ON THE DISTRIBUTION OF ALMOST PRIMES
IN AN ARITHMETIC PROGRESSION

By

Saburé UCHIYAMA

1. Introduction. An almost prime is a positive integer the number
of whose prime divisors is bounded by a certain constant. The purpose of
this paper is to deal with an existence problem of almost primes in a short
arithmetic progression of integers. We shall prove the following

Theorem. Let k and l be two integers with k=1, 0<I<k—1, (k, [)=1.

There exists a numerical constant ¢,>0 such that for every real number
x=c,k*® there is at least one integer n satisfying

x<n=2x, n=[/ (mod k&), Vin) <2,

where V(n) denotes the total number of prime divisors of n. In particular,
if we write a(k,l) for the least positive integer n (>1) satisfying

n=I[ - (mod k), Vin)£2,
then we have

a(k, l)<ck*®

with some absolute constant c,>0 .

It is of some interest to compare our results presented above, though they
are not the best possible, with a recent result of T. Tatuzawa [5] on the
existence of a prime number p satisfying x<p=<2x, p=I[ (mod &) and a celebrated
theorem of Yu. V. Linnik concerning the upper bound for the least prime
p=I[ (mod k) (cf. [3: X]).

Our proof of the theorem is based essentially upon the general sieve methods
due to A. Selberg. The deepest result which we shall refer to is:

r(x)=lix+O (x exp(—c;(log x)l/z) )

with a positive constant ¢;, where 7 (x) denotes, as usual, the number of primes
not exceeding x (in fact, a slightly weaker result will suffice for our purpose).
Apart from this, the proof is entirely elementary.

Notations. Throughout in the following, %2 represents a fixed .positive
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integer, [ an integer with 0=</<k—1, (k,[)=1. The letters p, g are used to
denote prime numbers and, d, m, n, r to denote positive integers. The functions
u(n) and @(n) are Mobius’ and Euler’s functions, respectively. The function
g (n) is defined as follows: g (1)=1 and for n>1 g(n)=the greatest prime divisor
of n.

s, t, u, v, w, x, Y, ¢ will be used to denote real numbers, constant or
variable. ¢ represents positive constants, not depending on % and /, which are
not necessarily the same in each occurrence; the constants implied in the symbol
O are either absolute or else uniform in %2 and /.

2. Preliminaries. There needs the following lemma for later calcula-
tions :

Lemma 1. We have

1 1
— =loglogt+c,+ O ,
pzéztp oBeBITe (logt)

where ¢, is a constant;

zl"i_f’zlogHO(n;

pEL

]l (1————;—> T Clogt+O(1),

where C is Euler’s constant; and

m

o (m) > Clog log3m

These results are well known. For a proof see [3: I, Theorems 3.1, 4.1
and 5.1]. '
Let M=0, N=2 be arbitrary but fixed integers and put

y=2k(N+1), w=y%~',
where O<e<%: we shall fix ¢ = —’17— later on. Further we put

1

1 1
z2=y°, 21-——’!}3, 2=y,

where a, 8, 7 are fixed real numbers satisfying

10=27=z4za>2=8>1.
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First we wish to evaluate from below the number S, of those integers of
the form kn+[. (M<n<M+ N) which are not divisible by any prime p==z.
Applying the ‘lower’ sieve of A. Selberg (see [2] and [7]), we find that

S, =(1—Q) N—R,,

where
13 ‘ 2
Q= lZ with Z,= Z_#(n))
(zil.llc=)z=1p by 7;%;0)/!;) gp(n
(n, £)=1
and

1
R, =0|w* .
[« Z77)

It will be shown later that
Z,,>c£l(eli)—logp for all p=<=z,

and so we have, by Lemma 1,
R, = O (w*(log log 3%)) .

