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Introduction. Let F{? be an n-dimensional Finsler space with the metric
given by the differential form of order p: ds*=a, ., dy" --dy*r (a’s Tun over
1, 2,:-+,7n), @,..., being function of y’s. Suppose that one has a homogeneous
polynomial of order p in &'s:

(0.1) A= Qg § -+ E°P
which is defined in an zn-dimensional projective space E, attached to at a point
(y). When we put a, 1 aa the resultant of the » forms a, (a=1,:--,7)

is named the discriminant of the form a, and denoted by €. It is well known
[1]V that U is a homogeneous polynomial of order n(p—1)*"* in the coeflicients
Qq,.ap, and that A=0 is the necessary and sufficient condition in order that »
hypersurfaces a,=0 in E, have common point. Consequently, 2 is a scalar
density of weight o=p(p—1)""". The differential geometry in F? was studied
for F{» by A. E. Liber [2] and for F{® by the present author [3] and Yu.
I. Ermakov [4]. Moreover, Yu. I. Ermakov [5] has established the foundation
of differential geometry in general case: F\? (p>3) by introducing the affine
connection I'3,. The principal purpose of the present paper is to discuss the
theory of subspace immersed in F{? (p=3). §1 is devoted to the abridgment
of the method of determination of the affine connection which was studied by
Yu. I. Ermakov. §2 is offered to introduce the projection factor B! and the

»
normal vectors C* and C, to the subspace which will play the important roles

in the theory ofpsubspace. §3 and §4 are devoted to discuss the curvatures of
a curve in the subspace and the Gauss and Codazzi equations for the subspace.

Furthermore we can discuss other many theories of the subspace making
use of the projection factors and the normal vectors as well as the subspace
in 1the Riemannian space. However we will omitt those discussions in this

paper.

1) Numbers in brackets refer to the references at the end of the paper.
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§1. Let & and &% be two systems of affine coordinates in E,, and related

by &' =Xv&* or &=X2&". Since a,. ,=qu-~XZ;j QAuyoayyy WE have
- 177"%p 1 o !
(1.1) - Wa, . )=|Xo|" (@ .ay) »
i"p

o being p(p—1)""'. Differentiating (1.1) by X2 and putting X2 =42, we have

(1. 2) = G — %,

v . aarar2 ap . » -
| 5 A » ' ‘ Y,
where — oA _ Ll-L! . oA when a,, ---, @, consist of Z,,---, [, blocks of
Ogyay, Pl 00y, : : '

the same indices. Accordingly we have

L3 A, ., =5,

. oA
uttin b _ =A,, . -
P & oA Gay,, .., Ty

Let I',, be the coeflicient of an affine connection, it follows that

Y4
—_ — w _ @
Ay, = sy, = Dy = 25 D funyay _yung, oy -

Multiplying by A*:"“» and summing for a,,---,a, one obtains

(1. 4) AP Qg = A0,y — i — (p— 1) . N,

putting N=A**"rq,,, .., . Moreover, if we put B}, & =5.0,00, + (p—1)5{.N5.
we have from (1.4) '

Aa, e . Aar,-ee
(1. 5) AYY (g yay, = AP0, By yay — Bl S Ty

When the polynomial (0.1) is of the special form: a = i}aa(é"‘)” that is a,, ..,

a=1

7 . o n 1...7.1
= Zaﬁ;’l---ﬁzb we have A=(aq,---a,)? so that A* = Zl"—'é’;iajh--ﬁip.
w=1 =1 P ! a,

Hence one has B., % =6.0¢,0, + (p—l)i}l(i,’ﬁ,fﬁ?,,;’)ﬁ;’ from which it follows that

the elements in the principal diagonal of the determinant | B, | are different
from zero and others are zero, and consequently |B:, #|20. Hence it may be
assumed that |Bj, | does not vanish in generally. Assuming |B:, |30, we
can determine a tensor P2 /* such that P2 B, 7 =4250". Now multiplying
(1.5) by P and summing for 2, g4, v it follows that

