}_{\nu}}^{\prime}$, we have by the preceding lemma

$$
\rho\left(\alpha\left[p_{\nu}\right] y\right) \leqq \rho\left(\alpha_{\mathfrak{n}_{\nu}}\left[p_{\nu}\right] y\right) \leqq \gamma_{\mathfrak{p}_{\nu}} \quad\left(1 \leqq \nu \leqq k^{\prime}\right)
$$

Therefore we get

$$
\rho(\alpha y) \leqq \sum_{\nu=1}^{k^{\prime}} \rho\left(\alpha_{\mathfrak{p}_{\nu}}\left[p_{\nu}\right] y\right) \leqq \sum_{\nu=1}^{k^{\prime}} \gamma_{\mathfrak{p}_{\nu}} \leqq \gamma
$$

which implies (3.3), because of the semi-continuity of ρ.
Q.E.D.

Remark 1. If R is non-atumic, ${ }^{9}$) there is no finite dimensional normal manifold. Hence the formula (3.3) in Theorem 2 holds valid in the whole space R in this case.

Corollary 1. Let R have a complete semi-continuous ${ }^{10)}$ norm $\|\cdot\|$ together with an \mathcal{E}-relation. Then there exists a positive number r such that

$$
\begin{equation*}
\frac{1}{r}\|y\| \leqq\|x\| \leqq \gamma\|y\| \tag{3.6}
\end{equation*}
$$

halds for each pair of elements $x, y \in R$ with $x \sim y$.
Proof. A complete semi-continuous norm $\|\cdot\|$ is a ρ-functional, hence by virtue of Theorem 2 there exist a finite co-dimensional normal manifold N and a positive number γ_{1}, for which $\frac{1}{\gamma_{1}}\|y\| \leqq\|x\| \leqq \gamma_{1}\|y\|$ holds for $x, y \in N$ with $x \sim y$. On the other hand, N^{\perp} being of finite dimension, there exists also $\gamma_{2}>0$ such that $\frac{1}{\gamma_{2}}\|y\| \leqq\|x\| \leqq \gamma_{2}\|y\|$ holds for $x, y \in N^{\perp}$ with $x \sim y$. Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be a natural basis of N^{\perp} with $\left\|e_{\nu}\right\|=1(1 \leqq \nu \leqq n)$. We put now $\alpha_{\nu}=\inf _{x \in N, x \sim e_{\nu}}\|x\|$, and $\beta_{\nu}=\sup _{x \in N, x-e_{\nu}}\|x\|$. It is evident that both $\alpha_{\nu}>0$ and $\beta_{\nu}<+\infty$ hold for all $\nu(1 \leqq \nu \leqq n)$ from above. If $x \sim y, x \in N^{\perp}$ and $y \in N$, we can verify easily that $\frac{1}{\gamma_{3}}\|y\| \leqq\|x\| \leqq \gamma_{3}\|y\|$ holds, where $\gamma_{3}=n \cdot \operatorname{Max}_{1 \leqq \nu \leqq n}\left\{\frac{1}{\alpha_{\nu}}, \beta_{\nu}\right\}$. From these facts it follows immediately that there exists $\gamma>0$ which satisfies (3.6) in the whole space. Q.E.D.

Corollary 2. Let R be a modulared (quasi-modulared) semi-ordered linear space with a monotone complete modular ${ }^{(1)}$ (quasi-modular) m. If R is non-atomic and has an \mathcal{E}-relation, then we can find positive numbers α, r^{\prime} and ε such that

[^2]\[

$$
\begin{equation*}
m(x)>\varepsilon \quad \text { implies } \quad m(\alpha y) \leqq \gamma^{\prime} m(x) \tag{3.7}
\end{equation*}
$$