We put

Then it is easily verified that

1 H,—Z
1-Q= T1I (1———) — 3 %
pE2 P (5,%5:1 pHpr

(p,k)=1
Lemma 2. We have

szk—NH<1—%)—N s H,—Z,

¢ (k) »= (Ey=1 pH,Z,

Lo ( N(log log 3k>'3> + 0 (w*(log log 3%)') .

zlog =

Proof. We have only to prove that

g ()l - of et

pE2
(p,A)=1
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or

(1) 11(1_-}_)"=_ZL+ o(_(k)_gligi’@i),

0=<1I (1—L)—$(i= m(1—L)— (1_L)
AN S A S A
<y ¥ #d_s1 « p#d)
_gr/cztlgélfp) d £!>kz P (g;‘fz)/gl d

from which follows (1) at once.

Let g be a prime number in the interval 2<g=<z, with (g, 2)=1. We next
evaluate from above the number S(q) of those integers kn+/. (M <n=<=M+ N)
which are not divisible by any prime p<=z and are divisible by the prime gq.
Applying the ‘upper’ sieve of A. Selberg (see the Appendix below), we find that

N
S = +R(q),
qu
where
W,= X ¢ (n)
psza pn)
(n,k)=1
with
a=% (1 2e— 1089 )
2 log v,
and

R(g)=0O[Z )= o[- )
@ (W) (4%

Now, let =1 be a fixed integer and let S, denote the number of those
integers of the form kn+! (M<n<M+ N) which are not divisible by any
prime p=<z and are divisible by at least »+1 distinct primes ¢ in the interval

z2<g=<z, with (g, k£)=1. Clearly S, is not greater than
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1
S(qg).
T e (q)

(g, #)=1

Hence:

Lemma 3. We have

N 1 w’ (log log 3k)* )
S =< + O .
r+ 1 z<q2§z1 q Wq (

(g,%)=1

Proof. 1t will later be shown that

M>c—5’il(€k—)logy for 2<g¢=<z,.

It follows that

7+ 1 e<q=z log? 2<qzz
(@, B)=1 ey » 4

_ O( w’(log log 3k)* )
log*y ’

1 > R(q)=o<w2(loglog3k)2 > 1)

since

1 _ log%—i—O(l) —0(1).

A/ N q

3. Some lemmas. Here we collect some auxiliary results which will be
needed in the next two sections.

Lemma 4. We have

5’&&);0&1 =0 ((log log 3m)2) .

Proof. The left-hand side is equal to

¢ (d) « _ £ (d)
g pilosr R8P 2 g

=3 logp > 1 (d)
ol p almiv d

a, p)=1

b

where we have

¢ (d)

d|lm/
(2,p) pl d

= ‘lv": = Of(log log 3m)

1
d
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and

> logp _ > _128_1’4()(1)

plm P pé{’(g;nm p
= O (log log 3m) .

This proves Lemma 4.

Lemma 5. We have

2 #n) _ plm) log ¢+ O (log log 3m) .
st o(n) m

(n, m)=1

Proof-. H. N. Shapiro and J. Warga [4: Appendix I] have proved that

2 ;tz’(zn) — 90:;1) I;I (1—__12_)10gt+0(10glog 37}1)_
nst pim

(n, m)=1

Using this inequality we obtain

wln) _ ) I[<1+—1 )
(nrmy=1 o (n) - S pln p—1
= #2(n) h 1
(n:lwéz,)t=1 n aln gD(d)
— ¢ (d) ¢ (n)
(@lmr =1 dp(d) e, on |
— ¢ (d) (sa(dm) (1__1_)1 t 1 )
B Ao\ dm wm\ ) +O(loglog Sdm))
—elm g1 i (1— L) “log £
m z];;[m( pz)(aflfif—l dz pld )2 8 d
¢ (d)
+ O(ét Lt loglog 3dm)
— 2l g (1— 1 ) > #d) ﬂ(l——)_llogt
m ptm p2 (d:i;;:I d? pia
+ o(z #d) (1—L)_ 1ogd>
st d? vl
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— o(m) logz + O(log log 3m),

since

A3 - mlpt)n b3
Z " 7 E" +P2“—1 ”I*;" Pz)