_ Qoo
F‘:‘r - ::_‘f”A 2y (a(/cau)azu-ap_V(pa»)az---ap) -
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Under the condition A"tV (,a,,,.., =0, we have

(1.6) I = Pt A3y, -

§2. An m-dimensional subspace of F{? may be represented parametrically
by the equations

L . 3

2.1) v =yl (@=1,--m),
where one suppose that the variables z° (i=1, ---;m) (m<n) form a coordinate
system of the subspace. Furthermore throughout this paper we shall assume
P
4 zt
we shall also assume that the matrix of B: is of rank m. If dy* is a small
displacement tangent to the subspace (2.1)," it follows that dy*=Bidx’, dx*’
being the same displacement in term of the coordinate x’ of the subspace.
Thus, the ds=(aix...ﬁdxil---dxﬁ)" » represents the distance between near two
points z* and z*+ dz’ in the subspace, putting a;,..., =a,,l...apB$;---B$f . Assuming
that the discriminant A’ of the polynomial in dz’s: a=a, .. (x)dx"---dx's be
different from zero, we can derive a tensor A**"’» in the subspace such that

that the functions (2.1) are of class C*, and introducing the notation B:=

(2.2) Artrg,, |, =6 |
If we put
A*etra, ., Bi-Bip =Bt
in vertue of (2.2) it follows that
(2. 3) . B:B; = o% .

A covariant vector C, is said to be nermal to the subspace (2.1), if it satisfies
the equations

2.4 BiC,=0 (=1, -, m).

These are m equations for the determination of z functions C, (a=1,:---,n).
Since the rank of the matrix ||B3|| was assumed to be m, there exist (n—m)

. : D
linearly independent vectors C, (p=m+1,--,n) normal to the subspace and
. \ -
these may be chosen in a multiply infinite number of ways: B;C,=0. Hence

n covariant vectors B¢ (i=1, ---,m), C, (p=m+1, ---,n) are linearly independent,
so that we may chose a set of n—m contravariant vectors C* (g=m+1,---,7)
) q

satisfying the relations
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N p
BiCc=0, CCo=sr.
q q

The vectors C* is said to be contravariant normal to the subspace. Now, con-
V4

sider the tensor
(2. 5) o = 05— B5B; .
Multiplying B? and summing for 3 one has ¢3B2=0 from which it follows
D
that ¢f is a linear combination of n—m vectors C, (p=m+1,---,n), that is

3 j 4
(2.6) pi= 3 26

p=m+

Multiplying (2.5) and (2.6) by C'a and summing for 8 we have respectively 50;?9
n »
—C"' and go"‘C'3 —2" so that, A" C“ Hence from (2.6) we have ¢3= 2, CC;,
p=m+1 p
and consequently it follows that

(2. 7) BB+ 3 CCi=az.

p=m+1 p

n »
Putting B;Bj=Bj and };, C*C;=C; we have from (2.7) B;+ C;=03
p=m+1 p
§ 3. Let us consider a vector field v*(s) tangent to the subspace (2.1)
along a curve in the subspace. The covariant derivative of v* with respect to
the arc length s along the curve is defined as follows:

. ov* _ dv” ady’

3.1 = GY et

8.1} s ds " s
If v* (i=1,---,m) are the components of the vector v* in the coordinate system
x*, we have

(3.2 a) v* = Biv? or (3.2 0) v* = Blv®

According to the usual definition of induced derivative we shall define the
covariant derivative offv’ along the curve

ovt B 00"

3.3
8-3) Os “ Os

that is
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dv* ;s dx* o dv® ady’
+I0? = B! e 2Y )
ds e ds ( ds Y ds )
Hence we have
(3. 4) B3 Bi+ I3 BiB.B.—I'5, =0,

3 a a a

Substitutting (3.24a) in the right hand member of (3. 1) one obtains

ov”

