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§ 0. Introduction. The main purpose of this paper is to extend some
results on completely reducible modules to quasi-injective modules by replacing
“irreducible submodules” with “uniform submodules”. To this end, a number
of concepts and results on quotient rings (which are given by Johnson, Utumi,
Goldie, Lambek) will be needed. Let R be a non-zero ring with 1. A unital
R-left module V is called R-uniform if every pair of its non-zero R-submodules
has a non-zero intersection (Goldie [3]). Let {V,; 2e4}, {W,; 7eI'} be maximal
independent sets of R-uniform submodules of a unital R-left module M. Then
there exists a 1-1 mapping f of 4 onto I such that V,~ W, for all 2, where
V,~W,; means that a non-zero R-submodule of V, is R-isomorphic to an
R-submodule of Wj;, (Th. 1.10.) This result generalizes the one on the rank
of abelian groups as well as the one on completely reducible modules. M is
called R-quasi-injective if every R-homomorphism of any R-submodule of M
into M can be extended to an R-endomorphism of M (Johnson and Wong [6]).
If R is a left Noetherian ring (with 1) and M is R-quasi-injective, then M is
a direct sum of R-quasi-injective uniform submodules, and such a representation
of M is unique up to R-isomorphism (Th. 4.6). If R is a ring such that for
any non-zero left ideal I, R/I contains a minimal R-left submodule, then an
R-left module M is R-injective if and only if every R-homomorphism of any
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maximal left ideal into M can be extended to an R-homomorphism of R into
M. This is a corollary to Th. 6.1. Th. 6.1 generalizes also a result on neat
subgroups of abelian groups. M is called an R-c.q.i-module if M is R-quasi-
injective, and for any non-zero R-submodule A, /,/(r.(A)) is the unique maximal
submodule such that 7,(rx(A))2A and every non-zero R-submodule of Z,/(r{A))
has a non-zero intersection with A (Cor. to Prop. 5.11), where K=Homp (M, M)
acting on the right, 7x(A)={acK; Aa=0} and I, (rx(A)={ucM; u-ry(A)
=0}. Let M be a unital R-L-module, where L is a non-zero ring with 1.
M is called an R-L-c.q.imodule if M is an R®,L°c.q.i-module, where L° is
the opposite ring of L and J the ring of rational integers. If M is an R-c.q.i-
module then there hold the following: (1) M is a Q.c.q.i.-module, where Q,
is any intermediate ring of Q and R, of all (additive group) endomorphisms
induced by R. (2) Every R-direct summand of M is an R-c.q.i-module. (3)
Every R-K-submodule is an R-c.q.i-module and an R-K-c.q.i-module. (4) K is,
as a K-left module, a K-c.q.imodule. And we can generalize some results on
completely reducible modules in this situation. From these facts cited above,
the center of any left injective ring with zero left singular ideal is also an in-
jective ring with zero singular ideal.

The author wish to express his best thanks to Prof. G. Azumaya and Dr.
H. Tominaga for their helpful suggestions. |

§ 1. Throughout the present paper, M will denhote a unital R-left module
(#+0), where R is a non-zero ring with 1. 9 and & denote the set of all
non-zero R-submodules ‘of M and the set of all subsets of M properly con-
taining {0}, respectively. For Se€®&, we set S~ ={0} U {xeM; RxNS+#0}.
And we set 0"=0. Then, to be easily seen, S T(S, 7€) implies S =T,
S&S =S5". And, ANS=0 (AeM) implies ANS =0. Therefore, S =
S7(S,€©) is nothing but to say that XN S+#0 (XeM) implies XN S,#0. Se&
is said to be dense in Te®, if SCTCS-. If Sis dense in 7 then S =T~
obviously, so that if S and 7" are dense in 7" and U respectively, then so is
S in U, where Ue®. And, to be easily seen, AW is dense in BeIM if and
only [if ACB and XNA#0 for all XeI with XCB. “submodule” and
“homomorphism” without modifier mean always “R-submodule” and “R-homo-
morphism” respectively. ,. |

Proposition 1.1. Let {A;; 2€4} and {B,; 2€4} be subsets of W. If
Ay =By for all 2, then 3 A,= 3 ® A, (direct sum) if and only if 3 B,= 3 ®B,.

Proof It suffices to prove that if A;=B; (i=1,---,n) and A,+---+ A,

—A,@ @A, then B+ ---+B, =B ®:--®B,. In fact, AANA+---+A4,)=0
and A;=B; yield B,N(A,+ - +A) 0, which means A,+--:+A,+B/=
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AP - PA,®B,. Similarly we obtain A;+---+A,+B,+B,=A,®---PA,P
B,®B,, and eventually B,+ -+ B,=B,®---®B,,.

Corollary. Let {A,; 2€4} and {B;; 264} be subsets of W such that

A,CB, and Y B,= ®B,. Then } A, is dense in } B, if and only if each
A, is dense in B,.

- Proof. If >]A,is dense in };B,, then 0=XN ZA =XNA, forall XeiIR
with XS B;. Hence, each A, is dense in B,. Conversely, if A =B; for all
4, then XN X2 A,=0 (XeM) implies XN >;B,=0, by Prop. 1.1. Hence, XA,
is dense in ) B;.

VeI is called uniform if every pair of non-zero submodules of V has
a non-zero intersection (Goldie [3]).

Proposition 1.2. Let V and W be uniform submodules of M. If
VN W=+£0, then V- =W".

Proof. As V is uniform, XN(VN W)#0 for all XeI with XCTV, so
that VN W is dense in V, and symmetrically in W. Hence, we obtain V=
(VNWwW)y =w-.

The proof of the next proposition may be left to readers.

Proposition 1.3. Let {A,; A€A} be a subset of M such that >, A,=
2 DA, and let A be a submodule of M such that AN Y A,+#0. If {A;;i
=1,---,n} is a minimal (finite) subset of {A,} such that AN Y A,#0, then
AN 20A,, is isomorphically mapped into each A,, by the projection to A,,.
In particular, if A is uniform, then {A,} is uniquely determined by A.

Proposition 1.4. Let A;, B;(i=1,2) bein M. If A< A; and Br<B;,
then (A,NB) < (A.NB,)".

Proof. If XN(A,NB)#0 (XeMWM), then (XNA)NB,#0 by Bf € B;,
whence XN(A,NB,)=(XNB,)NA,#0 by A;CA-.

Corollary. Let A, BeIR. If A-=B",then A~ =(ANB)"=B". In par-
ticular, if A and B are dense submodules of M (i.e. dense in M), then so
is ANB. _

Proposition 1.5. Let M' be an R-left module, and ¢ an (R-) homo-
morphism of M’ into M. If S =T~ (S, T€®), then (Sp™ ') <(Tp™*)", where
So'={ueM'; upeS}. In particular, if S is dense in M, then S¢~* is dence
in M'. (Johnson [5])

Proof. If X'NTe'=0 for some non-zero submodule X’ of M’, then
X'NSep ) NKero &X' NSe'NTe *=0. Hence, if X'NSp*'#0, then
X'oNS+#0. However, as ST, X'¢NS#0 implies a contradiction
X'oNT+0.
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If a dense submodule of M is isomorphic to a dense submodule of an
R-left module M’, M is said to be similar to M’, and denoted by M~M’.
The similarity is an equivalence relation by Cor. to prop. 1.4. A subset
{A;; 2e4} of M is called homogeneous if A,~A, for all 2, XeA.

Proposition 1.6. Let {A,} be a mazximal independent homogeneous set
of uniform submodules of M, and let AcIN. In order that AN Y A,#0, it
is necessary and sufficient that A contains a uniform submodule U such that
U~A,.

Proof. Since every non-zero submodule of A, is dense in A,, the neces-
sity is a direct consequence of Prop. 1.3. And, the sufficiency follows from
the maximality of {A4,}.

Let A be a submodule of M. A complement A° of A (in M) is a maximal
submodule of M such that AN A°=0. And, a double complement A~ of A
is a complement of a complement of A such that A*2A. If ANB=0
(BeIN), by Zorn’s lemma we can take a complement A° of A such that A°>B.
Evidently, 0°=M and M°=0. If A is a complement of some submodule of
M, A is called a complemented submodule (of M). To be easily seen, every
direct summand is a complemented submodule. The many-to-many corre-
spondence A—>A is called the d.c-correspondence, more precisely, the R-d.c-
correspondence in M.

Proposition 1.7. Let A be a submodule of M.

(1) A submodule X of M is a double complement of A if and only if
X is a maximal submodule such that ACXZA~. Accordingly, if C, D are
arbitrary complement and double complement of A respectively, then C, D
are complements of D, C respectively. S

(ii) A is complemented if and only if A is a double complement of
itself, that is, there exists no submodule X of M such that AZXCSA-.
Accordingly, if A is complemented, A is unique and coincides with A.

- Proof. Evidently 0°=0"=0. If A+#0 is not dense in A®, then
ADYSA> for some YeIM, and whence it follows (AD YDA =AP (YDA,
where A®=(A°°. This contradiction shows that A is dense in A*. And
further, if A=W (WedR) then WN A°£0, and so WZA~. Conversely, let
X be a maximal submodule such that ACXCA-. Then A" NA°=0 implies
XNA°=0. We can take a double complement A* such that A~*>X. Then,
as A*C A", A°=X. Thus we have obtained the former assertion. Next, let
A=DB(BeM). We take a complement A° of A such that A°> B, and further
we take a complement (A°)0of A° such that (A°°2A. Then A=(A°), because
A°>B and A=PB.
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Proposition 1.8. If {V.; 2€4} and {W,; 7el'} are maximal inde-
pendent homogeneous sets of uniform submodules- of M such that V,~W,,
then $A=4%TI", where A denotes the cardinal number of A.

Proof. - We shall distinguish between two cases.

Case 1. #$4<oo or $I'<oco. Without loss of generality, we may assume
#r<zA. We set {W,;rel'}={W, -, W,}. Let Vi=20:2,V, for an ar-
bitrary 4€4. If W=V N W;#0 for all i, then W}, =W, by Prop 1.2.
Since V, N 2.® W;=0, Prop. 1.1 yields V, N 2@ W,=0, which contradicts
the maximality of {W,; i=1,---,s}. Hence, for some W,, say W,, there holds
ViNW,=0. We set here V]'= Vi®W,. Then,V/NV,#0 by the maxi-
mahty of {V.},and {V,; 24} U {W} is a maximal 1ndependent homogeneous
set of uniform submodules of M. In fact, if {V,; A=A} U{W.} U{U} is an
independent homogeneous set of uniform submodules then, as (VN V)" =V
by Prop. 1.2, (V/NV,)+ V/+U=(V/NV,)@V;®U yields V, + V] +U=
V., @V, @U=(Z®V)®U, which contradicts the maximality of {V,}. Re-
peating the above argument, we obtain eventually $4=%I" (=s).