Now, for #>0, v=2, let G(«, v) denote the number of positive integers
n=u with g(n)=<v. ’
Define the function f(s) by the following properties :

(2) [ P(s)=0 (s<0); o(s)=1 (0<s<1);
| so'(s)=—pP(s—1) (s>1); ©(s) continuous for s>0.
Then the following result has been proved by N. G. de Bruijn [1]:
Lemma 6. Let u>0, v=2, and put t=(log u)/logv. Then we have
G(u,v)=O(ue*)

and, more precisely,

Gmmpmmm@+oG%Eiﬂ»+ouH{NW?@»,

og v
where P(v) is a function satisfying
P) |0  (v—>o0), P(v)>(ogv)fv (v=2),
|7 (v)—li v| <vP(v)/log v (v=2). -

As to the function £(s) itself, it is not difficult to prove the following
result, which is known as a lemma of N. C. Ankeny:

Lemma 7. For s,=s,=1 we have
O(s) Z O(s,)e %)

so that

rpmﬂgp@ (s=1).

For a proof of this result see [8].

4. Evaluation of §,. We are now going to find an explicit lower bound
for S, on the basis of Lemma 2.
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First we have to evaluate Z, and H,—Z, for p<z. To accomplish this

we distinguish three cases on the magnitude of the prime p.
It is clear that

2
Case 1: 2=p=exp(logy)®. By partial summation we get

T, ¥ L= 5 Gnd oy,
n

ZT;{;Q’} n>w/vV D n
1 1 ,
where ¢, =-——¢——. By Lemma 6 we have
2 2a
G(n: ) =0 Z n—(1+c/10g D)
n>w/vp 712 n>w/vp

— O ((log %)% exp (—c(log y)%)) :
It follows that

Hp—zp-—-O( 1 ) z,>c 28 10 p
log® y k

since, by Lemma 1,

Tp = 2 o 2 2 (d)
n>w/vYp N dl(n,k)
g(n)Ep

gad)sp g(n)Ep
d wivpzr>w/avs N

alk
g(@)sp g(n)sp
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=1 (1—'L> L+ O((log log 3%F) ,
q n>w/vp N
g(n)<Ep

> ¢(d) ha _1_
n

alk d w/vBzn>w/avp
g(d)sp - g(n)sp »

¢(d)logd ) ‘
O(dlk d

= O((log log 3k)2> .
Now, by partial summation, we have

1 5 G(n,p) +O(y““5) 2

n>w/vyp 7 n>w/vp n?

Here, by Lemma 6, we find that

r Smp_of 3 n</>)

2
n>exp(log v)? n n>exp(log )2

=0 (log 9y exp(—c log y))
=0((logy)y~),
so that
Glnp) _ s Gmp O(;).
n>w/VE  n’ oxp (log p)? 2 n>w/vy M log® y

Let us write I for the interval w/yp <n<exp(logy)?. Then, by making use
of the result in Lemma 6, we obtain

> Gn,p) _ Zip(logn>l(1+o<loglogy>)

nel 7? n€l -n logp logp i
+ o(z.}_) + o(zi(logn)zp(p)).
nzl 71 ne€l N logp

It is easily verified that

net .\ log p
where ¢,=(log w/y p )/log p;

zip(—li’g—”) - logpjjp(t)dt+0<y~°s),
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L =0 B ({2 P = O (1)
n =€t n \ log p | log* v

where we have taken P(v)=cexp(—c(log v)%).

We thus have

T,= logpr e(t)dt (1 +O (——lolgo:iy )) + O (loglz y) .

