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\S 0. Introduction. The main purpose of this paper is to extend some
results on completely reducible modules to quasi-injective modules by replacing
“irreducible submodules” with “uniform submodules”. To this end, a number
of concepts and results on quotient rings (which are given by Johnson, Utumi,
Goldie, Lambek) will be needed. Let $R$ be a non-zero ring with 1. A unital
R-left module $V$ is called R-uniform if every pair of its non-zero R-submodules
has a non-zero intersection (Goldie [3]). Let $\{V_{\lambda} ; \lambda\in\Lambda\},$ $\{W_{\gamma} ; r\in\Gamma\}$ be maximal
independent sets of R-uniform submodules of a unital R-left module $M$ Then
there exists a 1-1 mapping $f$ of $\Lambda$ onto $\Gamma$ such that $V_{\lambda}\sim W_{f(\lambda)}$ for all $\lambda$ , where
$V_{\lambda}\sim W_{f(\lambda)}$ means that a non-zero R-submodule of $V_{\lambda}$ is R-isomorphic to an
R-submodule of $W_{J^{\prime}(\lambda)}$ (Th. 1.10.) This result generalizes the one on the rank
of abelian groups as well as the one on completely reducible modules. $M$ is
called R-quasi-injective if every R-homomorphism of any R-submodule of $M$

into $M$ can be extended to an R-endomorphism of $M$ (Johnson and Wong [6]).
If $R$ is a left Noetherian ring (with 1) and $M$ is R-quasi-injective, then $M$ is
a direct sum of R-quasi-injective uniform submodules, and such a representation
of $M$ is unique up to R-isomorphism (Th. 4.6). If $R$ is a ring such that for
any non-zero left ideal $I,$ $R/I$ contains a minimal R-left submodule, then an
R-left module $M$ is R-injective if and only if every R-homomorphism of any
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maximal left ideal into $M$ can be extended to an R-homomorphism of $R$ into
$M$. This is a corollary to Th. 6.1. Th. 6.1 generalizes also a result on neat
subgroups of abelian groups. $M$ is called an R-c.q.i-module if $M$ is R-quasi-
injective, and for any non-zero R-submodule $A,$ $l_{M}(r_{X}(A))$ is the unique maximal
submodule such that $l_{M}(r_{X}(A))\supseteq A$ and every non-zero R-submodule of $l_{M}(r_{X}\{A))$

has a non-zero intersection with $A$ (Cor. to Prop. 5. 11), where $K=Hom_{R}(M, M)$
acting on the right, $r_{1\zeta}(A)=\{\alpha\in K;A\alpha=0\}$ and $l_{M}(r_{X}(A))=\{u\in M;u\cdot r_{K}(A)$

$=0\}$ . Let $M$ be a unital R-L-module, where $L$ is a non-zero ring with 1.
$M$ is called an R-L-c.q.i-module if $M$ is an $R\otimes_{J}L^{0}- c.q.i$-module, where $L^{0}$ is
the opposite ring of $L$ and $J$ the ring of rational integers. If $M$ is an R-c.q.i-
module then there hold the following: (1) $M$ is a $Q_{0^{-}}c.q.i$ .-module, where $Q_{0}$

is any intermediate ring of $Q$ and $R_{0}$ of all (additive group) endomorphisms
induced by R. (2) Every R-direct summand of $M$ is an R-c.q.i-module. (3)
Every R-K-submodule is an R-c.q.i-module and an R-K-c.q.i-module. (4) $K$ is,
as a K-left module, a K-c.q.i-module. And we can generalize some results on
completely reducible modules in this situation. From these facts cited above,
the center of any left injective ring with zero left singular ideal is also an in-
jective ring with zero singular ideal.

The author wish to express his best thanks to Prof. G. Azumaya and Dr.
H. Tominaga for their helpful suggestions.

\S 1. Throughout the present paper, $M$ will denote a unital R-left module
$(\neq 0)$ , where $R$ is a non-zero ring with 1. $\mathfrak{M}$ and $\mathfrak{S}$ denote the set of all
non-zero R-submodules of $M$ and the set of all subsets of $M$ properly con-
taining $\{0\}$ , respectively. For $S\in \mathfrak{S}$ , we set $S^{-}=\{0\}\cup\{x\in M;Rx\cap S\neq 0\}$ .
And we set $0^{-}=0$ . Then, to be easily seen, $S\subseteq T(S, T\in \mathfrak{S})$ implies $S^{-}\subseteq T^{-}$ ,
$S\subseteq S^{-}=S^{--}$ . And, $A\cap S=0(A\in \mathfrak{M})$ implies $A\cap S^{-}=0$ . Therefore, $ S^{-}\subseteq$

$S_{1}^{-}(S_{1}\in \mathfrak{S})$ is nothing but to say that $X\cap S\neq 0(X\in \mathfrak{M})$ implies $X\cap S_{1}\neq 0$ . $S\in \mathfrak{S}$

is said to be dense in $T\in \mathfrak{S}$ , if $S\subseteq T\subseteq S^{-}$ . If $S$ is dense in $T$ then $S^{-}=T^{-}$

obviously, so that if $S$ and $T$ are dense in $T$ and $U$ respectively, then so is
$S$ in $U$, where $U\in \mathfrak{S}$ . And, to be easily seen, $A\in \mathfrak{M}$ is dense in $B\in \mathfrak{M}$ if and
only $|ifA\subseteq B$ and $X\cap A\neq 0$ for all $X\in \mathfrak{M}$ with $X\subseteq B$ . “submodule” and
“homomorphism” without modifier mean always “R-submodule” and “R-homo-
morphism” respectively.

Proposition 1. 1. Let $\{A_{\lambda} ; \lambda\in\Lambda\}$ and $\{B_{\lambda};\lambda\in\Lambda\}$ be subsets of M. If
$A_{\lambda}^{-}=B_{\lambda}^{-}for$ all $\lambda$ , then $\sum A_{\lambda}=\sum\oplus A_{\lambda}$ (direct sum) if and $ only\downarrow$ if $\sum B_{\lambda}=\sum\oplus B_{\lambda}$ .