Case 2. #Ad=o0 and $I'=oco. By the maximality of {W,} and Prop.

1.3, for each Ve{V,} there corresponds the unique minimal (finite) subset
(W, -, W,,} of {W,} such that VNXW,#0. We shall prove that
Up{W,, -, W} ={W,}. To this end, let W be an arbitrary member of {W},
and let {V,, .-, V..} be the unique minimal (finite) subset of {V,} such that
WN>IV,#0. And then, let {W,, -, W,,,} be the unique minimal subset of
{W,} such that V;=V,N >;W,;#0. Since each V, is uniform, Vi =V; by
Prop. 1.2. Hence, there holds WN X,,W,;#0, which means We {W,;}. We
have seen therefore that U,{W, -, W,} coincides with {W,}, whence it
follows #I'<#4-8.=%4. And, we have symmetrically $4<%I". Hence
gA=4I"
" The set of all uniform submodules of M can be classified with respect to
the equivalence relation ~. And, P will represent the set of all similar classes.
The existense of maximal independent [homogeneous] set of uniform submodules
is secured by Zorn’s lemma.

Proposition 1.9. (i) If {V,; 1€4} is a maximal independent set of
uniform submodules of M, then for each PeP, {V,; A€} is a maximal
independent homogeneous subset of P, where A,={ied; V,ep}.

(ii) If for each P€ P there corresponds a maximal independent homo-
geneous subset {W,;1el’,} of P, then U {W,;Tel’ ,,} is a maximal indepen-
dent set of uniform submodules.

Proof. (i). For any Uep,UN X V,#0, and further, UN 23, Va0 by
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Prop. 1.3. Hence each {V,;€4,} is a maximal independent subset of .
(ii). Under the same notations as in (i); (2 er, W)™ =(24e4,Vi)™ by Prop. 1.6,
so that 2,(Xer, W)= 5,®(Z er, ® W,) by Prop. 1.1.

Combining Prop 1.8 and Prop 1.9 (i), we obtain the following fundamental
theorem : ’

Theorem 1.10. Let {V;; 2eA}” and {W,; 7€'} be mazximal indepen-
dent sets of uniform [complemented uniform] submodules of M. Then, there
exists a 1-1 mapping f from A onto I' such that V,~W,,, for all i€ A.

This theorem, extends the one on the rank of abelian groups (cf. Fuchs [1])
as well as the one on completely reducible modules, and will be treated again
in §4. For any uniform submodule UeM, we denote the class containing U
by U ’ ‘

Theorem 1.11. Let U,{V,; i€A,} be any maximal independent set
of uniform submodules, where V,€P (€A,), and let P, be any non- empty
subset of P.

(1) (Zieap, Vi) (Ap,= U sep,A,) depends on P, only (and is independent of
the choice of {V}).

(ii) (23 seap, Vi)' depends on P, only (and is independent of the choice
of {V.,} and complements)

Proof. {V,; 2€4p} is a maximal independent subset of U . I;DP. For
XeM, XN 2 'V,#0 if and only if X contains a uniform submodule U such
that UeP,, where Y'V,= N iedp, V. (cf. the proof of Prop. 1.6). And, this is
nothing but to say that (3}’V,)” is independent of the choice of {V;} and is
uniquely determined by P,. To prove (ii), we set C,=(3l'V,), and take a
complement C, of a sum of another maximal independent subset of U vep O
If C;+C;, say C,;, ZC;, then there is some YeI such that YCC, and YﬂC
=0. Then, since YOC,2C,, (Y®C,)N3'V,#0. Therefore, by Prop. 1.3,
there is a uniform submodule U such that US(Y®C,)N X' V; and UeP,. By
the projection, U Y®C,) is isomorphic to a submodule U’ of Y. As UeP,
and U=U'CSYCC,, we have U’'€P, and U'CC,. But this contradicts that C,
is a complement of a sum of a maximal independent subset of U ,p 0.

By the validity of Th. 1.10, we can define dim M and @-dim M as #A4
and %4, repectively, where {V,; €4} is an arbitrary maximal independent set
of uniform submodules of M and A,= {icA; V,ep}. Evidently, we have dim
M= 3 .0-dim M. For any AceIN, the set P(A) of the similar classes of uniform
submodules of A may be regarded as a subset of P. And, for any PcP, we

1) For each V;, we take a double complement V$° of V;. Then, by Prop. 1.1. and Prop.
1.7, {V5°; A€ 4} is also a (maximal) independent set of uniform submodules.
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define P(A)={Xepr; XTA}.

Proposition 1.12. If {A,;a€4} is an independent subset of M, then
dim Y,A,=Y, dim A; and f-dim },A,;= 21,°-dim A, for all peP.

Proof. Let P be in P. For each A,, choose an arbitrary maximal inde-
pendent subset {V,;rel';}} of °(A)), and let B, be a complement of V,=
Yer,Vi in A;.  Then, each B,®V, being.dense in A4,, 2:(B:®V,) in dense
in JJA; by Cor. to Prop. 1.1. If U is in (A, then UN(X.,(B:®V,)+0.
so that UN Y] V;%#0 by Prop. 1.3, because each B, does not contain a sub-
module belonging to . This proves evidently that U;{V,,: 7€l';} is a maximal
independent subset of 2(3A,. Hence, o-dim 3,A,= 31,0-dim A;. And then,
as dim A= Y,0-dim A for any A€M, we obtain dim 3},A,= 3], dim A;.

Let A be a submobule of M, and A° an arbitrary complement of A.
Evidently, A and A° may be regarded naturally as submodules of M/A° and
M]JA respectively. Now, in this meaning, we have the following:

Proposition 1.13. Let A be a submodule and A° an arbitrary com-
plement of A. If A is non-zero then A is dense in M|A”, and if A° (#0)
is dense MJA then A is complemented. Consequently, if B, C€ M have a
common complement E then B~M|E~C.

Proof. If A is non-zero, ANX=#0 for each XeI with X=2 A°, and
hence (A@A%)A°NX/A°=(ANX)PA°)A*#0. This implies that (A=)
(A@DAY)/A° is dense in MJA°. Next, if A°is dense in M/A, then (A°®@A)/AN
A°JA=((A°NA*)PA)A=0 yields A*=A.

As any double complement of A€ is a complement of any complement
of A (Prop. 1.7), by Prop. 1.13, complements of A are similar to each other.
Thus dim A° and o-dim A° are uniquely determined by A, and we denote them
by codim A and P-codim A, respectively. Then, codim A = }],f-codim A is
evident, and, as A@A° is dense in M, dim A +codim A=dim M and f-dim A
+ P-codim A =p-dim M by Prop. 1.12.

Proposition 1.14. Let VeIN be uniform, and let W be a submodule
containing V. Then W is uniform if and only if V is dense in W.

- Proof. If Vis dense in W, then every non-zero submodule of W has a
non-zero intersection with V, and hence W must be uniform. The “only if”
part is evident.

Combining Prop. 1.14 with Prop. 1.7, we readily obtain

Corollary. A complemented uniform submodule is a maximal umform
submodule (i.e. maximal as a uniform submodule), and conversely.
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§ 2. Complemented submodules. We shall begin this section with the
following theorem (cf. [7], [8]).

Theorem 2.1. Let N be a dense submodule of M. If C is a com-
plemented submodule of M, then CNN is a complemented submodule of N
and C is a double complement of CNN in M. And if Z is a complemented
submodule of N then Z°°N\ N=Z for every double complement Z°* of Z in M.

Proof. Let CNN+#0 be dense in XeI with XCN. If XZC then
(X+C)NC°+#0, and so 0NN(X+C)NC*=XNC°. Since CNN is dense in
X, we have a contradiction (CNN)N(XNC?9#0. Hence X<C, that is, X=
CNN. This implies that CN N is complemented in N (Prop. 1.7). Next, let
Z be a non-zero complemented submodule of N. Then, as Z*2DZ*NN>2Z,Z
is dense in Z*°N N, and hence Z*NN=Z by Prop. 1.7.

Let AS=B be submodules of M. If B/A is dense in M/A, then so is B
in M. Because, if B°#0 then (A®B°)/A+0 and B/AN(A®B)/A =
(A®(BN B°))/A=0, a contradiction. Next, if C is a complemented submodule
of M containing A then C/A is a complemented submodule of M/A. For, if
C/A is non-zero and dense in X/A for Xe9N containing C then the same
argument as above yields that C is dense in X, and so C=X by Prop. 1.7.
These prove the half of the following: '

Thorem 2.2. Let C be a proper complemented submodule of M. Then,
the set of all complemented submodules of M|C coincides with the set {C'|C; C"
ranges over the complemented submodules of M containing C}, and the set
of all dense submodules of M|C coincides with the set {D|C; D ranges over
the dense submodules of M containing C}.

Proof. Let D be a dense submodule of M such that D=2C, and let X
be any submodule of M properly containing C. Then, C being complemented,
XDOCA®Y for some YeIn by Prop. 1.7. As D is dense in M, DN Y+#0 and
so DICNX/CDD/ICN(ICRY)/C=(CP(DNY))/C+#0, which implies that D/C
is dense in M/C. Next, let B/C is complemented in M/C for Be I with
B=2C. Then, since B is dense in B* and C is complemented in B, the
preceding implies that B/C is dense in B*/C. On the other hand, B/C being
complemented in M/C, B/C= B>*/C, that is, B= B*.

Theorem 2.3. If A2B are submodules of M then for any A° there
exists such a double complement B that A*2B.

Proof. Let M be the injective envelope of M?, and A’ a double comple-

A

ment of A* in M, which is evidently a double complement of A in M, and

2) The R-injective envelope Mof Misa (unital) injective R-module which contains M
as a dense R-submodule.
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MNA'=A>” by Th. 2.1. A’ is then an (injective) direct summand of M (see
Proof. 4.2). If B’ is a double complement of B in A’ then, A’ being injective,
B’ is a direct summand of A’, and. therefore of M. Since M is dense in M,
by Th. 2.1, MN B’ is a complemented submodule of M. Noting here that B
is dense in M N B, by Prop. 1.7 we see that M N B’ is a double complement
of B (in M) requested.