) 4

Hence

H,—Z,<1I (1 ——1—) logpjoo o(#)dt (1 +0 <_1°g'__ log y ))
q tp log p

+ O ((log log 3k)") ,

Z;,; 1T (1 ——(11—) (ec— r P(t)dt) log p+ O (log log ¥)
+ O ((log log 3k)2> .
Case 3: z,<p=z. Put t,=(logw/yp)/logp, as before. If 0<z,<1

then we have

_ pk log —%_ + O(log log 3%)

k Vo
= Spge) t,log p+ O(log log 3%) ,

H,—Z,— SDI(f) (e° — 2,) log p + O (loglog 3k),

by Lemma 5. If z,>1 then

Z,2 pi(n) Y (n)
e el S ngny o)
(n, £)=1
_ oy ) 1 ¢ ()
- b
g o) v 00 ik o)

where, again by Lemma 5,
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1 £ (n)
rgasw/ s p(q) nswiws o(n)
= 1 ( ¢(gk) log ~— + O (log log 3qk))
rgase/s 0(q) \ gk q~/ P
_ plk) > ilog W +o( _l%lo—gf”qk)
k pfgékl)vifp q PEa=w/vVp () (q)
o (k) (10 By w ) '
= g —— log — log — +log p| + O(log log ) ,
A
and hence
Z,= %(th— 1—z,log ¢,)log p+ O(log log ¥) .
Therefore

H,—7,< (k) (eC—(th—— 1—¢,log tp)) logp + O(log log 7)) .

Here we have, as in the proof of Lemma 2,

meghe i)
gl<kp q ] e<p q

( ]i)+ O(hg_l%‘%_?&)) (¢ log p+O(1))

= % é’'log p+ O(log log'3%) .

We are now in position to be able to evaluate the sum

H,—Z,
P
(pk) 1 P‘HPZP

Define :

ect_t (0<t<1),

e€—(2t—1—tlogt)
2t—1—tlogt

A) =
(1<z<er),
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where t=¢" is the unique solution of

2t—1—tlogt=0, t>1,
so that 1.8<c¢,<1.9; and
jwp(s)ds
B(t) = — (t>i>.
ec——J‘ o(s)ds 4

Let us put, for the sake of brevity,

2/3

2, = exp(log )

Then we have

H,—Z, _ O( k  loglog 3% 1 )
25 Pz, pHpr ok) log’y » plog’p

(p,£)=1
( k  loglog 3% )
pk) log’y /)’

I
Q

and, noticing that

for every p,

H-Z, .k _,c 5 B
2, <D<z, pHpr - SD(/Z) 2, <pZe, plogp

(p, &)=1

+O( k (10g104g33/e)3)+o( k loglogy),
(k) log’y ¢(k) log’*y

where we have used the inequality

1 1 1
—_— T O I ol N
zs<§§zz plog’p (n(z3)<§én(zz> n log® n) ( log? 2, )

We now assume that 7, 4<7=<10, be integral. Write J, for the interval
Y/ <p=y”(v=7). Then, since the function B(¢) is monotone decreasing,

Bit,) — pa B(z,)
z,<pEz, P logp rEv<e(log y)i 7, p logp
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IA

(5L e B
r<v<c(log )% \ pes, p | »2J, logp

log 2L v+1 B((é——-s)u—%) :

= 1
r<v<c(log v)3 Y log 'y

+O( DI ud )
rev<cllog ) log®y | -

1 Z:(v+1)log vtl B((%—s)u—_;_)+()(_l_'y_>

IA

logy » v log*?

Thus we obtain

H—Z7,_ & &€ &, . v+l i1 N\ 1
v =2y < 3 (v+1)log —'B((———e)u——)
e<pse, pH,Z, ~— (k) logy »=r v 2

(p, B)=1
k  (loglog 3%)° ) ( k  loglog )\
+O< +O0 .
o(k)  log”y o (k) log”*y )

We have similarly

Hp—Zp < k »—C Z A(tp)
za<PE2 pHpr o Sp(k) 2,<pE2 Plogp

(p,k)=1

+0 ( k  (loglog 3%) log log v ) '

(k) log* y
Put
n=[log”yl, wu,=a+ 7;“1‘ (j=0),
and write K, for the interval
yrun<psy’  (0sjsn—1).