\]

for any pair of elements $x, y \in R$ with $x \sim y$.
Proof. Since a monotone complete modular (or quasi-modular) m satisfies the conditions $(\rho .1)-(\rho .5)[11,3]$, it is a ρ-functional. Thus there exist positive numbers α, γ and ε such that $m(x) \leqq \varepsilon, x \sim y$ yields $m(\alpha x) \leqq \gamma$. If $x \sim y$, $x, y \in M$ and $m(x)>\varepsilon$, then we can find two sets of mutually orthogonal projectors $\left\{\left[p_{\nu}\right]\right\}_{\nu=1}^{k+1}, \quad\left\{\left[q_{\nu}\right]\right\}_{\nu=1}^{k+1}$ such that $\sum_{\nu=1}^{k+1}\left[p_{\nu}\right]=[x], \sum_{\nu=1}^{k+1}\left[q_{\nu}\right]=[y], \quad\left[p_{\nu}\right] x \sim\left[q_{\nu}\right] y$ $(1 \leqq \nu \leqq k+1), m\left(\left[p_{\nu}\right] x\right)=\varepsilon(1 \leqq \nu \leqq k)$ and $m\left(\left[p_{k+1}\right] x\right)<\varepsilon$ on account of the nonatomicity of R and the condition (R.4, (ii)). Hence we get

$$
m(\alpha y)=\sum_{\nu=1}^{k+1} m\left(\alpha\left[q_{\nu}\right] y\right) \leqq \gamma(k+1) \leqq 2 \frac{\gamma}{\varepsilon} m(x)
$$

which yields (3.7), since a modular (or quasi-modular) is semi-continuous.
Q.E.D.
$\S 4$. Throughout this section let E be a non-atomic finite measure space and $\boldsymbol{X}(E)$ be a Banach function space with a semi-continuous norm $\|\cdot\|$. It is well known that \boldsymbol{X} constitutes a superuniversally continuous semi-ordered linear space ${ }^{12)}$ by the usual order and addition of measurable functions. When \boldsymbol{X} has $w-R I P$, the relation of equi-measurability between two functions belonging to \boldsymbol{X} can be regarded as an \mathcal{E}-relation on the space \boldsymbol{X}. Indeed, the conditions (R.1) and (R.3) are evidently satisfied. Since μ is assumed to be countably additve and \boldsymbol{X} has $w-R I P$, the condition (R.2) is fulfilled. As a D-manifold M, we can take the set of all simple functions ${ }^{13)}$ on E and it is now clear that the relation of equi-measurability satisfies also (R.4), hence an \mathcal{E}-relation on \boldsymbol{X}. Consequently, in view of Corollary 1 we have
Theorem 3. In order that a Banach function space $\boldsymbol{X}\left(E_{j}\right.$ on a finite non-atomic measure space E has w-RIP, it is necessary and sufficient that $\boldsymbol{X}(E)$ has s-RIP, that is,

$$
\begin{equation*}
\frac{1}{r}\|g\| \leqq\|f\| \leqq r\|g\| \tag{4.1}
\end{equation*}
$$

for any two mutually equi-measurable functions f and $g \in \boldsymbol{X}$, where γ is a
12) R is called superuniversally continuous, if for any system of positive elements $\left\{a_{\lambda}\right\}_{\lambda \in \Lambda}$ there exists a sequence of elements: $\left\{a_{\lambda_{\nu}}\right\}_{\nu=1}^{\infty} \subset\left\{a_{\lambda}\right\}_{\lambda \in A}$ such that $\prod_{\nu=1}^{\infty} a_{\lambda_{\nu}}=\bigcap_{\lambda \in A} a_{\lambda}$ holds.
13) A function on E is called a simple function if it is represented as $\sum_{\nu=1}^{n} \xi_{\nu} x_{e_{j}}$. where $x_{e_{\nu}}$ is the characteristic function of a measurable set $e_{\nu} \subset E$ for each ν with $1 \leqq \nu \leqq n$.
positive number.
Corollary 3. If a Banach function space $\boldsymbol{X}(E)$ has w-RIP, there exists an equivalent norm $\|\cdot\|_{1}$ on $\boldsymbol{X}(E)$ having the rearrangement majorant 1, i.e. $\|f\|_{1}=\|g\|_{1}$ for $f, g \in \boldsymbol{X}$ with $f \sim g$.