. - dx”® ov*
3. 5 == .Bzx j + Bg: >
( ) Ss 3,£U “ds os
where we put
. . (3. 6) - B;,Ic == B_‘;k"_FgTBgB;C—BgF;/‘ "

In virtue of (3.4) it follows that B.Bj5 ,=0. Cbnsequently’ we have n—m sym-
D
metric tensor in the subspace: w;: (p=m+1,---,7n) such that

1

7 »
(3.7) Bji= %—wuC-.
. . ’ o

p=m-+1 _’
Substitutting this expression in (3.5) one has

3U" _ pa 00° & o? dx*

3.8 — — ) .
( ) 0s ’ os ' p=§+1wﬂc‘lv ds V4
When we put v* =iya~, (3.8) becomes
s
’ ‘ o*y" &zt & v dr? dxt
3.9 = B% — C-
( ) os® * ds? p=§+1 @k ds ds »

Hence it is easily seen that a path of F{ lies in a subspace is a path of the
subspace. Moreover we see that a necessary and sufficient condition that every
' D

path of a subspace be a path of the enveloping space: F{? is that w;=0.

2, & 2 2
In (3.9) we understand that -%yz— and B% 55x
.. 08" S

are the principal normal of

. D 7 &
the curve in F{?» and the subspace respectively, and wy CZC CZC
s ds

ponent of the curvature of the curve in the direction C*.
»

is the com-
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§4. In order to find the conditions: of 1ntegrab1hty of (3.7) we denote by

hi the tensor in the subspace derlved from the tensor V,C* and denote by h,c
¥4 »

the vector in the subspace derived from the tensor C,,V ,C", i.e
N b
(4.1)  BBIF,C:= », @42  BC.V,C=h,
.P P I r »
After some calculation, (4.1) can be ertten in the form
(4. 3) ._ L Chw=hiB;+ Cohy
LA e

where C% represents B.V, C:. Now, from (3.7) we have
» »

D

(4- 4) By, a Bi A C (wu k= Ok g) — (wwck wikc 5) 5

where the symbol X, ;. Tepresent -a covariant derivative of X induced to the
subspace. Since B} ;. — B; ;= B3K?,— BiB;B.K5,,, in consequence of (4.3) the
equation (4.4) is reducible to :
. (4 5« . BLK "BiBjﬂBéKﬁra
‘ ) i

b q :
= — C (wz'j R ww 3T a)ijhk —- wikhj) + B, (w«;khj wuh?) s

Where K%, and K,s,,; are the same w1th the ‘Riémannian Symboles for the
coefficients of ‘connection: I, “and Iy respectlvely * | L

. If this equation be mult1phed by B! and C and a be summed we have
respectlvely :

(4. 6) Kij/c == Bl BﬁB B‘};Klgﬁ -+ (Uikhj w,,jhfc

and
(4. 7) (;5_7 kT Cl)z;c j K,g,,,BﬁBjB"C +a)¢khj Z)ij;Lk R
q

On the other hand, the conditions of integrability of (4.3) are obtained from
a q
Ciirsy = hle, nBi— 1B, n+ Cyhay + Chy g1
D » » q qQ D

that is
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o ¢ a ¢ ¢} 7
Cy[/cj] == h[k’j]B; - w.,;jhkC“ —+ h[jh;c]B';’ + h[,c,j]C“ o
2 p » q a p D q
From this we have
q a
gr,;BﬁB;Ca == ( g,k -+ h_ghk - h%hj) B;
3 3 a'p a
q ‘ q ‘ q q ’
-+ ((!).;/Chj —_— (l)ijk[c -+ hk‘j — hj,,e) Ca .
D » p 3 q

From this equation it follows that

(4. 8) K2, BiBBLC’ = L ,— b o+ hih,— hih,
)4 ¥4 a q D

b4

and
q a q q q
Ké;,;BiB;C"Ca = hk’j'—hj’k +a)¢/ch'§-—co“h,,i .
p p b » D
We call (4.6) the equation of Gauss and (4.7), (4.8) the equations of Codazzi.
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