Proof. It suffices to prove that if $A_{i}^{-}=B_{i}^{-}(i=1, \cdots, n)$ and $A_{1}+\cdots+A_{n}$

$=A_{1}\oplus\cdots\oplus A_{n}$ then $B_{1}+\cdots+B_{n}=B_{1}\oplus\cdots\oplus B_{n}$ . In fact, $A_{1}\cap(A_{2}+\cdots+A_{n})=0$

and $A_{1}^{-}=B_{1}^{-}$ yield $B_{1}\cap(A_{2}+\cdots+A_{n})=0$ , which means $A_{2}+\cdots+A_{n}+B_{1}=$
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$A_{2}\oplus\cdots\oplus A_{n}\oplus B_{1}$ . Similarly we obtain $ A_{3}+\cdots+A_{n}+B_{1}+B_{2}=A_{3}\oplus\cdots\oplus A_{n}\oplus$

$B_{1}\oplus B_{2}$ , and eventually $B_{1}+\cdots+B_{n}=B_{1}\oplus\cdots\oplus B_{n}$ .
Corollary. Let $\{A_{\lambda} ; \lambda\in\Lambda\}$ and $\{B_{\lambda} ; \lambda\in\Lambda\}$ be subsets of $\mathfrak{M}$ such that

$A_{\lambda}\subseteq B_{\lambda}$ and $\sum B_{\lambda}=\sum\oplus B_{\lambda}$ . Then $\sum A_{\lambda}$ is dense in $\sum B_{\lambda}zf$ and only $zf$ each
$A_{\lambda}$ is dense in $B_{\lambda}$ .

Proof. If $\sum A_{\lambda}$ is dense in $\sum B_{\lambda}$ , then $0\neq X\cap\sum A_{\lambda}=X\cap A_{\lambda_{1}}$ for all $X\in \mathfrak{M}$

with $X\subseteq B_{\lambda_{1}}$ . Hence, each $A_{\lambda_{1}}$ is dense in $B_{\lambda_{1}}$ . Conversely, if $A_{\lambda}^{-}=B_{\lambda}^{-}$ for all
$\lambda$ , then $X\cap\sum A_{\lambda}=0(X\in \mathfrak{M})$ implies $X\cap\sum B_{\lambda}=0$ , by Prop. 1.1. Hence, $\sum A_{\lambda}$

is dense in $\sum B_{\lambda}$ .
$V\in \mathfrak{M}$ is called uniform if every pair of non-zero submodules of $V$ has

a non-zero intersection (Goldie [3]).

Proposition 1. 2. Let $V$ and $W$ be uniform submodules of M. If
$V\cap W\neq 0$ , then $V^{-}=W^{-}$

Proof. As $V$ is uniform, $X\cap(V\cap W)\neq 0$ for all $X\in M$ with $X\subseteq V$, so
that $V\cap W$ is dense in $V$, and symmetrically in $W$. Hence, we obtain $V^{-}=$

$(V\cap W)^{-}=W^{-}$ .
The proof of the next proposition may be left to readers.
Proposition 1.3. Let $\{A_{\lambda} ; \lambda\in\Lambda\}$ be a subset of $\mathfrak{M}$ such that $\sum A_{\lambda}=$

$\sum\oplus A_{\lambda}$ , and let $A$ be a submodule of $M$ such that $A\cap\sum A_{\lambda}\neq 0$ . If { $A_{\lambda_{i}}$ ; $i$

$=1,$ $\cdots,$ $n$ } is a minimal (finite) subset of $\{A_{\lambda}\}$ such that $A\cap\sum A_{\lambda_{i}}\neq 0$ , then
$A\cap\sum A_{\lambda_{i}}$ is isomorphically mapped into each $A_{\lambda_{i}}$ by the projection to $A_{\lambda_{i}}$ .
In particular, if $A$ is uniform, then $\{A_{\lambda_{i}}\}$ is uniquely determined by $A$ .

Proposition 1. 4. Let $A_{i},$ $B_{i}(i=1,2)$ be in M. If $A_{1}\subseteq A_{2}^{-}and$ $B_{1}^{-}\subseteq B_{2}^{-}$ ,
then $(A_{1}\cap B_{1})^{-}\subseteq(A_{z}\cap B_{2})^{-}$ .

Proof. If $X\cap(A_{1}\cap B_{1})\neq 0(X\in \mathfrak{M})$ , then $(X\cap A_{1})\cap B_{2}\neq 0$ by $B_{1}^{-}\subseteq B_{z}^{-}$ ,
whence $X\cap(A_{2}\cap B_{2})=(X\cap B_{2})\cap A_{2}\neq 0$ by $A_{1}^{-}\subseteq A_{2}^{-}$ .

Corollary. $LetA,$ $B\in \mathfrak{M}$ . $IfA^{-}=B^{-},$ $thenA^{-}=(A\cap B)^{-}=B^{-}$ . In par$\cdot$

ticular, if $A$ and $B$ are dense submodules of $M$ ($i.e$ . dense in $M$), then so
is $A\cap B$.

Proposition 1.5. Let $M^{\prime}$ be an R-left module, and $\varphi$ an (R-) homo-
morphism of $M^{\prime}$ into M. If $S^{-}\subseteq T^{-}(S, T\in \mathfrak{S})$ , then $(S\varphi^{-1})^{-}\subseteq(T\varphi^{-1})^{-}$ , where
$S\varphi^{-1}=\{u\in M^{\prime} ; u\varphi\in S\}$ . In particular, $\iota fS$ is dense in $M$, then $S\varphi^{-1}$ is dence
in M. (Johnson [5])