Now, the function A(#) is continuous, monotone decreasing in the interval
0<t=e and monotone increasing in the interval e<t<e®. Thus, if we denote
by m the integer for which

(L— 5) um—_l_ §e< L— e um+1—__1_. 5
2 2 2 2

then
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Alt,) S Alzy)
5 5, e
=.<psz p log p Z 0o ve%; plog p

énzj(z L )max_i(t_p)_

vk, p | rex; logp
m—1 ;
< 37 log Hit ”f+1_A< 1 _1
_jZ=:o 8 u; logy 2§
/ ,
+]0g_zfﬂ_ﬂﬁlmax(A<(_L—s>um——_l_ R A i_s um+l—_]_'.....
u, logy 2 2 2
+ S log s Uses A((L_e)ujﬂ__l_) +o("2“_u¢>
Jem+1 u; logy 2 / 2 i=o log*y

__L—j’ A<<~l——s)u ———1—)du+0(—1— ,
log v 2 2 log** y

where it should be noticed that we have uniformly

1y, log a2 — T2 +O(%) O<j<n—1).
J

Hence

s (e e
wirse pHLZ, — o) logy ).  \\2 2

+O< k (10g10gy)loglog3k)+o( k } >
v (k) log*y @ (k) log”y

Collecting these resulfs, we thus obtain, via Lemma 2, the following

Lemma 8. We have

EN ¢ 7 1 1
s> AN e [ al(L_Nu—L)a
= o) 1ogy(“ J ((2 )” 2) “

(u+1) log ”_:1 B((E—— )u——;—))

iMs

o

-+

( EN (loglog 3%)* ) +O< EN log logy)
p(k)  log"y @(k) log"”

O ( N(IO/g log 3k)3) +O(y'~* (log log 3k)")
yl 4 log Y
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5. Evaluation of 8.,. By virtue of Lemma 3, our present task is only
to estimate the quantity

1

(z;qlc)ézll W,
We set
Z (0<axl),
a
C@k =
a
1<axg?2),
2a—1—aloga (1<a=2)
where

a =_a_(1_zs__1_).
2 t

Then, it is not difficult to verify, by Lemma 5, that, with z=¢,=(log y)/log g

W, = ;a ¢ (n)
Q&Tzéz SD(n)
(n,k)=1

v

so]ik) g(gt:)/+0(loglog3k) (z<q§zx),'

and consequently

1 < k 1 5 C(tq)+o< k (loglo%SkV).
e<azz, gW, — @ (k) logy =<iZ= ¢ p(k) log*y

n=[log"yl, w,=p+ “;ﬁ j O=j<n),

and write L; for the interval
Y < g=y O0=jsn—1).

Then we have

n—1 n—1
Clz) _ 3 C(z,) <3 _1_) max C(z,)
2<qsz, J=0q€Z; q j=o\d€Z; q | 9€Ly
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since the function C(¢) is continuous and decreases monotonously for £>(1—2¢)""
and since we have uniformly

log Bat2 — a—ﬁ‘ 1 +O< 12) 0=j=n-—1).
Uy n Uy n

We thus have proved the following

Lemma ' 9. We have

1 kN j Clu ) du
r+1 ¢(k) log'y

+O< EN (loglongk))+O< EN 1 )+O< 12‘(loglog3lz))
p(k)  log'y o (k) log™*y log® y

2 =

6. Numerical computations. We need the following easy lemma, a
part of which has already been used in the proof of Lemmas 8 and 9.

Lemma 10. The function

1 .
— 1 ]
Fts) 2s—1—slogs (1<s<er)

is positiv, convex, and monotone decreasing for 1<s<e and monotone in-
creasing for e<s<e™.
Putting f(s)= (£(s))~, we see that f,(s)>0, f{(s)=1—logs and f7/(s)= —1/s,

and the result follows at once.