Corollary 1. If for any submodule X of M its double complement is
uniquely determined, then the d.c-correspondence is a closure operation.

Corollary 2. For VeR, the following conditions are equivalent:
(i) V is a minimal complemented (i.e. minimal as a complemented sub-

module #0) submodule. (ii) V is a maximal uniform submodule. (iii) V is
a complemented uniform submodule.

Proof. By Cor. to Prop. 1.14, a maximal uniform submodule is nothing
but a complemented uniform submodule. And, a complemented uniform sub-
module is evidently a minimal complemented submodule. Conversely, let V be
a minimal complemented submodule, and let V2 A (AeI). Since a double
complement A of A in M is contained in V by Th. 2,3, the minimality of
V yields V=A", and hence every non-zero submodule of V is dense in V.
And this is nothing but to say that V is uniform.

A submodule A of M is said to be meet irreducible (in M) if A can not
be represented, as an intersection of two submodules of properly containing A.
Evidently, for a proper submodule A of M, M/A is uniform if and only if A
is meet irreducible, ih particular, M is uniform if and only if {0} is meet
irreducible in M.

Proposition 2.4. If a submodule B is properiy contained in a non-dense
submodule A of M, then B is meet reducible (i.e. not meet irreducible).
Consequently, a non-dense meet irreducible submodule is a minimal meet
irreducible submodule. »

Proof. In fact, B=AN(B®PA°) and B A°=B.

Proposition 2.5. Let A be a proper submodule of M. Then the fol-
lowing conditions are equivalent:

(i) A is a maximal complemented submodule.
(ii) A is a complemented submodule, and A° is uniform:.
(iii) A is a non-dense meet irreducible submodule.

Proof. (i1)=(ii). If A° is not uniform, then there are non-zero B, C such
that A°2B®C. Let B° be a complement of B with B°2A®C. Then
MZ2B°=2A, and this contradicts the maximality of A. (ii)=>(iii). Since a
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uniform module A° may be regarded as a dense submodule of M/A, M/A is
uniform by Prop. 1.14. (iii))=(i). Since A=A"N(APA") and ASZADA",
we have A=A. Assume that there exists a complemented submodule B such
that ASBSM. Then, since A@XCB for some XeIR and B°#0, we have
a contradiction (A@X)NADPB)(=A+(ADX)NB))=A. Hence, A is a
maximal complemented submodule.

Theorem 2.6. (i) Let C2C, be submodules of M. If C and C, are
complemented in M and C repectively, then so is C, in M.

(i) If CZ2C, are complemented submodules, then for each complement
Cs of C, there exists a complement C° of C such that C°<=C;3.

Proof. (i) is an immediate consequence of Th. 2.3 and Prop. 1.7. Now,
let X be a complement of CNC; (£0) in C;. As CNX<SCNC; and
(CNC)Y)NX=0, CNX=0. Since (CNC)PX is dense in C;, C,D(CNC)DX)
is dense in M (Cor. to Prop. 1.1), and therefore C® X is dense in M. If we
take a complement C° with C°2X, X is dense in C°. Hence, as X is com-
plemented in M by (i), we have C°=X(<=C%). And, as C-=2C;, C°=C5 (Prop.
1.7 (1)). \
M is said to be locally uniform if every non-zero submodule of M con-
tains a uniform submodule. And M is said to be finite-dimensional if every
independent subset of 9 is finite (Goldie [2]). In the rest of this section, by
making use of complemented submodules, we shall characterize these two types
of modules.

Theorem 2.7. The following conditions are equivalent to one another:

(i) M is locally uniform.

(ii) Every non-zero complemented submodule contains a minimal com-
plemented submodule. '

(iii) FEvery proper complemented submodule is contained in a maximal
complemented submodule.

Proof. (i)=ii) will be easily seen by Th. 2.3 and its corollary
(ii)=>(iii). Let C be a proper complemented submodule. By assumption, C°#0
contains a minimal complemenied submodule V. If we take a complement V°
containing C then, by Prop. 2.5, V° is a maximal complemented submodule.
(iii)=>(i). For any A€, A° is contained in a maximal complemented sub-
module C. By Th. 2.6, A contains a complement C° of C, and ANC°#0,
for A is dense in A*. Since C is a maximal complemented submodule, C° is
uniform by Prop. 2.5. Hence A contains a uniform submodule ANCe.
The part (i) &= (iii) of the following theorem was given in [2; Lemma

(1.1)].
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Theorem 2.8. The following conditions are equivalent to one another:

(1) M is finite-dimensional.

(i1) The descending chain condition holds for complemented submodules
of M. '

(iii) The ascending chain condition holds for complemented submodules
of M.

Proof. If C&=C' are complemented submodules then C® X C’ for some
XeIMM. From this fact, (i)=>(ii) and (i)=(iii) will be easily seen. Next, if
C.=2C,22C,=2--- is an infinite descending chain of complemented submodules
then for any C{ we can choose a complement C¢,, of C,., with C:=Cs,,.
Then, as C; 2C;,,, we see C:&C:,,. Accordingly, we can find an infinite
(strictly) ascending chain of complemented submodules, which proves (iii)= (ii).
To prove (ii)= (i), we assume that there exists an infiinite independent set
{X:;7=1,2,---} M, and set ¥,,=X,PX,..P---. Then, by Th. 2.3, for any
double complement Y;° of Y, we can find a double complement Y,’¢, with
Yee2Yge,. Evidently, there holds Y (=Y,)=2Y,,,, so that Yr=2Y,z,.
Hence there exists an infinite descending chain of complemented submodules:
Yre2Y2Y7=---. This proves (ii)= (i), completing the proof.

By Theorems 2.7 and 2.8, we readily obtain

Corollary. M is finite-dimensional if and only if M is locally uniform
and dim M< co.

Let {N,; 2€4} be a non-empty set of submodules of M. The meet NN,
is said to be irredundant if N ;. IN;=2 NN, for every A,€4. And the meet
NV, is said to be s-irredundant if (N 2, N:)"22(NN,)~ for every A,€4. Evi-
dently, an s-irredundant meet is irredundant. If NV, is irredundant [s-irredundant]
then, for any non-empty subset A, of A, N4, V; is also irredundant [s-irredun-
dant]. To see these, assume first NV, be irredundant. If N s NV:= N ien,— 0 IVa
for some A,€4,, then N N,= N ;4 NV;, a contradiction. Next, assume NN,(# M)
be s-irredundant and C a complement of NN,. Then, (N;+ N,)NC+#0 for
arbitrary 4,, so that for A=(N;e1-4,N,)NC we have AN(N;4,NVN:)=0 and
AN(Nety- g N)#O (4€4,). If NN, is a complemented submodule and irredun-
dant then it is s-irredundant by Prop. 1.7.

Assume now that M is locally uniform, and let {V,: 2€ 4} be a maximal
independent set of uniform submodules of M. For each V,, choose a com-
plement V; containing 2,., V;. Then there holds N V;y=0. If not, non-zero
N Vi contains a uniform submodule, and so by the maximality of {V.},
(NVIIN(XV)#0. Hence VN---NV; NV, DDV, )# 0 for some finite
subset {V,}. On the oiher hand, by the modular law, we can show



On Quasi-Injective Modules 169

vin--n Vin(V,®---® V,,)=0. This contradiction proves N Vy=0. Since
Nz, V2V, for all 4,,N Vy=0 is irredundant, and eace V¢ (# M) is a maximal
complemented submodule by Prop. 1.13, Prop. 1.14 and Prop. 2.5. Next, let
N.enC, =0 be an irredundant meet of maximal complemented submodules.
Then, as C, N(N,,C,)=0 for all v,, each N,,C, is uniform by Prop. 2.5,
and evidently {N,.,C,; v,€ N} is independent. The first assertion of the
following theorem is thus an easy consequence of Th. 2.2.

Theorem 2.9. (i) FEvery proper complemented submodule C of M with
locally uniform MJ|C can be represented as an s-irredundant meet of maximal
complemented submodules, and codim C (=dim M/C) coincides with the
maximum of the number of maximal complemented submodules appearmg
in an s-irredundant representation of C.

i) If A=C,N---NC, is an s-irredundant finite meet of maximal com-
plemented submodules then A is complemented, M|A is finite- dzmenszonal
and n coincides with codim A (=dim M/A).

Proof. If is only left to prove (ii). As (N,.,C;)"2A~ by assumption,
we have V, =(N;.,C)NA°#0 for all 4,. And then, as V,NC,=0, each V,
is uniform by Prop. 2.5, and X V,=>®V,= A°. Hence, n< dim A°=
codim A. Each M/C,; is uniform by Prop. 2.5, and the direct sum M*=
2 D®M/C, is locally uniform by Prop. 1.3, so that M* is finite-dimensional by
Cor. to Th. 2.8. Since MJA is a subdirect sum of M/CSs and (C, +
N C)/C.PD - D(C,+ N2,C;)/C, is dense in M* by Cor. to Prop. 1.1, M/A
is dense in M?*, whence it follows dim M/A=dim M*=xn and that M/A is
finite-dimensional. Now, A° being embedded in M/A, dim M/A=n<dim A°
yields the equality between them and the density of A° in M/A, which means
that A is complemented (Prop. 1.13).

- Corollary. M is finite-dimensional if and only if M has a finite set
of maximal complemented submodules which has zero intersection. If it is
the case, a complemented submodule is nothing but an s-irredundant (finite)
meet of maximal complemented submodules. (Cf. [2; Lemma (3.7)].)

Proof. Let M be finite-dimensional. If C is a proper complemented sub-
module, C° being dense in M/C, M/C is finite-dimensional (so that locally
uniform). C is therefore an s-irredundant finite meet of maximal complemented
submodules by Th. 2.9 (i). The first assertion and the converse of the second
one are evident by Th. 2.9.