Proof. On account of Theorem above, we can define a finite valued functional $\|\cdot\|_{1}$ as

$$
\begin{equation*}
\|f\|_{1}=\sup _{f \rightarrow g}\|g\| \quad(f \in \boldsymbol{X}) \tag{4.2}
\end{equation*}
$$

It is now evident from the definition that the functional $\|\cdot\|_{1}$ satisfies all the conditions of semi-continuous norm except for the subadditivity. For any simple functions $f, g: f=\sum_{\nu=1}^{k} \xi_{\nu} \chi_{e_{\nu}}, g=\sum_{\nu=1}^{k} \eta_{\nu} \chi_{e_{\nu}}$ with $e_{\nu} \frown e_{\mu}=\phi$ for $\nu \neq \mu$, we have

$$
\begin{aligned}
& \|f+g\|_{1}=\sup \quad\left\|\sum_{\nu=1}^{k}\left(\xi_{\nu}+\eta_{\nu}\right) \chi_{e_{\nu}^{\prime}}\right\| \\
& \quad e_{1}^{\prime} \oplus \cdots \oplus e_{k}^{\prime}=E, \mu\left(e_{i}\right)=\mu\left(e_{i}^{\prime}\right) \quad(1 \leqq \nu \leqq k)
\end{aligned}
$$

Let h be a simple function such that $h=\sum_{\nu=1}^{k}\left(\xi_{\nu}+\eta_{\nu}\right) \chi_{e_{\nu}^{\prime}}$ and $\mu\left(e_{\nu}^{\prime}\right)=\mu\left(e_{\nu}\right), e_{\nu}^{\prime} \frown e_{\mu}^{\prime}=\phi$ for $\nu \neq \mu$. Then $|h| \leqq \sum_{\nu=1}^{k}\left|\xi_{\nu}\right| \chi_{e_{\nu}^{\prime}}+\sum_{\nu=1}^{k}\left|\eta_{\nu}\right| \chi_{e_{\nu}^{\prime}}$ and $|f| \sim \sum_{\nu=1}^{k}\left|\xi_{\nu}\right| \chi_{e_{\nu}^{\prime}},|g| \sim \sum_{\nu=1}^{k}\left|\eta_{\nu}\right| \chi_{e_{\nu}^{\prime}}$, which imples

$$
\|h\|_{1} \leqq\|f\|_{1}+\|g\|_{1} .
$$

Consequently we have $\|f+g\|_{1} \leqq\|f\|_{1}+\|g\|_{1}$ for arbitrary $f, g \in \boldsymbol{X}$ on account of the semi-continuity of $\|\cdot\|_{1}$.
Q.E.D.

Next we turn to prove a theorem concerning characterization of Orlicz spaces among the classes of modulared function spaces.

Now let $M(\xi, t)$ be a modular function, i. e. $M(\xi, t)$ be a real-valued function on $[0,+\infty) \times E$ satisfying (i) it is a non-decreasing convex function of $\xi \geqq 0$ which is left hand continuous for each $t \in E$; (ii) it is measurable on E for each $\xi \geqq 0$; (iii) $\lim _{\xi \rightarrow 0} M(\xi, t)=0$, $\sup _{0 \leq 5} M(\xi, t)=+\infty$ and $M(0, t)=0$ for all $t \in E$. Then a modulared function space $\boldsymbol{L}_{M(\xi, t)}$ is the set of all measurable functions f on E such that $\int_{E} M(\xi|f(t)|, t) d \mu(t)<+\infty$ for some $\xi>0$. $\quad \boldsymbol{L}_{M(\xi, t)}$ is a modulared space with the modular m :

$$
\begin{equation*}
m(f)=\int_{E} M(|f(t)|, t) d \mu(t) \quad\left(f \in \boldsymbol{L}_{M(\xi, t)}\right) \tag{4.3}
\end{equation*}
$$

hence, as is well known, it is a Banach function space with the norm:
$\|f\|=\inf _{m(\xi f) \leqslant 1} \frac{1}{|\xi|}\left(f \in \boldsymbol{L}_{M(\xi, t)}\right) . \quad$ Evidently Orlicz spaces $^{14)}$ constitute a special class in the modulared function spaces.

Now we have
Theorem 4. If a modulared function space $\boldsymbol{L}_{M(\xi, t)}(E)$ on a non-atomic finite measure space E has w-RIP, then it reduces to an Orlicz space $\boldsymbol{L}_{\oplus}(E)$.