Proof. If $X^{\prime}\cap T\varphi^{-1}=0$ for some non-zero submodule $X^{\prime}$ of $M^{\prime}$ , then
$(X’\cap S\varphi^{-1})\cap$ Ker $\varphi\subseteq X^{\prime}\cap S\varphi^{-1}\cap T\varphi^{-1}=0$ . Hence, if $X^{\prime}\cap S\varphi^{-1}\neq 0$ , then
$X^{\prime}\varphi\cap S\neq 0$ . However, as $S^{-}\subseteq T^{-}$ , $X^{\prime}\varphi\cap S\neq 0$ implies a contradiction
$X^{\prime}\varphi\cap T\neq 0$ .
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If a dense submodule of $M$ is isomorphic to a dense submodule of an
R-left module $M^{\prime},$ $M$ is said to be similar to $M^{\prime}$ , and denoted by $M\sim M^{\prime}$ .
The similarity is an equivalence relation by Cor. to prop. 1.4. $A$ subset
$\{A_{\lambda} ; \lambda\in\Lambda\}$ of $\mathfrak{M}$ is called homogeneous if $A_{\lambda}\sim A_{\lambda}$ , for all $\lambda,$

$\lambda^{\prime}\in\Lambda$ .
Proposition 1. 6. Let $\{A_{\lambda}\}$ be a maximal independent homogeneous set

of unzform submodules of $M$, and let $A\in \mathfrak{M}$ . In order that $A\cap\sum A_{\lambda}\neq 0$ , it
is necessary and sufficient that $A$ contains a unzform subnodule $U$ such that
$U\sim A_{\lambda}$ .

Proof. Since every non-zero submodule of $A_{\lambda}$ is dense in $A_{\lambda}$ , the neces-
sity is a direct consequence of Prop. 1.3. And, the sufficiency follows from
the maximality of $\{A_{\lambda}\}$ .

Let $A$ be a submodule of $M$. A complement $A^{c}$ of $A$ (in $M$) is a maximal
submodule of $M$ such that $A\cap A^{c}=0$ . And, a double complement $A^{cc}$ of $A$

is a complement of a complement of $A$ such that $A^{cc}\supseteq A$ . If $A\cap B=0$

$(B\in \mathfrak{M})$ , by Zom’s lemma we can take a complement $A^{c}$ of $A$ such that $A^{c}\supseteq B$.
Evidently, $0^{c}=M$ and $M^{c}=0$ . If $A$ is a complement of some submodule of
$M,$ $A$ is called a complemented submodule (of $M$). To be easily seen, every
direct summand is a complemented submodule. The many-to-many corre-
spondence $A\rightarrow A^{cc}$ is called the d.c-correspondence, more precisely, the R-d.c-
correspondence in $M$.

Proposition 1. 7. Let $A$ be a submodule of $M$

(i) A submodule $X$ of $M$ is a double comPlement of A $zf$ and only $zf$

$X$ is a maximal submodule such that $A\subseteq X\subseteq A^{-}$ . Accordingly, if $C,$ $D$ are
arbitrary complement and double complement of A respectively, then $C,$ $D$

are complements of $D,$ $C$ respectively.
(ii) $A$ is complemented $\iota f$ and only if $A$ is a doubie complement of

itself, that is, there exists no submodule $X$ of $M$ such that $A\subset\neq X\subseteqq A^{-}$ .
Accordingly, $\iota f$ $A$ is complemented, $A^{CC}$ is unique and coincides with $A$ .

Proof. Evidently $0^{cc}=0^{-}=0$ . If $A\neq 0$ is not dense in $A^{cc}$, then
$A\oplus Y\subseteq A^{cc}$ for some $Y\in \mathfrak{M}$, and whence it follows $(A\oplus Y)\oplus A^{c}=A\oplus(Y\oplus A^{c})$ ,
where $A^{cc}=(A^{c})^{c}$ . This contradiction shows that $A$ is dense in $A^{cc}$ . And
further, if $A^{cc\subset}\neq W(W\in \mathfrak{M})$ then $W\cap A^{c}\neq 0$ , and so $W\not\geqq A^{-}$ . Conversely, let
$X$ be a maximal submodule such that $A\subseteq X\subseteq A^{-}$ . Then $A^{-}\cap A^{c}=0$ implies
$X\cap A^{c}=0$ . We can take a double complement $A^{cc}$ such that $A^{cr}\supseteq X$. Then,
as $A^{cc}\subset A^{-},$ $A^{rc}=X$. Thus we have obtained the former assertion. Next, let
$A=B^{c}(B\in \mathfrak{M})$ . We take a complement $A^{c}$ of $A$ such that $A‘‘\supseteq B$, and further
we take a complement $(A^{c})^{c}$, of $A^{c}$ such that $(A^{c})^{c}\supseteq A$ . Then $A=(A^{c})^{c}$, because
$A^{c}\supseteq B$ and $A=B^{c}$ .
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Proposition 1.8. If $\{V_{\lambda} ; \lambda\in\Lambda\}$ and $\{W_{\gamma} ; \gamma\in\Gamma\}$ are maximal inde-
pendent homogeneous sets of unzform submodules of $M$ such that $V_{\lambda}\sim W_{\gamma}$ ,

then $\#\Lambda=\#\Gamma$ , where $\#\Lambda$ denotes the cardinal number of $\Lambda$ .

Proof. We shall distinguish between two cases.
Case 1. $\#\Lambda<\infty$ or $\#\Gamma<\infty$ . Without loss of generality, we may assume

$\#\Gamma\leq’$,A. We set $\{W_{\gamma} ; \gamma\in\Gamma\}=\{W_{1}, \cdots, W_{s}\}$ . Let $V_{\lambda_{1}}^{\prime}=\sum_{\lambda\neq\lambda_{1}}V_{\lambda}$ for an ar-
bitrary $\lambda_{1}\in\Lambda$ . If $W_{i}^{\prime}=V_{\lambda_{1}}^{\prime}\cap W_{i}\neq 0$ for all $i$ , then $W_{i^{-}}^{\prime}=W_{i}^{-}$ by Prop 1.2.
Since $V_{\lambda_{1}}\cap\sum_{i}\oplus W_{i}^{\prime}=0$ , Prop. 1.1 yields $V_{\lambda_{1}}\cap\sum\oplus W_{i}=0$ , which contradicts
the maximality of $\{W_{i} ; i=1, \cdots,s\}$ . Hence, for some $W_{i}$ , say $W_{1}$ , there holds
$V_{\lambda_{1}}^{\prime}\cap W_{1}=0$ . We set here $V_{\lambda_{1}}^{\prime\prime}=V_{\lambda_{1}}^{\prime}\oplus W_{1}$ . Then, $V_{\lambda}^{\prime\prime}\cap V_{\lambda_{1}}\neq 0$ by the maxi-
mality of $\{V_{\lambda}\}$ , and $\{V_{\lambda} ; \lambda\neq\lambda_{1}\}\cup\{W_{1}\}$ is a maximal independent homogeneous
set of uniform submodules of $M$. In fact, if $\{V_{\lambda} ; \lambda\neq\lambda_{1}\}\cup\{W_{1}\}\cup\{U\}$ is an
independent homogeneous set of uniform submodules then, as $(V_{\lambda_{1}}^{\prime\prime}\cap V_{i_{1}})^{-}=V_{\lambda_{1}}^{-}$