A finite chain of submodules of M: 0=C,&ZC, % --&C,=M is called a
c-composition series of M if each C,; is a maximal complemented submodule of
Cit.. If 0=C&=C&-&C,=M is a c-composition series of M, then each C,;
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is complemented in M by Th. 2.6 and C,/C,., is uniform by Prop 2.5. If
V, is a complement of C; , in C;, V, is uniform by Prop. 2.5 and dense in
C,/C;_,. Since each C,_,®V, is dense in C;, so is V.@---@PV,, in M (cf. Cor.
to Prop. 1.1). Hence, M is finite dimensional and n=dim M. Conversely, if
M is finite-dimensional then Th. 2.8 secures the existence of a c-compoistion
series. Combining the above with Th. 1.10, we readily obtain the following:

Proposition 2.10. M is finite-dimensional if and only if M has a c-
composition series. If it is the case, the length of any c-composition series
of M is equal to dim M and for any two c-composition series O0=C,=Ci'S=
- ZC,=M and 0=C{=C%=---S C,=M there exists a 1-1 mapping f of
{C,/C;_1;i=1,2,---,n} onto {C;/C;_,; i=1,2,---,n} such that C,/C,_,~f(C;/C;-1)
Sfor all 1.

§ 3. Throughout this section we assume that the d.c-correspondence is i
closure operation, or what is the same, X°(XeMN) is uniquely determined by
X (Cor. 1. to Th. 2. 3).

Proposition 3.1. If the d.c-correspondence is a closure operation, then
there hold the following:

(i) A finite or infinite meet of complemented submodules is comple-
mented.

(ii) For any A,BeM, ANDB* is the unique double complement of
ANB in A.

(ziz) For A, BeI, A~ =B~ if and only if A B*. Consequently, A~
=B~ if and only if A”=DB>. ‘

Proof. (i). Let C,(A€4) be complemented submodules. Then, as N C,<C,,
for all 4, (NC)*SC, for all i, by Prop. 1.7, and hence (NC)*< NC,;, that
is, (NC)**=NC,. (ii). Let 0%=(ANDB) be a double complement of ANB in
A, then (ANB/S(ANB)°< B>, and so (ANB/SANB*. Since B is dense
in B, sois ANB in ANB* by Prop. 1.4. Hence (ANB)/=ANB*. iii).
By Prop. 1.4, if A-CB~ then A" =(ANB)". Hence A*=(ANB)*<S B>
Conversely, if A*S B then A-=(A*)"&(B*)"=B".

Under the same notations as in Th. 1.11, we obtain the following.

Theorem 3.2. If the d.ccorrespondence is a closure operation, then
there hold the following: :

(1) (Zieap, Vi)™ depends on P, only (and is independent of the choice of
{Vi}). We set then C(P)=(Lie1p, Vi)

(ii) (Xieap Vo)° depends on P, only (and is independent of the choice of
{V.} and comp%ement ). ‘ .
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(i) C(F,) and C(P)° are the unique complements of each other. C(P)
is zero or the unique maximal locally uniform submodule, and C(P) is the
unique maximal submodule containing no uniform submodules, and is the
meet of all maximal complemented submodules. '

Proof. (i) and (ii) are immediate consequences of Th. 1.11 and Prop.
3.1 (iii). (iii). By (i) and (ii), C(P,)° is evidently the unique .complement of.
C(F,). Let C be a complement of C(P,)>.. Then C~C(P,) by Prop. 1.13. If
CZC(P,), then XC and XNC(P,)=0 for some XeIM. As C~C(P,)~
2iiap, Vis We may, assume that X(S=C) is isomorphically mapped in e, p, Vi
Then, by Prop. 1.3, X contains a uniform submodule U such that TeP,. As
XNC(P)=0, UN ZMPOV =0. But this contradicts that {V,; A€4p} is a
maximal independent subset of U,p0. Hence C-SC(P,)", and so, by Prop.
3.1Gii), C=C < C(P)*=C(P,). Since C is a complement of C(P,)° and
C(P) NC(P)°=0, we have C=C(P,). Hence C(P,) is the unique complement
of C(F,)°. .Evidently C(P)° does not contain a uniform submodule, and C(P)
is locally uniform, because locally uniform 3]V, is dense in (3] V,)*<=C(P).
If A is a locally uniform submodule, then ANC(P)°*=0, and so ASC(P)”"=
C(P). If Bis a submodue containing no uniform submodules, then BN C(P)=0,
and so B&C(P)y. Next, if C, is a maximal complemented submodule, then
C; is uniform, and C7 is contained in the unique maximal locally uniform
submodule C(P). Hence, by Th. 2.6, the unique complement C(P)° of C(P)
is contained in C,. By Prop. 2.5, the meet of all maximal complemented
submodules does not contain a uniform submodule, and hence it is contained
in C(P)°. Hence we conclude that C(P)* coincides with the meet of all maximal
complemented submodules. '

Theorem 3.3. If the d.c-correspondence is a closure operatzon, then the
Jollowing conditions are equivalent to one another:

(1) M is locally uniform.

(11) The meet of all maximal complemented submodules is zero.

(iii)) M is an irredundant subdirect sum of uniform modules.

Proof. Since M|C(P)(~C(P)) is locally uniform, C(P)° is an irredundant
meet of maximal complemented submodules by Th. 2.9. Since C(P) is the
meet of all maximal complemented submodules and the unique maximal sub-
module containing no uniform submodules, our equivalences will be obvious.

Theorem 3.4. If the d.c-correspondence is a closure operation then, for
A, BeIM, there hold dim A +dim B=dim (A N B)+dim (A + B) and 0-dim A +
f-dim B=p-dim (A N B) + P-dim (A + B)(P€P).

Proof. Since B and A* N B*=(A* ) B*)* are complemented in A+ B
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and A respectively, we have 0-dim (A + B*)=0-dim (A*° + B*)/B*® + 0-dim B
and O-dim A = o-dim A°°/(A° N B*) + 0-dim(A~°N B*) (Prop. 1.12 and Prop.
1.13). Now, (A°*+ B*)/B* is isomorphic to A*/(A*°NB*), and so O-dim (A
+ B*°) | B =p-dim A*/(A°°NB*). Hence P-dim (A N B*)+ P-dim (A*+ B*) =
o-dim A®+pP-dim B*. By Prop. 1.4, ANB is dense in A“°NB*”, and so
p-dim (AN B)=p-dim (AN B*). Since A and B are dense in A* and B*
respectively, 0-dim A =pP-dim A° and o-dim B=p-dim B®. Hence, as P-dim (A +
B)< 0-dim (A°°+ B*?), we have 0-dim (A N B)+ P-dim (A + B)<P-dimA + p-dim B.
Next, we take a maximal independent set {U,} of (AN B)= {XepP; XS ANBDB},
which can be extended to maximal independent sets {U,} U {4,}, {U.} U {B.}
of #(A) and ©(B), respectively. Then {U,} U {A,} U{B,} is an independent
set of P(A+ B). Because, if (32 A,+ X U)N 2 B,#0, then by Prop. 1.3, this
contains a member of #(ANB), and hence 02X U,N(ZA,+2U)N 2 B,)=
>U,N X.B,, a contradiction. Thus we have f0-dim (A N B)+ 0-dim(A + B)> -
dim A +pP-dim B. Hence @f-dim (AN B)+ 0-dim (A + B)=pP-dim A + #-dimB for
every P€P, and dim (AN B)+dim (A + B)=dim A +dim B.

The d.c-closure operation (in M) is called continuous if for each endomor-
phism ¢ of M the inverse image Cp~' of any complemented submodule C of
M is complemented in M.

Proposition 3.5. If the d.c-correspondence is a closure operation, then
the following conditions are equivalent:

(i) The d.c-closure operation is continuous.

(ii) X< (Xop)° for any XeM and any endomorphism ¢ of M.

(ili) For any endomorphism ¢ of M, Ker ¢ is a complemented submodule
of M.

Proof. (i)=>(1i). As XS (Xe)”, X< (Xp)“p™'. Since (X¢p)¢™* is com-
plemented, X< (Xgp)“¢™ and so X< (Xp)°. ()= (ii]). (Ker ¢)*p &
(Kea ¢)p)*=0°=0, and hence Ker ¢p=(Ker ¢), as desired. (iii)=>(i). We
may assume ¢#0. If C is a complemented submodule of M, then CN My is
complemented in Mg, by Prop. 3.1 (ii). Now, M/Ker p=My¢p, and Ker ¢ is
complemented in M by assumption. Since Cp~'=(CNMp)p~*, Cp~'/Ker ¢ is
complemented in M/Ker ¢. Hence Cyp™* is complemented in M, by Th. 2.2.

Let K be the (R-) endomorphism ring of M acting on the right. If the
d.c-closure operation is continuous then, by Prop. 3.5.(ii), the (R-) double
complement of any R-K-submodule is also an R-K-submodule. We set H(P)=
2wV, and H(P)= X, H(P). Each H(0) is called an (R-) homogeneous com-
ponent of M. H(P)ZC(F) by Th. 3.2 (i), and evidently H(F,) is dense in

3) For A€M, A~M/Ac by Prop. 1.13.
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C(F,), that is, H(P,)**=C(P,).

Theorem 3.6. If the d.c-correspondence is a continuous closure opera-
tion, then there hold the following:

(1) The contraction of an endomorphism of M to a uniform submodule
is zero or 1-1.

(ii) For any non-empty subset P, of P, H(P,), C(P,) (=H(P,)*) and
C(P,) .are all R-K-submodules of M. .

(iii) For any direct summand CeI of M, the d. c-correspondence in C
is a continuous closure operation.

Proof. (i). Let VeI be uniform, and let ¢ be any endomorphism of
M. If VNKerp+#0, then VEV*=(VNKer p)*<(Ker ¢)*=Ker ¢, and hence
Vo=0. (ii). H(P) is R-K-admissible by (i), so that H(P,)*=C(F,) is. Next,
if C(P) is not K-admissble then C(P)°¢ contains a uniform submodule for
some endomorphism ¢ of M by Th. 3.2 (iii). Then, for some non-zero sub-
module A contained in C(P)°, Ag is uniform, so that (Ap)® is uniform and
A*eT (Agp)”. Since Ker ¢ is a complemented submodule, Ker ¢ N A* is a com-
plemented submodule of M properly contained in A®. Hence there exists some
XeM with (Ker pNA*) @ XS A*. Then, ¢ maps X isomorphically into the
uniform submodule (A¢)”, and hence X is uniform. Accordingly, A being
dense in A, A contains a uniform. submodule ANX. This contradiction
proves that C(P)° is R-K-admissible. We set P,=P—PFP,. Then, since C(P)°
+C(P)+C(F)=C(Pyr@C(P)DPC(F,), C(Py+C(P,) is contained in C(EF), so
that dense in C(F,)°. Hence, as C(P)°+ C(P,) is R-K-admissible, so is (C(P)°
+C(P))y°=C(F,). (ii). By Prop. 3.1 (ii), the d.c-correspondence in C is
a closure operation. Any endomorphism ¢ of C can be extended to an endo-
morphism ¢ of M. Let C, be a complemented submodule of C. As C, is
complemented in M by Th. 2.6 (i), C,¢ ' is complemented in M, and therefore
CNCyp'=Cup " is complemented (in M, and so) in C.