We _now choose s=—%— and take

a=4, B=2, and 7=10.

Our aim in.this section is to compute numerlcally two integrals and a sum
appearing in Lemmas 8 and 9.

(1) Computation of

R -
o
P
T
ml»—a
I
-0
N
|
|,,_.
~——
%
I
)
D
—
N
N
I
l\D't—l
~———
Y

(3) j:'zA(__u—_)d +j (——u——) du,\

where the first integral is found to be
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= ecj‘m (iu——i> —ldu—r.zdu
. 14 2 4

.14, 14
c14 100 14 6201696,
5 8713

while the second is

— " Fydu—" au

4,2 4,2

with F(u)=f(s(u)), where f(s) is the function defined in Lemma 10 and
s(u)=15—4u—%. To estimate the integral of F(x) over (4.2, 10) we proceed

as follows.
We find :
F(4.2) = 1.0000 ; F(4.5) < 0.9080;
F(5) <0.8011; F(6) <0.6803;
F(7) <0.6197; F(8) <0.5907;
F(9) <0.5820; F(10) <0.5896.

By Lemma 10, the function F(x) is convex for 4.2<u=10. Hence
10 3 1
j Flu)du < - (F(4.2) + F(45)) +— (F(45) + F(5))

+ _;_ (F(5)+ F(10)) + (F(6)+ F(7) + F(8) + F(9))

< 3.8817,
and the second integral in (3) is less than

3.8817 ¢—5.8<1.1137 .

Thus we have

r’A (%u——%—) du<0.1696 +1.1137 — 1.2833 .

(ii) Computation of

g:r(v+1)log ”tl B((é——e)u—_;_)

= S+l ”+1B(5 —_1_).
v§10(u )og )] 14)) 2
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By the definition (2), the function ©(s) is positive and monotone decreasing

for s>0, and moreover

o(s)=1—logs for 1=sZ2.

5

Put s(v) =ﬂ—»— Then we have s(10)= 43 >3 and

14

Nlr—t

o (s(10)) = P(3) <P (2)e” = (1—log 2)e*<0.1129,

by Lemma 7. Now, using Lemma 7 again, we find that for »=10

‘ O(s(v)) P(s(10))  ~Le-1)
B(sk)=—— T = Toria0] .

A

Since (v+1)log((v+1)/y) decreases monotonously as v—oco, we thus obtain

3} v+1) log »*1B(s)

Y

11 ©(s(10)) 1 ~02366.

—~5/14

<11l
=800 Fp(s(10) 1—e

(iii) Computation of

j“@duzyﬂdu.

8 Uu u

For 2<u=<4 we have

Hence

Y C(w) du = 2£ (—’5]- u—l) _ldu

2 u

14 , 13 |
— 14 10613 ~41058.
5 873

7. Proof of the theorem. Let 1<k<x, 0ZIZEk—1, (B 1)=1. Take

w5 e [)

and put
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Yy=2k(N+1), =z=9y", =z =y"*, w=y"™.
Then it is clear that y>2x and that M<n<M+ N implies x<kn+I=<2x.
By D(x; k, ) we denote the number of those integers of the form kn+1
(M<n=M+N) which are divisible by no primes p<=z, by at most two primes
q in 2<q=<z,, and by no integers of the form ¢° g being a prime in 2<q¢=<z,:
clearly such an integer kn+[ (M<n<M+ N), if it exists, has at most two
prime factors, i.e. V(kn+1)< 2.
In order to estimate D (x; &, /) from below, we apply Lemma 8 and Lemma
9 with »=2. Let us note that we have from the data in §6