by Prop. 1. 2, $(V_{\lambda_{1}}^{\prime\prime}\cap V_{\lambda_{1}})+V_{\lambda_{1}}^{\prime}+U=(V_{\lambda_{1}}^{\prime\prime}\cap V_{\lambda_{1}})\oplus V_{\lambda_{1}}^{\prime}\oplus U$ yields $V_{\lambda_{1}}+V_{\lambda_{1}}^{\prime}+U=$

$V_{\lambda_{1}}\oplus V_{\lambda_{1}}^{\prime}\oplus U=(\sum\oplus V_{\lambda})\oplus U$, which contradicts the maximality of $\{V_{\lambda}\}$ . Re-
peating the above argument, we obtain eventually $\#\Lambda=\#\Gamma(=s)$ .

Case 2. $\#\Lambda=\infty$ and $\#\Gamma=\infty$ . By the maximality of $\{W_{\gamma}\}$ and Prop.
1. 3, for each $V\in\{V_{\lambda}\}$ there corresponds the unique minimal (finite) subset
$\{W_{1}, \cdots, W_{n}\}$ of $\{W_{\gamma}\}$ such that $V\cap\sum W_{i}\neq 0$ . We shall prove that
$\cup V\{W_{1}, \cdots, W_{n}\}=\{W_{\gamma}\}$ . To this end, let $W$ be an arbitrary member of $\{W_{\gamma}\}$ ,

and let $\{V_{1}, \cdots, V_{m}\}$ be the unique minimal (finite) subset of $\{V_{\lambda}\}$ such that
$W\cap\sum V_{i}\neq 0$ . And then, let $\{W_{i1}, \cdots, W_{in_{i}}\}$ be the unique minimal subset of
$\{W_{\gamma}\}$ such that $V_{i}^{\prime}=V_{i}\cap\sum_{j}W_{ij}\neq 0$ . Since each $V_{i}$ is uniform, $V_{i}^{\prime-}=V_{i}^{-}$ by
Prop. 1.2. Hence, there holds $W\cap\sum_{ij}W_{ij}\neq 0$ , which means $W\in\{W_{ij}\}$ . We
have seen therefore that $\cup V\{W_{1}, \cdots, W_{n}\}$ coincides with $\{W_{\gamma}\}$ , whence it
follows $ff\Gamma\leq\#\Lambda\cdot\aleph 0=ff\Lambda$ . And, we have symmetrically $\#\Lambda\leq\#\Gamma$ . Hence
$\#\Lambda=\#\Gamma$ .

The set of all uniform submodules of $M$ can be classified with respect to

the equivalence relation $\sim$ . And, $P$ will represent the set of all similar classes.
The existense of maximal independent [homogeneous] set of uniform submodules
is secured by Zorn’s lemma.

Proposition 1.9. (i) If $\{V_{\lambda} ; \lambda\in\Lambda\}$ is a maximal independent set of
unzform submodules of $M$ , then for each $\rho\in P,$ $\{V_{\lambda} ; \lambda\in\Lambda_{o}\}$ is a maximal
independent homogeneous subset of $\rho$ , where $\Lambda_{\rho}=\{\lambda\in\Lambda;V_{\lambda}\in\rho\}$ .

(ii) If for each $\rho\in P$ there corresponds a maximal independent homo-
geneous subset $\{W_{\gamma} ; \gamma\in\Gamma_{\rho}\}$ of $\rho$ , then $\bigcup_{\rho}\{W_{\gamma} ; r\in\Gamma_{\rho}\}$ is a maximal indepen-
dent set of uniform submodules.

Proof. (i). For any $U\in\rho,U\cap\sum V_{\lambda}\neq 0$ , and further, $U\cap\sum_{\lambda\in A_{P}}V_{\lambda}\neq 0$ by
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Prop. 1.3. Hence each $\{V_{\lambda} ; \lambda\in\Lambda_{\rho}\}$ is a maximal independent subset of $\rho$ .
(ii). Under the same notations as in (i), $(\sum_{\gamma\in\Gamma_{\rho}}TV_{r})^{-}=(\sum_{\lambda\in\Lambda_{\rho}}V_{\text{{\it \‘{A}}}})^{-}$ by Prop. 1.6,
so that $\Sigma_{\rho}(\Sigma_{\gamma\in\Gamma_{\rho}}W_{\gamma})=\Sigma_{\rho}\oplus(\Sigma_{\gamma\in\Gamma_{\rho}}\oplus W_{\gamma})$ by Prop. 1. 1.

Combining Prop. 1.8 and Prop. 1.9 (i), we obtain the following fundamental
theorem:

Theorem 1. 10. Let $\{V_{\lambda} ; \lambda\in\Lambda\}^{1)}$ and $\{W_{\gamma} ; r\in\Gamma\}$ be maximal indepen-
dent sets of unzform [complemented unzform] submodules of M. Then, there
exists $a$ 1-1 mapping $f$ from $\Lambda$ onto $\Gamma$ such that $V_{\lambda}\sim W_{f(\lambda)}$ for all $\lambda\in\Lambda$ .