§ 4. Quasi-injective modules. A unital R-left module M is said to be
R-quasi-injective, if every R-homomorphism of any R-submodule into M can
be extended to an R-endomorphism of M (cf. [6]). Throughout this section,
“quasi-injective” implies always “R-quasi-injective”.

Proposition 4. 1. M is (R-) quasi-injective if and only if M-Homg (M, M)
C M, where M is the R-injective envelope of M. (See [6; Theorem 1.1].)

Corollary. Let M be quasi-injective, and let {A;; A€ A} be an independent
set of submodules of M. Then MN Y A,=>(MNA,.
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Proof. Let ¢, be the projection to A,. Then, each ¢, can be extended
to an endomorphism @, of M. Let u=u, +-:-+u, be any .element of
MnN XA, where uw, €A, (:=1,2,---,n). Then, since M is quasi-injective,
u,,=up,, =up, €M by Prop. 4.1. Hence MN ZAZQZ(MO A). As MN A,
221(MnNA, is obvious, we have MN Y A,= X (MNA,.

Porosition 4.2. (i) Let M, (i=1,2) be non-zero R-left modules, and
let ¢ be an R-left homomorphism of M, into M,. If a contraction of ¢ to
a dense R-submodule M,, of M, is 1-1, then so is ¢.

(ii) Let M, (=1, 2) be non-zero R-left modules. Then, M,~ M, (similar)
if and only if M,=M,, where M, means the R- injective envelope of M,.

(iii) Every complemented R-submodule of an injective R-left module I
is an R-direct summand of I.

Proof. (i). Since M,, is dense in M,, Ker ¢ N M,,=0 yields Ker ¢ =0.
(ii). If a dense R-submodule M,, of M, is isomorphic to a dense R-submodule
Mzo of M,, then 2\711—2\7110’:1\7120=Z\7[2. Hence M,=M,. Conversely, assume
M,=M,, then M,~M,=M,~M,. Hence M,~M,. (iii). For any R-sub-
module of 7, its R-injective envelope is embedded isomorphically in I. Hence,
by Prop. 1.7, every R-complemented submodule of I is R-injective, and is an
R-direct summand of 1. |

Theorem 4.3. Let M be quasi-injective, and let C be a complemented
submodule of M. Then C is (R-) quasi-injective, and M=C®DC° for every
complement C° of C.

Proof. C@®C° is dense (in M, and so) in M. Let C* and (C°)? be
double complements of C and C° in M respectively. Then C?@(C°)* is injective
by Prop. 4.2 (iii), and dense in M, and hence M =C*®(C*)*. By Cor. to Prop.
4.1, M=(MNC*YDMN(C)). As MNC?=C and MN(C)*“=C* by Th.
2.1, we have M=C®C°. Next, let A be any submodule of C, and ¢ any
homomorphism of A into C. Then ¢ can be extended to an endomorphism
¢, of C*, because C* is injective. Furthermore, ¢, can be extended to an
endomorphism ¢, of M, and, as C=MnN C%, C¥p,=C%p,=C* and Mp, =M
yield Co, = MNC*=C. The contraction of ¢, to C is an extension of ¢ to an
endomorphism of C.

Proposition 4.4. Let M be quasi-injective.  Then there hold the
Jollowing : ,

(i) Every extension of an isomorphism between dense submodules of M
is always an automorphism of M.

(i) If A~B (A, BEIR) then A%=PBr, ‘ o
Proof. (i). By Prop. 4.2 (i), this is evident. (ii). If A~B, then (A®)¥=
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(B°°)** by some isomorphism ¢, because (A*)* and (B*)% are injective envelopes
of A and B, respectively (Prop. 4.2 (iii)). And, ¢ is given by some endo-
morphism ¢, of M. Since M is quasi-injective, A%p=A"p,=(MN(A*)")p
MM (B*)*=DB* (Th. 2.1), and symmetrically B¢ ' A°, and hence A*¢p,=B.

Now, for quasi-injective modules, Th. 1.10 can be sharpened as follows.

Theorem 4.5. Let M be quasi-injective, and let {V,; 2€A} and {W,;
rel't be maximal independent sets of complemented uniform submodules.
Then there exists a 1-1 mapping f of A onto I' such that V,=Wy,, for all
2€4. Furthermore there exists an automorphism ¢ of M such that V.p= Wy,
Sor all 2e4.

Proof. The first half is a direct consequence of Th. 1.10 and Prop.
4.4 (ii), and then there exists an isomrophism ¢, of >V, onto >} W, such that
V.= Wiy, for all 2. By Th. 1.11, an arbitrary complement C of XV, is
a complement of W, as well. Hence, x+y—x+y¢p, (x€C, ye2 V)) is an
isomorphism ¢, between the dense submodules C® YV, and CH Y W,, and
then ¢, can be extended to an automorphism ¢ of M by Prop. 4.4 (i).

Corollary 1. If M is quasi-injective and finite-dimensional then M 1is
a direct sum of a finite number of quasi-injective uniform submodules, and
such a representation of M is unique up to isomorphism.

Proof. By the validity of Th. 4.5, it suffices to prove that M is a direct
sum of a finite number of uniform submodules. Let {V,;i=1,---,n} be a
maximal independent set of complemented uniform submodules of M. Then
{Vi*;i=1,---,n} is independent, where V¢ is a double complement of V; in
M. Since each V¢ is injective by Prop. 4.2 (iii), so is the sum Y Vg, and
hence Vi is a direct summand of M. On the other hand, M being locally
uniform, we readily see that Y}V is dense in M, whence it follows M= Y] V.
Since M=MNXXV#=X(MNV#¥ and V,=MN V¥ by Cor. to Prop. 4.1
and Th. 2.1, we obtain eventually M= Y}V,, as desired.

Corollary 2. Let M be quasi-injective.

(1) Every isomorphism of a finite-dimensional submodule A of M into
M can be extended to an automorphism of M.

(1) If finite-dimensional submodules A, B of M are similar, then A=
B and A =PB-.

Proof. (i). Let ¢ be an isomorphism of A into M. As A* is quasi-
injective (Th. 4.3) and finite-dimensional, A* is a direct sum of a finite number
of uniform submodules (Cor. 1 to Th. 4.5). Hence, by the proof of Th. 4.5,
we can extend ¢ to an automorphism ¢ of M. (ii). By Th. 4.3 and Prop.
4.4 (i), M=A“DA°=B*@PB° and A*=B*”. We have seen in (i) that the
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isomorphism A°*°=B* can be extended to an automorphism ¢ of M. And,
B*@® B =M= M¢p= AP A°p=B*P A°h, whence it follows B'=A¢p=A".

Theorem 4.6. If R is a left Noetherian ring with 1, and M is quasi-
injective, then M is a direct sum of uniform submodules, and such a repre-
sentation of M is unique up to isomorphism.

Proof. For any non-zero element u of M, Ru is an R-module with the
ascending chain condition for its submodules. Hence, Ru is locally uniform
by Th. 2.7, so that M is locally uniform. Now, let {V,} be a maximal
independent set of complemented uniform submodules of M. Each double
complement V% of V, in M is injective by Prop. 4.2 (iii), and so 2@ V& is
an injective® dense submodule of M. Hence, M= @® V. Recalling here
that MNV#=V, by Th. 2.1, Cor. to Prop. 4.1 yields M=MN Y P V¥=
PMNVE)=3@V,. The final assertion is a consequence of Th. 4.5.

The proof of the following lemma proceeds just like in [1; Th. 22.3].

Lemma 4.7. Let M=A®B. In order that B is R-K-admissible, it is
necessary and sufficient that M=A®PB' implies B=DB'.
Under the same notations as in Th. 1.11, there holds the following:

Theorem 4.8. Let the d.c-correspondence in a quasi-injective module
M be a closure operation. If P, is a non-empty subset of P then M is the
direct sum of R-K-submodules (2le1p, @ V3)* and C(P)=(2e1p,® Vl)"".

Proof. By Th. 4.3, M=(2lw1,,® V,)®C(F,)=C(P,)®C(F,). And, by
Th. 3.2 (iii) and Lemma 4.7, C(FP,)° and C(P,) are R-K-submodules.

Proposition 4.9. Let M' be a unital R'-K'-module, where R’, K' are
rings with 1. And, assume that each R’-homomorphism of any finitely gener-
ated R’-submodule of M' into M’ is induced by an element of K'.

(i) Let u be a non-zero element of M'. If R'u is a uniform R’-
submodule and each a€K' with ua+0 induces an R'-isomorphism of R'u onto
R'ua, then uK' is a minimal K'-submodule of M', and conversely. '

(ii)) Let uK' and vK' (u,veM') be minimal K'-submodules of M'. If
R'u is similar to R'v then uK' is K'-isomorphic to vK'.

Proof. (i). Assume first that «K’ is minimal. If R’z is not uniform,
there exist two non-zero elements awu, bu (a, be R') with RauNR'bu=0.
x+y—x (xeR'au, y€ R'bu) defines evidently an R’-homomorphism ¢ of
R au®R’'bu into M’, which is induced by an element 7 of K’. Since u#K’ is
minimal, «K'=auK’ and uK'=buK’' naturally, and hence auK'=buK’ where

4) Since R is a left Noetherian ring, every left ideal of R is finitely generated. There-
fore, every homorphic image of any left ideal of R is finitely generated.
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au«——bu. Therefore, as O#au=(au)p=au?, (bu)p=>bur>0. This contra-
diction proves the uniformity of R'z. For any a€ K’ with non-zero ua, we
have uaK’=uK’, and hence aua=0 (a€R’) implies au=0. Conversely, assume
that R’ is a uniform R’-submodule and each a€K’ with non-zero ua induces
an R-isomorphism R'#=R’ua. Then, for any @ with non-zero ua, there exists
an element § of K’ such that (va)d=«. Hence, u=uad€uaK’'. This implies
that «K’ is minimal. (ii). Let R'au=R’bv, 0#au——sbv (a, beR’). Then,
there exists an element 7€K’ such that au?=>bv. Accordingly, uK'=auK'=
autK' =bvK'=vK’, and hence «K'=vK'.