Proof. It is obvious that we may assume $\mu(E)=1$, without loss of generality. Putting $\Phi(\xi)=m\left(\xi \chi_{E}\right)$ for $\xi \geqq 0$, we obtain a non-decreasing left hand continuous convex function $\Phi(\xi)$ on $[0,+\infty)$ satisfying $\lim _{\xi \rightarrow+\infty} \Phi(\xi)=+\infty, \inf _{0<\xi} \Phi(\xi)=0$ and $\Phi(0)=0$. Here we shall show that $\boldsymbol{L}_{M(\xi, t)}$ coincides with the Orlicz space ${ }^{15)}$ \boldsymbol{L}_{Φ} defined by the function Φ as a Banach function space.

By virtue of Theorem 2 and Corollary 2 (3.7), we can find positive numbers γ_{1}, γ_{2} and α satisfying both the conditions:
(i) $m(f) \leqq \varepsilon, f \sim g$ implies $m(\alpha g) \leqq \gamma_{1}$;
(ii) $m(f)>\varepsilon, f \sim g$ implies $m(\alpha g) \leqq \gamma_{2} m(f)$.

We put further for any $f \in \boldsymbol{L}_{M(\xi, t)}$

$$
m^{*}(f)=\sup _{f \sim g} m(g) \quad \text { and } \quad m_{*}(f)=\inf _{f \sim g} m(g)
$$

It follows from above that for each $f \in \boldsymbol{L}_{M(\xi, t)}$

$$
\begin{equation*}
m_{*}(\alpha f) \leqq m(\alpha f) \leqq m^{*}(\alpha f) \leqq \gamma_{2} m_{*}(f)+\gamma_{1} \tag{4.4}
\end{equation*}
$$

holds. Let \mathfrak{M}_{0} be the set of all simple functions $h=\sum_{\nu=1}^{k} \xi_{\nu} \chi_{e_{\nu}}$ such that

$$
\begin{equation*}
e_{\nu} e_{\mu}=\phi \text { for } \nu \neq \mu, \quad E=\sum_{\nu=1}^{k} e_{\nu} \text { and } \mu\left(e_{\nu}\right)=\frac{1}{k} \text { for all } \nu \geqq 1 \tag{4.5}
\end{equation*}
$$

Here we denote by $P_{n}(\nu)$ a permutation of the set: $\{1,2, \cdots, k\}$ defined by $P_{n}(\nu)=\nu+n(\bmod . k)$ for each n. Then, for any $h \in \mathfrak{M}_{0}$ we put $h^{(n)}=\sum_{\nu=1}^{n} \xi_{\nu} \chi_{e_{\nu}^{n}}$ $(0 \leqq n \leqq k-1)$, where $e_{\nu}^{n}=e_{P_{n}(\nu)}$. Evidently we have $h=h^{(0)} \sim h^{(1)} \sim \cdots{ }_{\nu=1}^{\sim} h^{(k-1)}$ and $\sum_{n=0}^{k-1} m\left(h^{(n)}\right)=\sum_{n=0}^{k-1} \sum_{\nu=1}^{k} m\left(\xi_{\nu} \chi_{e_{\nu}^{n}}^{n}\right)=\sum_{\nu=1}^{k} \sum_{n=0}^{k-1} m\left(\xi_{\nu} \chi_{e_{\nu}^{n}}\right)=\sum_{\nu=1}^{k} m\left(\xi_{\nu} \chi_{E}\right)=\sum_{\nu=1}^{k} \Phi\left(\xi_{\nu}\right)=k \cdot m_{\Phi}(h)$. Therefore there exists at least a pair of integers $\left(m_{0}, n_{0}\right)\left(0 \leqq m_{0}, n_{0} \leqq k-1\right)$ such that

$$
m\left(h^{\left(m_{0}\right)}\right) \leqq m_{\oplus}(h) \leqq m\left(h^{\left(n_{0}\right)}\right)
$$