This theorem extends the one on the rank of abelian groups (cf. Fuchs [1])
as well as the one on completely reducible modules, and will be treated again
in \S 4. For any uniform submodule $U\in \mathfrak{U}l$ , we denote the class containing $U$

by $\tilde{U}$.
Theorem 1. 11. Let $U_{\rho}\{V_{\lambda} ; \lambda\in\Lambda_{\rho}\}$ be any maximal independent set

of unzform submodules, where $V_{\lambda}\in\rho(\lambda\in\Lambda_{\rho})$ , and let $P_{0}$ be any non-empty
subset of $P$.

(i) $(\sum_{\lambda\in 4_{P_{0}}}V_{\lambda})^{-}(\Lambda_{P_{0}}=\bigcup_{\rho\in p_{0}}A_{o})$ depends on $P_{0}$ only (and is independent of
the choice of $\{V_{\lambda}\}$ ).

(ii) $(\sum_{\lambda\in A_{P_{0}}}V_{\lambda})^{c-}$ depends on $P_{0}$ only (and is independent of the choice
of $\{V_{\lambda}\}$ and complements).

Proof. $\{V_{\lambda} ; I\in\Lambda_{P_{0}}\}$ is a maximal independent subset of $U_{\rho\in P_{0}}\rho$ . For
$X\in \mathfrak{M},$ $X\cap\sum^{\prime}V_{\lambda}\neq 0$ if and only if $X$ contains a uniform submodule $U$ such
that $\tilde{U}\in P_{0}$ , where $\sum^{\prime}V_{\lambda}=\sum_{\lambda\epsilon_{J}1_{P_{0}}}V_{\lambda}$ (cf. the proof of Prop. 1.6). And, this is
nothing but to say that $(\sum^{\prime}V_{\lambda})^{-}$ is independent of the choice of $\{V_{\lambda}\}$ and is
uniquely determined by $P_{0}$ . To prove (ii), we set $C_{1}=(\sum^{\prime}V_{\lambda})^{c}$, and take a
complement $C_{2}$ of a sum of another maximal independent subset of $\bigcup_{\rho\in P_{0}}\rho$ .
If $C_{1}^{-}\neq C_{2}$ , say $C_{2_{7}}^{-}\not\subset_{-}C_{1^{-}}$ , then there is some $Y\in \mathfrak{M}$ such that $Y\subseteq C_{2}$ and $Y\cap C_{1}$

$=0$ . Then, since $Y\oplus C_{1\neq}\supset C_{1},$ $(Y\oplus C_{1})\cap\sum^{\prime}V_{\lambda}\neq 0$ . Therefore, by Prop. 1.3,
there is a uniform submodule $U$ such that $U\subseteq(Y\oplus C_{1})\cap\sum^{\prime}V_{\lambda}$ and $\tilde{U}\in P_{0}$ . By
the projection, $U(\subseteq Y\oplus C_{1})$ is isomorphic to a submodule $U^{\prime}$ of Y. As $\tilde{U}\in P_{0}$

and $U\cong U^{\prime}\subseteq Y\subset C_{2}$ , we have $\tilde{U}^{\prime}\in P_{0}$ and $U^{\prime}\subseteq C_{2}$ . But this contradicts that $C_{2}$

is a complement of a sum of a maximal independent subset of $\bigcup_{\rho\epsilon P_{0}}\rho$ .
By the validity of Th. 1.10, we can define dim $M$ and $\rho$-dim $M$ as $\#\Lambda$

and $\#\Lambda_{\rho}$ repectively, where $\{V_{\lambda} ; \lambda\in\Lambda\}$ is an arbitrary maximal independent set
of uniform submodules of $M$ and $\Lambda_{\rho}=\{\lambda\in\Lambda;V_{\lambda}\in\rho\}$ . Evidently, we have dim
$ M=\sum_{\rho}\rho$-dim $M$. For any $A\in \mathfrak{M}$ , the set $P(A)$ of the similar classes of uniform
submodules of $A$ may be regarded as a subset of $P$. And, for any $\rho\in P$, we

1) For each $V_{\lambda}$ , we take adouble complement $V_{\lambda}^{\prime\prime}$ of $V_{\lambda}$ . Then, by Prop. 1. 1. and Prop.
1.7, $\{V_{\lambda}^{cc} ; \lambda\in\Lambda\}$ is also a (maximal) independent set of uniform submodules.
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define $\rho(A)=\{X\in\rho;X\subseteq A\}$ .
Proposition 1. 12. If $\{A_{\lambda};\lambda\in\Lambda\}$ is an independent subset of $\mathfrak{M}$ , then

dim $\sum_{\lambda}A_{\lambda}=\sum_{\lambda}$ dim $A_{\lambda}$ and $\rho$-dim $\sum_{\lambda}A_{\lambda}=\sum_{\lambda}\rho$-dim $A_{\lambda}$ for all $\rho\in P$.

Proof. Let $\rho$ be in $P$. For each $A_{\lambda}$ , choose an arbitrary maximal inde-
pendent subset $\{V_{\lambda\gamma} ; \gamma\in\Gamma_{\lambda}\}$ of $\rho(A_{\lambda})$ , and let $B_{\lambda}$ be a complement of $V_{\lambda}=$

$\sum_{\gamma}\epsilon\Gamma_{\lambda}V_{\lambda\gamma}$ in $A_{i}$ . Then, each $B_{\lambda}\oplus V_{\lambda}$ being-dense in $A_{\lambda},$ $\sum_{\lambda}(B_{\lambda}\oplus\cdot V_{\lambda})$ in dense
in $\sum A_{\lambda}$ by Cor. to Prop. 1. 1. If $U$ is in $\rho(\sum A_{\lambda})$ then $U\cap(\sum_{\lambda}(B_{\lambda}\oplus V_{\lambda}))\neq 0$ .
so that $U\cap\sum V_{\lambda}\neq 0$ by Prop. 1.3, because each $B_{\lambda}$ does not contain a sub-
module belonging to $\rho$ . This proves evidently that $\bigcup_{\lambda}\{V_{\lambda\gamma} : \gamma\in\Gamma_{\lambda}\}$ is a maximal
independent subset of $\rho(\sum A_{\lambda})$ . Hence, $\rho$-dim $\sum_{\lambda}A_{\lambda}=\sum_{\lambda}\rho$-dim $A_{\lambda}$ . And then,

as dim $ A=\sum_{\rho}\rho$-dim $A$ for any $A\in \mathfrak{M}$ , we obtain dim $\sum_{\lambda}A_{\lambda}=\sum_{\lambda}$ dim $A_{\lambda}$ .
Let $A$ be a submobule of $M$, and $A^{c}$ an arbitrary complement of $A$ .