§ 5. A unital R-left module M is called an R-c.q.i-module if M is R-quasi-
injective and the R-d.c-correspondence in M is a continuous closure operation.
We set K=Homg(M, M), which acts on the right.

Noting that the kernel of any R-endomorphism of an R-c.q.i-module is an
R-direct summand (Th. 4. 3), the next proposition will be proved as in [7;
3.3 Theorem].

Proposition 5.1. If M is an R-c.q-i-module, then K is a regular ring.
Corollary. Let M be an R-c.q.i-module. If C and C' are R-direct

summands (or equivalently, R-complemented submodules) of M then so is
C+C (cf. [6; 1.4 Theorem)).

Proof. As is well known, C=Mpos and C'=Ms' with some idempotent
elements ¢, 6’€e K. Then, K being a regular ring by Prop. 5.1, Ko+ Ko’ =Ke
with an idempotent element ¢€ K, and so Mo+ Mo = M-Ko+ M-K¢' =
M-(Ke+Ko')=M-Ke=Me. C+C' is therefore an R-direct summand of M.

Theorem 5.2. Let M be an R-c.q.i-module.

(1) Let u be a non-zero element of M. Ru is uniform if and only if
uK is minimal.

(ii) Every K-uniform submodule of M is isomorphic to a minimal (or
equivalently, uniform) right ideal of K.

(iii) Let Ru, Rv (u, ve M) be uniform. Ru~Rv (similar) if and only if
uK=vK (or equivalently, uK~vK).

(iv) The sum H(P) of all R-uniform submodules of M coincides with
the K-socle (i.e. the sum of all minimal K-submodules) of M. The set
{H(0); oeP} of all R-homogeneous components of M coincides with the set
of all K-homogeneous components of (the K-socle of) M, and each H(P) is a
direct sum of R-uniform submodules (as well as of minimal K-submodules).

(v) If Ru (ueM) contains an R-uniform submodule then uK contains
a minimal K-submodule,and conversely. (Cf. [4; pp. 60-64 and pp. 124-126].)
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Proof. (i). Combining Prop. 3.6 (i) and Prop. 4.9 (i), it will be evident.
(ii). Let uK (u€ M) be uniform, and set r(«)= {a€K; ua=0}. Then, (Ru)*"=
Me with an idempotent ¢€K, and Me-r(u)=(Ru)* r(u)=(Ru-r(u))*=0 by
Prop. 3.5, whence it follows. r(u)=7(Me)=(1—¢)K. Hence, we have uK=
K/r(u)=K/(1—e)K=e¢K. Since K is a regular ring, a uniform right ideal of
K is minimal. Hence u#K (=¢K) is minimal. (iii) and (iv). Each R-homo-
geneous component H(0) is R-K-admissible by Th. 3.6 (ii), and is contained in
a K-homogeneous component of M by (i) and Prop.:4.9 (ii). And, by (i), the
sum Y,,H(P) of all R-uniform submodules coincides with the K-socle. Now,
let {V,; 264} be a maximal independent set of complemented R-uniform sub-
modules of M, and let V be arbitrary R-uniform submodule of M. Then,
VNV, ®---®V,,)#0 for some finite subset {V,} of {V.}, and so V& V<=
VAV, @BV, S (V@ @V, )=V, @@V, by Cor. to Prop. 5.1,
whence it follows that >, @OH(@)=>,@®V,. Further, noting that H(p) 2
ZAGAP® V., (4,={2e4; V,ep}), we obtain H(0)= Zze,tp@‘/z- Choose a K-homo-
geneous component N containing H(0). If we set S=Homg (N, N) acting on
the left, then it is well known that N is S-K-minimal (cf. [4]). For any
V:(2€4,), M=V,®V; and the projection = of M onto V; is contained in K,
so that for each a€S and veV, we have av=a(vr)=(av)zc V,. Hence each
V.(a€d,) and so H(P) is an S- submodule of N, which implies H(?)=N.
And, at the same time, we obtain (iii). (v). Let Rau (a€R) be an R-uniform
submodule of Ru, and set (Raw)°=Me with an idempotent e€ K. As Me is
still uniform, Ke¢ is directly indecomposable, whence so is eK. Further, recalling
that K is a regular ring, ¢K is minimal. Since Me= Me-e=(Rau)°c=(Raue)*
yields #e#0, we have then eK=ueKCuK. Conversely, let u6K (0€K) be
a minimal K-submodule of #K. Then Rudé is uniform by (i). Since the
unique maximal R-submodule H (P)° containing no R-uniform submodules is K-
admissible (Th. 3.6 (ii)), R« have to contain an R-uniform submodule.

In particular, Th. 5.2 (iv) and (v) yield at once.

Corollary. M is R-locally uniform if and only if it is K-locally uniform,
and M is a (direct) sum of R-uniform submodules if and only if it is a (direct)
sum of K-uniform (or equivalently, K-minimal) submodules (i.e. M is K-
completely reducible). (Cf. Th. 4.5.)

Combining Prop. 3.6 (iii) and Th. 4.3, we obtain

Theorem 5.3. If M is an R-c.q.i-module, then every complemented
R-submodule of M is an R-direct summand of M and an R-c.q.i-module.
We set Q=Hom, (M, M), which acts on the left. We note here that every
R-direct summand of M is Q-admissible, and so a Q-direct summand of M.
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Now, let Q, be an arbitrary intermediate ring of Q and the ring R, of all the
(additive group) endomorphisms induced by R. For any Q,-submodule A, one
will easily see that a complement A° in the R-module M is a complement A?
in the Q,module M, and conversely. And then, we see also that any double
complement A% in the Q,module M coincides with A uniquely determined.
Noting here that Homgy (M, M)=K and for each a€K there holds A%q=
Aca=(Aa)”=(Aa)*, the d.c-correspondence in the Q,module M is seen to be
a continuous closure operation. If ¢ is a Q,-homomorphism of a Q,-submodule
A into M, then ¢ is given by an element of K, because ¢ is an R-homo-
morphism. Since Hde0 (M, M)=K, this implies that M is Q,-quasi-injective.
We have proved thus

Theorem 5.4. Let M be an R-c.q.i-module. - Then, for any inter-
mediate ring Q, between Q and R,, M is a Q.,c.q.i-module, and for any
Qrsubmodule A, {A°} ={A%} and A<= A™.

Lemma 5.5. Let T be a ring with 1, which has no nilpotent (one-sided)
ideals, and let e be an idempotent element of T such that Te is a (two-sided)
tdeal. Then e belongs to the center of T.

Proof. Since Te is an ideal, Te-T(1—e)=0. As (T(1—e)-Te)=0,
T(1—e)- Te=0 and hence T(1—e)=i(Te)={acT;aTe=0}. As ({(Te)N Te)
=0, [(Te)N Te=0. Hence T(1—e)=[(Te) is an ideal of 7. Let 1=f+g,
where feTe, geT(1—e). Then, as is easily seen, f and ¢ are idempotent
elements belonging to the center of 7. As Te=TYf, we have f=e.

Let M be a unital R-left, K, right module, where K, is a non-zero ring
with 1. Let K} be the opposite ring of K,. We can consider M as a unital
R®;K-left module by means of (a®g)u=auB (acR, feK,, uec M), where J
means the ring of rational integers. If M is an R®K’%c.q.i-module, M is
called an R-K-c.q.i-module.

Let M be an R-c.q.imodule. If B is an R-K-submodule, then B*a <
(Ba)>*& B for every acK, so that B is also an R-K-submodule. If we set
B**=Me with an idempotent ¢ in K, then M- K< Me, and hence ¢K < K,
that is, K¢ is an ideal of K. And, K being a regular ring, ¢ is a central
idempotent of K by the preceding lemma. As M=B‘@B*, B° is also an
R-K-submodule of M, and is the unique complement of B in the R-module M
(Lemma 4. 7). Hence, to be easily seen, the complement B¢ of B in the R-K-
(or RQK3-) module M coincides with the one of B in the R-module M, which
implies also B“=B. Since Homy (M, M) is the center of K, for each 7 of
the center of K, we have B*r=BrC (Br)°=(Br)*. Hence, the R-K- (or
R®K3-) d.c-correspondence in M is a continuous closure operation. Let N be
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a dense R-K-submodule of M and let ¢ be an R-K-homomorphism of N into
M. Extending ¢ as an R-homomorphism to an element 6 of K, we have
N(ad—éda)=0 for all ac K. By the continuity, M(ad—da)=N°*(ad—da) =
(N(ad—da))°=0, whence ad—da=0 for all ae K. Thus we have proved the
following theorem:

Theorem 5.6. If M is an R-c.q.i-module, then M is an R-K-c.q.i-
module, and B°= B¢ (uniquely determined), B = B* for every R-K-submodule
B of M.

Theorem 5.7. Let M be an R-c.q.i-module. If N is any R-K-sub-
module of M then N is an R-c.q.i and R-K-c.q.i-module. (See Prop. 3.1 (ii).)

Proof. The R-quasi-injectivity of N is evident. And, by Prop. 3.1 (ii),
the R-d.c-correspondence in NN is a closure operation. In fact, if A is an R-
submodule of N, then AN N is the unique R-double complement of A in N.
Now, K’'=Homg (N, N) is the contraction of K to N. For any 7€K,
(A*NNIrC A“rN NS (A1) N N= the R-double complement of A7 in N.
Hence, N is an R-c.q.i-module. Moreover, by Th. 5.6, N is an R-K’-c.q.i-
module, or what is the same, NN is an R-K-c.q.i-module. '

The following lemma is well known.

Lemma 5.8. If ry{l)={ucM; lu=0} =0 for every dense left ideal 1 of
R, then the R-d.c-correspondence is a continuous closure operation. In fact,
if A is an R-submodule of M then A“={ueM; luZ A for some dense left
ideal 1}. , o ‘

Proof. Let A be a non-zero R-submodule of M. For any uecA°,
Rs3a—aue A is an R-homomorphism of R into a double complement A of
A. Since A is dense in A, {a€R; aucA} is a dense left ideal of R by
Prop. 1.5. Hence A® is contained in A*={ueM;uC A for some dense left
ideal 1}. If Lu,, Lu, = A for dense left ideals I, and 1, (u,, u.€ M), then LN,
is a dense left ideal and ([, NL)(z; - 2%,)=A. Further for any a€R, (I,:a),=
{beR ; bacl)} is a dense left ideal by Prop. 1.5, and (I, :a),au,&lLu, S A.
Hence, A* is an R-submodule of M. Next, if A°S=A*, A being non-dense
in A*, there exists a non-zero submodule X of A* with AN X=0. Choosing
an arbitrary non-zero element u€ X, there exists a dense left ideal I with luC& A.
On the other hand, as weX, luC X, and hence lu=0, contradicting our as-
sumption. Hence, we have A*=A*. The continuity of R-d.c-correspondence
will be evident by Prop. 3.5 (ii).