14) For the details of Orlicz spaces see [4], [7] or [13].
15) $m_{\boldsymbol{\Phi}}(f)$ denotes the modular of the space $\boldsymbol{L}_{\boldsymbol{\phi}}$, i.e. for $f \in \boldsymbol{L}_{\boldsymbol{\phi}} m_{\boldsymbol{\Phi}}(f)=\int_{\boldsymbol{E}} \boldsymbol{\phi}(|f(t)|) d \boldsymbol{\mu}(t)$. Since $\boldsymbol{L}_{M(\xi, t)}$ has $w-R I P, \mathbf{1} \in \boldsymbol{L}_{M(\xi, t)}$.
which implies

$$
m_{*}(h) \leqq m_{\Phi}(h) \leqq m^{*}(h)
$$

From this and (4.4) it follows that

$$
\begin{equation*}
m(\alpha h) \leqq \gamma_{2} m_{\Phi}(h)+\gamma_{1} \quad \text { and } \quad m_{\oplus}(\alpha h) \leqq \gamma_{2} m(h)+\gamma_{1} . \tag{4.6}
\end{equation*}
$$

Since E is non-atomic, for any $f \in \boldsymbol{L}_{M(\xi, t)}$ there exists a sequence $\left\{h_{n}\right\}_{n=1}^{\infty}$ of elements of \mathfrak{M}_{0} such that $h_{n} \uparrow_{n=1}^{\infty}|f|$ holds. Consequently, by the semi-continuity of m and $m_{\boldsymbol{\phi}}$, (4.6) implies

$$
\begin{equation*}
m(\alpha f) \leqq \gamma_{2} m_{\Phi}(f)+\gamma_{1} \quad \text { and } \quad m_{\Phi}(\alpha f) \leqq \gamma_{2} m(f)+\gamma_{1} \tag{4.7}
\end{equation*}
$$

for any $f \in \boldsymbol{L}_{M(\xi, t)}$. It is now evident that the Banach function spaces $\boldsymbol{L}_{M(\xi, t)}$ and \boldsymbol{L}_{ϕ} coincide.
Q.E.D.

Remark 2. As this proof shows, the convexity of modular m and m_{ϕ} is not used. Therefore, it is verified in the quite same way, that if a (nonconvex) quasi-modular function space $\boldsymbol{L}_{N(\xi, t)}$ [2] has w-RIP, then it reduces to a generalized Orlicz space \boldsymbol{L}_{N} considered by S. Mazur and W. Orlicz in [8].

Lastly let E be a σ-finite (or locally finite) measure space with a countably additive measure μ. The relation defined by equi-measurability has essentially the sense on the set of finite measure only, in fact, it can not be extended naturally to the whole space of all measurable functions on E without loss of the original significance. Only we can define an equivalence relation \sim on the set \mathfrak{F} of all integrable functions on E in the following way. Two positive functions f, g belonging to \mathfrak{F} are called equi-measurable if $\mu\{t ; f(t)>r\}=$ $\mu\{t, g(t)>r\}$ holds for every positive number r. Next two functions $f . g$ of \mathfrak{F} is called equi-measurable (in the extended sense) and written as $f \sim g$, if both f^{+}and $f^{-16)}$ are equi-measurable to g^{+}and g^{-}respectively. Then the relation \sim comes to be an equivalence relation on the space \mathfrak{F}. Thus, if a Banach function space \boldsymbol{X} consisting of integrable functions on E has $w-R I P$ with respect to the relation \sim of equi-measurability in the extended sense, the relation \sim is an \mathcal{E}-relation on \boldsymbol{X} as is easily seen. Hence, on account of Theorem 2, we have as similarly as Theorem 3

Theorem 3'. If a Banach function space \boldsymbol{X} consisting of integrable functions on a σ-finite (or locally finite) measure space E has w-RIF, then it has s-RIP.

We obtain also
Theorem 4'. Let $\boldsymbol{L}_{M(\xi, t)}(E)$ be a modulared function space consisting

[^3]of integrable functions on a non-atomic σ-finite measure space E. If $\boldsymbol{L}_{M(\xi, t)}$ has w-RIP, then it reduces to an Orlicz space \boldsymbol{L}_{ϕ}.