Evidently, $A$ and $A^{c}$ may be regarded naturally as submodules of $M/A^{c}$ and
$M/A$ respectively. Now, in this meaning, we have the following:

Proposition 1. 13. Let $A$ be a submodule and $A^{c}$ an arbitrary com-
plement of A. If $A$ is non-zero then $A$ is dense in $M/A^{c}$ , and $zfA^{c}(\neq 0)$

is dense $M/A$ then $A$ is complemented. Consequently, $zfB,$ $C\in M$ have a
common complement $E$ then $B\sim M/E\sim C$.

Proof. If $A$ is non-zero, $A\cap X\neq 0$ for each $X\in \mathfrak{M}$ with $X_{\neq}^{\supset}A^{c}$ , and
hence $(A\oplus A^{c})/A^{c}\cap X/A^{c}=((A\cap X)\oplus A^{c})/A^{c}\neq 0$ . This implies that $(A\equiv)$

$(A\oplus A^{e})/A^{c}$ is dense in $M/A^{c}$ . Next, if $A^{c}$ is dense in $M/A$ , then $(A^{c}\oplus A)/A\cap$

$A^{cc}/A=((A^{c}\cap A^{cc})\oplus A)/A=0$ yields $A^{cc}=A$ .
As any double complement of $A\in \mathfrak{M}$ is a complement of any complement

of $A$ (Prop. 1.7), by Prop. 1. 13, complements of $A$ are similar to each other.
Thus dim $A^{c}$ and $\rho$-dim $A^{c}$ are uniquely determined by $A$ , and we denote them
by codim $A$ and $\rho$-codim $A$ , respectively. Then, codim $ A=\sum_{\rho}\rho$-codim $A$ is
evident, and, as $A\oplus A^{c}$ is dense in $M$, dim $A+co\dim A=\dim M$ and $\rho$-dim $A$

$+\rho$-codim $ A=\rho$-dim $M$ by Prop. 1. 12.
Proposition 1. 14. Let $V\in \mathfrak{M}$ be unzform, and let $W$ be a submodule

containing V. Then $W$ is unzform $\iota f$ and only $\iota fV$ is dense in $W$.
Proof. If $V$ is dense in $W$, then every non-zero submodule of $W$ has a

non-zero intersection with $V$, and hence $W$ must be uniform. The “only if”
part is evident.

Combining Prop. 1. 14 with Prop. 1.7, we readily obtain
CoroIlary. A complemented unzform submodule is a maximal unzform

submodule ( $i.e$ . maximal as a uniform submodule), and conversely.
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\S 2. Complemented submodules. We shall begin this section with the
following theorem (cf. [7], [8]).

Theorem 2. 1. Let $N$ be a dense submodule of M. If $C$ is a com-
plemented submodule of $M$, then $C\cap N$ is a complemented submodule of $N$

and $C$ is a double complement of $C\cap N$ in M. And if $Z$ is a complemented
submodule of $N$ then $Z^{cc}\cap N=Z$ for every double complement $Z^{cc}$ of $Z$ in $M$

Proof. Let $C\cap N\neq 0$ be dense in $X\in \mathfrak{M}$ with $X\subseteq N$. If $X\not\cong C$ then
$(X+C)\cap C^{c}\neq 0$ , and so $0\neq N\cap(X+C)\cap C^{c}=X\cap C^{c}$ . Since $C\cap N$ is dense in
$X$, we have a contradiction $(C\cap N)\cap(X\cap C^{c})\neq 0$ . Hence $X\subseteq C$, that is, $X=$

$C\cap N$ This implies that $C\cap N$ is complemented in $N$ (Prop. 1.7). Next, let
$Z$ be a non-zero complemented submodule of $N$ Then, as $Z^{cc}\supseteq Z^{cc}\cap N\supseteq Z,$ $Z$

is dense in $Z^{cr}\cap N$, and hence $Z^{CC}\cap N=Z$ by Prop. 1.7.
Let $A_{\neq}\subset B$ be submodules of $M$. If $B/A$ is dense in $M/A$ , then so is $B$

in $M$ . Because, if $B^{c}\neq 0$ then $(A\oplus B^{c})/A\neq 0$ and $B/A\cap(A\oplus B^{c})/A=$

$(A\oplus(B\cap B^{c}))/A=0$ , a contradiction. Next, if $C$ is a complemented submodule
of $M$ containing $A$ then $C/A$ is a complemented submodule of $M/A$ . For, if
$C/A$ is non-zero and dense in $X/A$ for $X\in \mathfrak{M}$ containing $C$ then the same
argument as above yields that $C$ is dense in $X$, and so $C=X$ by Prop. 1.7.
These prove the half of the following:

Thorem 2.2. Let $C$ be a proper complemented submodule ofM. Then,
the set ofall complemented submodules of $M/C$ coincides with the set $\{C^{\prime}/C;C^{\prime}$.
ranges over the complemented submodules of $M$ containing $C$}, and the set
of all dense submodules of $M/C$ coincides with the set { $D/C;D$ ranges over
the dense submodules of $M$ containing $C$ }.