As is seen from the above proof, 0*= {ucM; lu=0 for some dense left
ideal I} is an R-K-submodule of M, and is called the R-singular part (or
singular submodule) of M. (And the K-singular part is defined in the similar
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way.) Lemma 5.8 is now restated as follows: If the R-singular part of M
is zero, then the R-d.c-correspondence is a continuous closure operation.

Proposition 5.9. If M is an R-c.q.i-module, then the K-singular part
of M and the left singular part of K (i.e. the singular part of K as a K-
left module) are O.

Proof. Let t be an arbitrary dense right ideal of K. If ur=0 (ucM)
then Rur=0. Setting (Ru)*=Me with an idempotent e€ K, Mer=(Ru)"t <
(Rut)*=0, that is, et=0, whence tNeK=¢e(rNeK)=0. Since t is dense in K,
eK has to be 0, and so we have #«=0. Next, let | be an arbitrary dense left
ideal of K. If r(I)={a€eK;la=0} is non-zero, r(I) contains a non-zero
idempotent 7z, and so IS K (1—<z), which contradicts the density of I.

The next theorem has been stated in [7] without proof.

Theorem 5.10. If M is an R-c.q.i-module, then K is an injective K-
left module in which the K-d.c-correspondence is a continuous closure operation
(or equivalently, K is a maximal left quotient ring with zero left singular
part. (Cf. [8].) 4

Proof. Since the left singular part of K is {0} by Prop. 5.9, the K-
d. c-correspondence in the K-eft module K is a continuous closure operation
by Lemma 5.8. Accordingly, it is left only to prove the injectivity of K. Let
I be a'left ideal, and ¢ a K-homomorphism of [ into K. For given w,e M
and a,€l (=1, ---,7n), choose an element 7€ K with >)Ka,= K7, and set a,=a}T
(;eK), u=Jju,a;. I we set ryp(u)={acK; ua=0} then, by Prop. 3.5 (ii),
rx(te) =7rx(Ru)=rx((Ru)*)=¢K with an idempotent ee K. Hence, if Xju,ax;,=0
then 7€eKNI, and so 7p=(e7)p=c(rp)ceK. And then, Xju;(ap)=u(rp)=0,
which enables us to see that }v,8,—Xv;(8,0) (v;€M, B,€l) defines an R-
homomorphism ¢ of MI into M. Since M is R-quasi-injective, ¢ can be
extended to some §eK. And, we have then fp=p85 for all gel, which proves
that K is injective.

Let A be an R-submodule of an R-c.q.i-module M, and set A® = Me with
an idempotent ¢€ K. Then, 7,(A)=7rx(A%)=(1—¢)K and [,{((1—¢)K)= {ucM;
u(l—e)K=0} =Me=A". In particular, by Th. 5.10, (r(!)) coincides with
the double complement I” of | in K for any left ideal [ of K, where 7(%),
/(%) denote the right annihilator and left annihilator of sk in K. As [(rg(A)=
[(1—e)K)=Ke, A**=M-Il(rx(A)) and, in particular, (M-0)*=M-I(rg(M]))=
M-Il(r(l))=MV". We have proved therefore the following:

Proposition 5.11. Let M be an R-c.q.i-module. If A is an R-sub-
module of M, and | a left ideal of K with the double complement I" in K,
then A”=I[ly(rx(A)=M-L(rz(A)), I"=1L(r()) and (MI)°=MI".
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Let A be an R-submodule of M. For a€K, Aa-rx(Aa)=0, and so
a-rx(Aa) & rx(A). Hence [, (rg(A)) - a-rgx(Aa)=0, that is, I, (rx(4))-a<=
Ly(rx(Aa)). Thus we have the following: .

Corollary. M is an R-c.q.i-module if and only if M is R-quasi-injective
and A*=1(rx(A)) for any R-submodule A. .

Let M be an R-c.q.i-module. Every R-complemented submodule of M is
an R-direct summand of M (Th. 4.3). Every R-K-complemented submodule
of M is an R-K-direct summand of M, by Th. 4.3 and Th. 5.6. Consequently,
by Th. 5.10, every complemented left ideal of K is a left direct summand of
K, and every complemented ideal of K is a two-sided direct summand of K.
For any R-direct summand Me (¢ =¢€K), we correspond a left direct summand
Ke=1(rz(Me)) of K. Then this is an order-isomorphism of the R-direct sum-
mands of M onto the left direct summands of K. From this fact and Th.
2.7, M is R-locally uniform if and only if K is (K-) left locally uniform. And,
Me is uniform if and only if K¢ is uniform (Cor. to Th. 2.3). Therefore, M
contains an R-uniform submodule if and only if K contains a uniform (or
equivalently, minimal) left ideal. To be easily seen, Me is K-admissible if and
only if Ke is an ideal, that is e K& Ke. In this case ¢ is a central idempotent
(Lemma 5.5). Hence M is R-K-locally uniform if and only if K is ideal- (i.e.
K-K-) locally uniform (Th. 2.7). And, Me is R-K-uniform if and only if Ke
is a uniform ideal (Cor. 2 to Th. 2.3). Therefore M contains an R-K-uniform
submodule if and only if K contains a uniform ideal. Let {e,; A€4} be a set
of idempotent elements of K. Then, > Me,= > @ Me, if and only if >, Ke,=
> ®Ke,. To prove this fact, let Me,+ -+ + Me,,=Me,P--- P Me,, where &=
€K, If Ke,N(Ke,+ -+ Ke,) contains 0#a€K, then 0#ua for some ue M.
Then O0#wuacMe, N (Me,+ --- + Me,) a contradiction. Conversely, we assume
that Ke,+ -+ Ke,=Ke,D---PKe,. Let Ke+:---+Ke,=Ke, ?=e¢€ K and
e=¢c +--+¢,, e€Ke;. Then Ke;=Ke,;, e?=¢; and ¢;e;=0, if i#%j. Hence,
as Me,=Me;,, Me,+ -+ + Me,=Me,®---PMe,. From this fact, R-dim M is
equal to the left dimension of K, and R-K-dim M is equal to the ideal-dimension
of K. .

Let W, W’ be two maximal R-K-uniform submodules such that W~ W’
as R-K-submodules. Then, by the R-quasi-injectivity, there exists some 7€ K
such that WrN W’=£0. As Wr&W, WN W'#£0, and so W=(Wn W =W
(Th. 5.6). This shows that M has the unique maximal independent set of
maximal R-K-uniform submodules (Th. 1.10). Let V and V’ be R-uniform sub-
modules such tnat V~V’. Then, by the R-quasi-injectivity, Vo N V’#0 for some
0e K. Hence each R-homogeneous component H(?) is R-K-uniform, and each
(H(p)°=) C(p) is an R-K-homogeneous component of M. Hence the unique
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maximal R-locally uniform submodule C(P)= (> @H(p))*" is R-K-locally uniform.
Hence the unique maxmal R-locally uniform submodule is contained in the
unique maximal R-K-locally uniform submodule. Consequently, by Th. 3.2 (iii)
and Th. 4.8 (and Th. 5.6), M has the following representation: M =
MOM,®OM,. Each M, is R-K-admissible. The first component M, is R-
locally uniform. The second component M, is R-K-locally uniform, but does
not contain an R-uniform submodule. The third component M, contains neither
an R-uniform submodule nor an R-K-uniform submodule. In this meaning,
such a representation of M is unique. Because M, is the unique maximal R-
locally uniform submodule, and M, @M, is the unique maximal R-K-locally
uniform submodule (see Lemma 4.7). Let each 7, (i=1, 2,3) be the projection
to M,. Then each z, is a central idempotent. And, K=Kr,® K. Kz, and,
to be easily seen, Homz(M;, M,)=7,Kr,= Kr;. And further Homg (M7, Mz,,
Mz, ®Mr,)=K(t,+7,)= K7, + Kz, and Hompg(Mz, ® Mzr,, Mz, ®Mz,)=K(r,+
7,)=Kr,+ Kr;,. As M, is R-locally uniform, Kz, is left locally uniform. As
Mz, + Mz, does not contain an R-uniform submodule, Kz, + Kz, does not contain
a uniform left ideal. Hence K7z, is the unique maximal locally uniform left
ideal of K. Similarly we can see that Kz,+ Kz, is the unique maximal locally
uniform ideal of K. Hence Kr, is ,the i-th component of a left injective ring
K with zero (left) singular part. :

Let A be an R-submodule. By the R-quasi-injectivity, Hompg (4, M)=
K/r(A). Since rx(A)=rz(A%) (Prop. 3.5 (ii)), Homg (A, M)=Homj (A, M).
If Bis an R-K-submodule, then B is also an R-K-submodule and (Hom (B, M) =)
Hom (B, B)=Homg (B, B*). Let Mr= B, where :?=7€K. Then Homg(B*,
B*)=tKz, and tKr=Kr is a two-sided direct summand of K. Let Me be
R-uniform, where &#=¢cK. Then K¢ is a uniform left ideal, and further, as
K is a regular ring, Ke is a minimal left ideal. Hence Hompg(Me, Me)=¢Ke is
a division ring.

Theorem 5.12. (i) K is a direct sum of three rings {K,;i=1,2,3}.
The ring K, is left locally uniform. The ring K, is ideal-locally uniform,
but does not contain a uniform left ideal. The ring K, contains neither
a uniform left ideal nor a uniform ideal. Such a representatiin of K is
unique. And, the first component K, is uniquely represented as a complete
direct sum of right® endomorphism rings of vector spaces (over division rings).
The second component K, is uniquely represented as a complete direct sum
of prime rings containing no uniform left ideals.

(ii) The center of K is also an injective ring with zero singular part.

5) The “right” implies “acting on the right”.
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For any idempotent v of K, vKv is also a left injective ring with zero left
singular part.