Proof. Let $\left\{E_{\nu}\right\}_{\nu=1}^{\infty}$ be a sequence of measurable sets of finite measure such that $E_{\nu} \uparrow_{\nu=1}^{\infty} E$ holds. Now we put

$$
\Phi^{*}(\xi)=\sup _{0 \leqslant \eta<\xi} \varlimsup_{\nu \rightarrow \infty} \frac{m\left(\eta \chi_{E_{\nu}}\right)}{\mu\left(E_{\nu}\right)} \quad \text { and } \quad \Phi_{*}(\xi)=\lim _{\nu \rightarrow \infty} \frac{m\left(\xi \chi_{E_{\nu}}\right)}{\mu\left(E_{\nu}\right)} .
$$

Then, by virtue of Corollary 2 in $\S 3$ and the non-atomicity of E, we can find positive numbers α and γ for which $\Phi_{*}(\alpha \xi) \leqq \Phi^{*}(\alpha \xi) \leqq \gamma \Phi_{*}(\xi)$ holds for each $\boldsymbol{\xi} \geqq 0$. From this we can verify as similarly as in Theorem 4 that $\boldsymbol{L}_{M(\xi, t)}$ coincides with the Orlicz space $\boldsymbol{L}_{\boldsymbol{\phi}^{*}}$.
Q.E.D.

References

[1] I. Halperin : Function spaces, Canad. J. Math. 5, (1953) p. 273-288.
[2] S. Koshi and T. Shimogaki : On quasi-modular spaces, Studia Math. 21 (1961), p. 15-35.
[3] : On F-norms of quasi-modular spaces, Jour. Fac. Sci. Univ. Hokkaido, Ser. 1-15, No. 3-4 (1961), p. 202-218.
[4] M. A. KrasnoselskiĬ and Y. B. Ruttickî̀: Convex functions and Orlicz spaces (in Russian), Moscow, 1958.
[5] G. G. Lorentz: Some new functional spaces, Ann. Math. 51 (1950), p. 37-55.
[6] \qquad : On the theory of spaces 1, Pacific J. Math. 1, p. 411-429.
[7] W. A. J. Luxemburg: Banach function spaces, (thesis Delft), Assen (Netherlands), (1955).
[8] S. MAZUR and W. Orlicz: On some classes of linear metric spaces, Studia Math. 17 (1958), p. 97-119.
[9] J. Musielak and W. Orlicz; Some remarks on modular spaces, Bull. Acad. Pol. Sci. 7, No. 11 (1959), p. 661-668.
[10] H. NAKANO: Concave modulars, Jour. Fac. Sci. Toky Univ., 6 (1951), p. 81-131.
[11] \qquad : Modulared semi-ordered linear spaces, Tokyo, 1950.
[12] B. Z. VUlich : Introduction to the theory of semi-ordered linear spaces (in Russian), Moscow, 1961.
[13] A. C. ZAANEN : Linear Analysis, Amsterdam-New York, 1958.
[14] A. ZYgMUND : Trigonometrical series, Warzawa-Lowow, 1935.
Department of Mathematics, Hokkaido University
(Received December 16, 1963)

[^0]: 1) A semi-ordered linear space R is called universally continuous, if $0 \leqq a_{\lambda}(\lambda \in \Lambda)$ implies $\bigcap_{\lambda \in A} a_{\lambda} \in R$, i. e. a conditionally complete vector lattice in Birkhoff's sense or a K-space in the sense of Vulich [12].
[^1]: 8) A linear manifold $N \subset R$ is called a normal manifold, if each $x \in R$ is uniquely represented as $x=x_{1}+x_{2}, x_{1} \in N$ and $x_{2} \in N^{\top}$. A normal manifold N is called to be finite codimensional if N^{\perp} is of finite dimension.
[^2]: 9) R is called to be non-atomic, if R has no atomic element.
 10) A norm $\|\cdot\|$ on R is called semi-continuous, if $0 \leqq x_{\lambda} \uparrow_{\lambda \in \Lambda} x$ implies $\|x\|=\sup _{\lambda \in \Lambda}\left\|x_{\lambda}\right\|$.
 11) For the definition of a modular see [11]. Here we use the term of modular in the sense of Nakano.
[^3]: 16) $f^{+}(t)=\operatorname{Max}(f(t), 0)$ and $f^{-}(t)=\operatorname{Max}(-f(t), 0)$ for all $t \in E$.