Proof. Let $D$ be a dense submodule of $M$ such that $D\equiv\neg C$, and let $X$

be any submodule of $M$ properly containing $C$. Then, $C$ being complemented,
$X\supseteq C\oplus Y$ for some $Y\in \mathfrak{M}$ by Prop. 1. 7. As $D$ is dense in $M,$ $D\cap Y\neq 0$ and
so $D/C\cap X/C\supseteq D/C\cap(C\oplus Y)/C=(C\oplus(D\cap Y))/C\neq 0$ , which implies that $D/C$

is dense in $M/C$ . Next, let $B/C$ is complemented in $M/C$ for $B\in \mathfrak{M}$ with
$B\supsetneqq C$. Then, since $B$ is dense in $B^{cc}$ and $C$ is complemented in $B^{cc}$ , the
preceding implies that $B/C$ is dense in $B^{cc}/C$. On the other hand, $B/C$ being
complemented in $M/C,$ $B/C=B^{cc}/C$, that is, $B=B^{cc}$ .

Theorem 2.3. If $A\supseteq B$ are submodules of $M$ then for any $A^{cc}$ there
exists such a double complement $B^{rc}$ that $A^{cc}\supseteq B^{cc}$ .

Proof.. Let $\hat{M}$ be the injective envelope of $M^{2)}$ , and $A^{\prime}$ a double comple-
ment of $A^{cc}$ in $\hat{M}$ , which is evidently a double complement of $A$ in $\hat{M}$ , and

2) The R-injective envelope $\hat{M}$ of $M$ is a (unital) injective R-module which contains $M$

as a dense R-submodule.
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$M\cap A^{\prime}=A^{cc}$ by Th. 2.1. $A^{\prime}$ is then an (injective) direct summand of $\hat{M}$ (see
Proof. 4.2). If $B^{\prime}$ is a double complement of $B$ in $A^{\prime}$ then, $A^{\prime}$ being injective,
$B^{\prime}$ is a direct summand of $A^{\prime}$ , and therefore of $\hat{M}$ . Since $M$ is dense in $\hat{M}$ ,
by Th. 2.1, $M\cap B^{\prime}$ is a complemented submodule of $M$. Noting here that $B$

is dense in $M\cap B^{\prime}$ , by Prop. 1.7 we see that $M\cap B^{\prime}$ is a double complement
of $B$ (in $M$ ) requested.

Corollary 1. If for any submodule $X$ of $M$ its double complement is
uniquely determined, then the $d.c$-correspondence is a closure operation.

Corollary 2. For $V\in \mathfrak{M}$ , the $f\dot{o}$llowing conditions are equivalent:
(i) $V$ is a minimal complemented ( $i.e$ . minimal as a complemented sub-

module $\neq 0$ ) submodule. (ii) $V$ is a maximal uniform submodule. (iii) $V$ is
a complemented unzform submodule.

Proof. By Cor. to Prop. 1.14, a maximal uniform submodule is nothing
but a complemented uniform submodule. And, a complemented uniform sub-
module is evidently a minimal complemented submodule. Conversely, let $V$ be
a minimal complemented submodule, and let $V\supseteq A(A\in \mathfrak{M})$ . Since a double
complement $A^{cc}$ of $A$ in $M$ is contained in $V$ by Th. 2, 3, the minimality of
$V$ yields $V=A^{cc}$, and hence every non-zero submodule of $V$ is dense in $V$.
And this is nothing but to say that $V$ is uniform.

A submodule $A$ of $M$ is said to be meet irreducible (in $M$ ) if $A$ can not
be represented as an intersection of two submodules of properly containing $A$ .
Evidently, for a proper submodule $A$ of $M,$ $M/A$ is uniform if and only if $A$

is meet irreducible, in particular, $M$ is uniform if and only if $\{0\}$ is meet
irreducible in $M$.

Proposition 2.4. If a submodule $B$ is properly contained in a non-dense
submodule $A$ of $M$, then $B$ is meet reducible ( $i.e$ . not meet irreducible).
Consequently, a non-dense meet irreducible submodule is a minimal meet
irreducible submodule.

Proof. In fact, $B=A\cap(B\oplus A^{c})$ and $B\oplus A^{c}\supsetneqq B$.
Proposition Z.5. Let $A$ be a proper submodule of M. Then the fol-

lowing conditions are equivalent:
(i) $A$ is a maximal complemented submodule.
(ii) $A$ is a complemented submodule, and $A^{c}$ is unzform.
(iii) $A$ is a non-dense meet irreducible submodule.

Proof. $(i)\Rightarrow(ii)$ . If $A^{c}$ is not uniform, then there are non-zero $B,$ $C$ such
that $A^{c}\supseteq B\oplus C$. Let $B^{c}$ be a complement of $B$ with $B^{c}\supseteq A\oplus C$. Then
$M^{\supset}B^{c\supset}A$ , and this contradicts the maximality of A. $(ii)\Rightarrow(iii)$ . Since a
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uiniform module $A^{c}$ may be regarded as a dense submodule of $M/A,$ $M/A$ is
uniform by Prop. 1. 14. $(iii)\Rightarrow(i)$ . Since $A=A^{cc}\cap(A\oplus A^{c})$ and $A\subsetneqq A\oplus A^{c}$ ,
we have $A=A^{cc}$ . Assume that there exists a complemented submodule $B$ such
that $ABM$ Then, since $A\oplus X\subseteq B$ for some $X\in M$ and $B^{c}\neq 0$ , we have
a contradiction $(A\oplus X)\cap(A\oplus B^{c})(=A+((A\oplus X)\cap B^{\circ}\})=A$ . Hence, $A$ is a
maximal complemented submodule.

Theorem 2.6. $(_{i}i)$ Let $C\supseteq C_{0}$ be submodules of M If $C$ and $C_{0}$ are
complemented in $M$ and $C$ repectively, then so is $C_{0}$ in $M$.

(ii) If $C\supsetneqq C_{0}$ are complemented submodules, then for each complement
$C_{0}^{c}$ of $C_{0}$ there exists a complement $C^{c}$ of $C$ such that $C^{c}\subseteqq C_{0}^{c}$ .