6—0(4_J10A () du— 3 (v+1)log 21 B(s(»)))
4 y=10 )
>e~0(4—1.2833—0.2366)>1.3923

and

J (@) gy < 41058 _ 1 3606
3 T3

Now, the number R, of those integers kn+1 (M<n=M+ N) which are
not divisible by any prime p<z and are divisible by some integer ¢* with g
in 2<g=<z, does not exceed
P2 (ﬁzﬂ):o(ﬁ_)juow.
z2<q=z, q Z
We find, therefore, that
EN 1
@ (k) logy
+ O( EN (loglog 3%)° ) 4 O( EN loglogy)
o(k) log”*y ¢ (k) log*”

| 4 O(N(l‘i)/%log 3k)° )_|_O(y5/7(10g log Bk))+o< 1/4) )
. y/*logy y

D(x; b, 1)= S,—S,— R, = (1.3923 — 1.3686) <2\

Since N = %+O(1), 2x<y=A4x, it follows that

D(z; b 0)=00237—L T
o (k) log x
1 x(log log 3k) ) 1 xloglogx
+0 +0
< p(k)  log"*x ( p(k) log”*x )
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3/4 8 5/1 2
+0 (—1— x*" (log log 3k) ) +0 <x / (log log 3%) ) +O (Lxs/‘) .
k log x k

Let ¢,>3.5 be a fixed number. If x=%° and % is sufficiently large, then
all ‘the error terms on the right-hand side of the above inequality for D(x; %, )
are of negligible order of magnitude, with respect to the leading term. Thus,
for all large enough %, x=%" implies that

1 x
D(x; k, 1)>0.0236 ——
@k o (k) log z

Hence, by continuity argument, we conclude that there is a (finite) natural
number &, such that, if 2=k, and x=#%**° then we have D(x; k, [)>0. There-
fore there exists an absolute constant ¢,;>0 such that

D(x; &k, 1)>0 for all x=c/k*®, k=1.

This completes the proof of our theorem.

Appendix
ON THE ‘UPPER’ SIEVE OF A. SELBERG

Here we aim at generalizing the results obtained in [6].

Let N>1 and let a,, a,,---,ay be rational integers not necessarily different
from each other. Let S denote the number of those integers a; (1=<j7=<N)
which are not divisible by any prime number p<=z, where 2=2. Suppose that
for every positive integer d ‘

& 5 1-2d NiR@),
N d

ns
a,, =0 (a)

Sa

where R(d) is the error term for S, and w(d) is a multiplicative function of
d. We put

and suppose that f(d)>1 for all d>1.
Let w be an arbitrary but fixed real number such that w=2. We define
for positive integers m and d
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Wid) = 3 LY w=wq),

7

where ¢,(n)=0 or 1 according as 7 has or has not a prime factor>z.

we have, since 1(1)=1,

s ¥ (z z(d>)2= 5 ( > z(d;)x(dz)) N

"\ N 7@
+ ;éw |4(d)) 2(d,) R({d. 4.})] ,
where {d,, d;} denotes the least common multiple of &, and d,.
Now
1
A(d,) 2(d,
Bl B 2]
— Ald)\*?
250 (Z;v) £d) )
1 1 t(m) \*?
= 1 Ad) p(d e(m) £
e r‘gwf(r)(d;%zf D i T e L)
_ 1 o () 27) ¢ (n) :
o rguﬁ(r)(xr) B o e B )
_ 1 pilr) _ 1
we BT T W

We thus have proved the following

21

Then

Theorem. Under the notations and conditions described above we have

S§%+R

with
R= 3 |ad)Ad)R({d, d.})| .

d,, d; 5w

This is a generalization of [3: II, Theorem 3.1].

To evaluate the remainder term R explicitly, let us suppose that for all

positive integers d, d,, d,
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IR(d)| = Bo(d), olid,d:})=o(d)old),

where B>0 is a constant independent of d. These conditions imply

'R=B(Z i(d)old)’

asw
Then, it is not difficult to show that we have, in general,
R=0 (wz(log log w)z) ,
and, in the special case where w(p)=<1 for all primes p==,

w2/

where the constants implied in the symbol O depend only on the constant B.
The proof of these estimates of the remainder term R can easily be carried
out just in the same way as in [6], and we shall omit the details (cf. also [7]).
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