Proof. The first half was already proved. In fact K,=Kr; (i=1,2,3).
Since Y,®H(P) is R-K-admissible and R-dense in M,, K,=Homg(M,, M,) =
Hompg(XH(®), SH(P)), and further, since each H(0) is R-K-admissibie, K,=
> c@®Homg (H(0), H(P)) (complete direct sum). Each H(P) is a direct sum of
R-uniform submodules which are isomorphic to one another. Let V, be a
complemented uniform submodule belonging to ©. Then Homgz (H(P), H(?)) is
isomorphic to the ring of row-finite (0-dim M)-dimensional matrixes over the
division ring Homz(V,, V,), that is, the right endomorphism ring of a (0-dim M)-
dimensional Hom(V,, V,)left vector space. Let {W,:7€l'} be the maximal
independent set of complemented R-K-uniform submodules of M,. Since
@ W, is R-K-admissible and (R-K-dense in M,, and so) R-dense in M,
Hompg (M, M;) = Homgz(2X W,, 2 W,), and further Homg (M., M,)= 2°D
Hom,(W,, W,). Since each W, is an R-c.q.i.-module (Th. 5.7), Homz(W,, W)
is a regular ring (Prop. 5.1). And, since W, is R-K-uniform and an R-K-direct
summand of M, Homg (W,, W,) is an ideal-direct summand of K and an ideal-
uniform (and regular) ring. Hence each Homgz (W,, W)) is a prime ring. Let
K=>%®K}% and K,; —(0,---,0, K3 0,---,0) (finite or infinite), where each
K% is a left locally uniform ring. Then, to be easily seen, 2} K,,= @ K,; is
a dense ideal (i.e. K,-K,-dense submodule) of K,, and each K,, is a comple-
mented uniform ideal of K,, because each (0, ---,0, K%, 0,---,0) is a two-sided
direct summand of }°®K.}. Hence{K,,;; 1€4} is a maximal independent set
of complemented uniform ideals of K,, which is uniquely determined. The

uniqueness of the representatlon of K, is similarly proved. (ii) follows from
Th. 5.3, Th. 5.6 and Th. 5.10.

Remark. Let {D,;7e€l'} be a collection of division rings, and let {4,; 7€}
be a collection of sets. We denote by D,“? the direct sum of A, copies of
the D,left vector space D,. Then D, is- a Z4,-dimensional D,left vector
space. . And, Hom, (D,“?, D!"?)=End (, D,""”) acting on the right is (isomor-
phic to) the ring of row-finite £4, dlmensmnal matrixes over D,. Next, we
consider the 3 @D,left module Y, ®D,“”, where D,,- X, ®D, "2 =0, if 1,#7,.
Then > @®D,“ is Y, @D left completely reducible. Hence Y, @D, is a
3@ D,c.q.imodule. Therefore the Y@ D, -endomorphism ring acting on the
right of > @®D,” is a left injective ring with zero (left) singular part.- This
ring is a complete direct sum of right endomorphism rings of vector spaces
{D,*"; reI'}, because for any Y@ D,-endomorphism ¢ of Y @D, ", D, M p=
(1,- D) p=1,- (D" )= D,"”, where 1, is the identity of D,.
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Theorem 5.13. If an R-c.q.i-module M is R-locally uniform and R-
Jaithful, then the following conditions are equivalent to each other:

(i) M s K-quasi-injective and Homg(M, M)=R.

(i) The R-singular part of M is zero, and every R-uniform submodule
is munimal. And further R is a complete direct sum of left endomorphism
rings of vector spaces (over division rings).

Proof. (i)=(ii). This part follows from Th. 5.2 (ii), Prop. 5.9 and Th.
5.12. (ii)=(i). By Cor. to Th. 5.2, M is K-locally uniform. Let M be the
K-injective envelope of M. Then, as M is K-dense in M, the K-socle M, of
M coincides with the K-socle of M, and further, by assumption, coincides with
the R-socle of M (Th. 5.2(iv)). Since M, is R-K-admissible and R-dense in
M, Homy (M,, M,)=K. We set R’=HomK(M, M’) acting on the left. Then,
since M, is R’-K-admissible and K-dense in M and the K-singular part (of M
is zero, and so) of M is zero, R’'=Homg(M, M)=Homy (M,, M,) by Lemma
5.8 and the K-injectivity of M. We shall prove that R’=R. Let Ru be R-
minimal. Then R/lp(u)=Ru. Let laCl,(u) (a€R), where | is a dense left
ideal of R. Then lau=0, and; since R-singular part of M is zero, au=0,
that is, a€l,(u). Hence l5(u) (#+R) is a complemented left ideal of R (Lemma
5.8). Since /() is dense in R/ln(«), Ru is naturally isomorphic to a minimal
left ideal of R. Conversely, let [, be a minimal left ideal. Then, since M is
R-taithful, [0 for some ue M. Evidently [,(=lu (S M,). Hence M,=S- M=
Deerdss M, where S=3,.,@S, is the (left) socle of R and each S, s a (left)
homogeneous component of R such that S,-M=H(P) (,€P). Let I, be a
minimal left ideal such that [,=.S,. Then, S, and S,-M are direct sums
of I’s (up to isomorphism). From this fact, End?®(xS,)=End?(zl,)® and
End? (.S, M)=End*(sl,), where End*(,S,) means the End (S,)-endomorphism
ring of S, acting on the left. Now, since R is a regular ring, (SN7(S)?*=0
implies SN7(S)=0, and symmetrically SNZ(S)=0. Since R is a right locally
uniform regular ring, S is a dense right ideal. Hence »(S)=I(S)=0. Since
R is a right injective ring with zero (right) singular part, End(S:) = End(R) =R,
(the left multiplications of elements of R). As End (S)2R,, (R,ZS) End? (S
End (Sz)=R,;. Hence R,=End*(xS). Since S, and S,- M are an ideal and

6) Let N be an £-left module, where £2.is any operator domain, and let N(4) be a direct
sum of A copies of N, where 4 is a non-empty set. Then End?(oN(1)=End?(oN) naturally.

2 2 ,
To see this, let z12» be the #-endomorphism such that (0.:--,0, z, O, ---,0)—(0, ---,0, =, 0,---,0).

Then any ¢ € End? (o N(D) is commutative with every gur. Set N;=(0, ---, 0, Jil, 0,---,0). Since
¢ (Niec2)=(@N)en2C N;, we have ¥ N, N;. We correspond ¢|N; (the contraction of ¢ .to N,)
to an element ¢; in End?(¢N)naturally. Then, since ¢ is commutative with every e, ¢1=
¢ for all 4, 2’ € 4.
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an R-K-submodule respectively, R,=End*(xS)=>:PEnd*(5S,) and End*(rS- M)
= *@End’ (S, M) naturally. As End’® (5S,)=End* (ol )=End’ (S, - M) ,R,=
End? (oS)=End*? (rS-M). Hence we have End® (pS-M)=R, as desired. Since
End’ (oS- M)=Homy (M. M), this implies thit M is K-quasi-injective (Prop.
4.1) and Homg (M, M)=R. ‘ :

§ 6. Throughout this section, we assume that R is a ring with 1 such
that for each non-zero left ideal I, R/I contains a minimal R-left submodule.

Theorem 6.1. Let A be an R-submodule of M. Then, the following
conditions are equivalent to each other:

(i) A is a complemented submodule of M.

(ii) Let I be a maximal left ideal of R, u an element of M. If Iu=A
then there exists an element veA such that au=av for all acl.

Proof. (i)=(ii). We may assume that « is not contained in A (and so,
A is a proper complemented submodule of M). Now, (Ru+ A)/A is a minimal
submodule of M/A. Since A is complemented, (A+ A°)/A is dense in M/A
by Prop. 1.13, and hence (Ru+ A)/AS(A + A°)/A, that is, ue A+ A°. Setting
u=v+v with veA and w'€ A°, IuC A yields Iv'=0. Hence, I(u—v)=0, that
is, au=av for all ael. (ii))=(i). Suppose A*z2A, and choose an arbitrary
x€A®” not contained in A. As A is dense in A°, there exists a non-zero
acR with (0#) axcA. Then, RIL=(Rx+ A)JASA*/A, where L= {beR;
bxe A} is a non-zero left ideal of R, so that, by the assumption for R, A~/A
contains a minimal submodule (Ru+ A)/A (u& A). As I={beR; bucA} is
a maximal left ideal and I« A, there exists an element ve€A such that
I(fu—v)=0. R(u—wv) is then a minimal submodule of A*, and so R(u—v)& A
by the density of A in A*. But, u—veA and veA yield a contradiction
veA. We have proved therefore A= A.

Theorem 6.2. M is R-injective if and only if every R-homomorphism
of any maximal left ideal of R into M can be extended to an R-homo-
morphism of R into M.

Proof. It suffices to prove the “if” part. To this end, we consider the
R-injective envelope M of M. Let I bé a maximal left ideal of R, and let
Iu= M for an element ueM. Since I3a—>au€M is an R-homomorphism ¢ of
I into M, ¢ can be extended to an R-homomorphism ¢ of R into M. If
1¢=veM, then a(u—v)=ap—agp=0 for all acl. Hence, M is complemented
(and dense) in M by Th. 6.1, which proves M =M.

Theorem 6.3. Let R be further a left principal ideal ring.
(i) A is a complemented submodule of M if and only if ANpM=pA
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Sor each peR generating a maximal left ideal of R.
(i) If pM=DM for each peR generating a maximal left ideal of R,
then M is R-injective. (Cf. [1; p. 92].)

Proof. (i). Let Rp be an arbitrary maximal left ideal of R. Then, the
condition that if RpuT A (ue M) then Rp(u—wv)=0 for some veA is equivalent
to ANpM=pA. Hence, (i) follows immediately from Th. 6.1. (ii). Let M
be the R-injective envelope of M. Since MNpMEM=pM, M is comple-
mented (and dense) in M by (i). Hence M=M, as desired.

Example. Let Ja and Jb be (additive) cyclic groups of orders 4 and 2
repectively, where J denotes the ring of rational integers. We consider M=
Ja®@Jb. Now, J(a+b) is a complemented submodule by Th. 6.3. In fact,
Ja+b)N2M={0, a+b, 2a, 3a+b} N {0, 2a} = {0, 2a} =2(J(a+ b)) and p(J(a+
b))=J(a+b) for all prime p+#2. Ja is a direct summand and JaNJ(a+b)=
{0, 2a} =J(2a). But J(2a) is not complemented in M, for J(2a)N2M =
{0, 2a} #20=2(J(2a)). This elementary example shows that the d.c-corre-
spondence is not always a closure operation.
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