Proof. (i) is an immediate consequence of Th. 2.3 and Prop. 1.7. Now,
let $X$ be a complement of $C\cap C_{0}^{c}(\neq 0)$ in $C_{0}^{c}$ . As $C\cap X\subseteq C\cap C_{0}^{c}$ and
$(C\cap C_{0}^{c})\cap X=0,$ $C\cap X=0$ . Since $(C\cap C_{0}^{c})\oplus X$ is dense in $C_{0}^{c},$ $C_{0}\oplus((C\cap C_{0}^{c})\oplus X)$

is dense in $M$ (Cor. to Prop. 1. 1), and therefore $C\oplus X$ is dense in $M$. If we
take a complement $C^{c}$ with $C^{c}\supseteq X,$ $X$ is dense in $C^{c}$ . Hence, as $X$ is com-
plemented in $M$ by (i), we have $C^{c}=X(\subseteq C_{0}^{c})$ . And, as $c_{\neq}^{-\supset}c_{0}-,$ $C^{c}\subseteqq C_{0}^{c}$ (Prop.

1.7 $(i))$ .
$M$ is said to be locally uniform if every non-zero submodule of $M$ con-

tains a uniform submodule. And $M$ is said to be finite-dimensional if every
independent subset of $\mathfrak{M}$ is finite (Goldie [2]). In the rest of this section, by
making use of complemented submodules, we shall characterize these two types
of modules.

Theorem 2. 7. The following conditions are equivalent to one another:
(i) $\Lambda\prime I$ is locally unzform.
(ii) Every non-zero complemented submodule contains a minimal com-

plemented submodule.
(iii) Every proper complemented submodule is contained in a maximal

complemented submodule.
Proof. $(i)\Rightarrow(ii)$ will be easily seen by Th. 2.3 and its corollary.

$(ii)\Rightarrow(iii)$ . Let $C$ be a proper complemented submodule. By assumption, $C^{c}\neq 0$

contains a minimal complemenied submodule $V$. If we take a complement $V^{c}$

containing $C$ then, by Prop. 2.5, $V^{c}$ is a maximal complemented submodule.
$(iii)\Rightarrow(i)$ . For any $A\in \mathfrak{M},$ $A^{c}$ is contained in a maximal complemented sub-
module $C$. By Th. 2.6, $A^{cc}$ contains a complement $C^{c}$ of $C$, and $A\cap C^{c}\neq 0$ ,

for $A$ is dense in $A^{cc}$ . Since $C$ is a maximal complemented submodule, $C^{c}$ is
uniform by Prop. 2.5. Hence $A$ contains a uniform submodule $A\cap C^{c}$ .

The part $(i)\Leftrightarrow$ (iii) of the following theorem was given in [2; Lemma
(1. 1)].
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Theorem 2. 8. The following conditions are equivalent to one another:
(i) $M$ is finite-dimensional.
(ii) The descending chain condition holds for complemented submodules

of $M$.
(iii) The ascending chain condition holds for complemented submodules

of $M$

Proof. If $c\neq\subset C^{\prime}$ are complemented submodules then $C\oplus X\subseteq C^{\prime}$ for some
$X\in \mathfrak{M}$ . From this fact, $(i)\Rightarrow(ii)$ and $(i)\Rightarrow(iii)$ will be easily seen. Next, if
$ C_{1}\supsetneqq C_{2}\supsetneqq C_{3\neq}\supset\cdots$ is an infinite descending chain of complemented submodules
then for any $C_{i}^{c}$ we can choose a complement $C_{i+1}^{c}$ of $C_{i+1}$ with $C_{i}^{c,}\subseteq C_{i+1}^{c}$ .
Then, as $C_{i}^{-}\supsetneqq C_{i+1}^{-}$ , we see $C_{i}^{c}\subseteqq C_{i+1}^{c}$ . Accordingly, we can find an infinite
(strictly) ascending chain of complemented submodules, which proves $(iii)\Rightarrow(ii)$ .
To prove $(ii)\Rightarrow(i)$ , we assume that there exists an infiinite independent set
$\{X_{i} ; i=1,2, \cdots\}\subseteq \mathfrak{M}$ , and set $ Y_{n}=X_{n}\oplus X_{n+1}\oplus\cdots$ . Then, by Th. 2.3, for any
double complement $Y_{n}^{cc}$ of $Y_{n}$ we can find a double complement $Y_{n- 1}^{cc}$ with
$Y_{n}^{cc}\supseteq Y_{n+1}^{cc}$ . Evidently, there holds $Y_{n}^{cc-}(=Y_{n}^{-})\supsetneqq Y_{n+1}^{-}$ , so that $Y_{n}^{cc}\supsetneqq Y_{n+1}^{cc}$ .
Hence there exists an infinite descending chain of complemented submodules:
$ Y_{1\neq}^{cc\supset}Y_{2}^{cc}\supsetneqq Y_{3}^{cc}\supsetneqq\cdots$ . This proves $(ii)\Rightarrow(i)$ , completing the proof.

By Theorems 2.7 and 2.8, we readily obtain
Corollary. $M$ is finite-dimensional if and only $\iota fM$ is locally uniform

and dim $ M<\infty$ .
Let $\{N_{\lambda} ; \lambda\in\Lambda\}$ be a non-empty set of submodules of $M$. The meet $\cap N_{\lambda}$

is said to be irredundant if $\bigcap_{\lambda\neq\lambda_{0}}N_{\lambda}\supsetneqq\cap N_{\lambda}$ for every $\lambda_{0}\in\Lambda$ . And the meet
$\cap N_{\lambda}$ is said to be s-irredundant $\iota f(\bigcap_{\lambda\neq\lambda_{0}}N_{\lambda})^{-}\supsetneqq(\cap N_{\lambda})^{-}$ for every $\lambda_{0}\in\Lambda$ . Evi-
dently, an s-irredundant meet is irredundant. If $\cap N_{\lambda}$ is irredundant [s-irredundant]
then, for any non-empty subset $\Lambda_{0}$ of $\Lambda,$ $\bigcap_{\lambda\in\Lambda_{0}}N_{\lambda}$ is also irredundant [s-irredun-
dant]. To see these, assume first $\cap N_{\lambda}$ be irredundant. If $\bigcap_{\lambda\epsilon\Lambda_{0}}N_{\lambda}=\bigcap_{\lambda\in\Lambda_{0}-\{\lambda_{0}\}}N_{\lambda}$

for some $\lambda_{0}\in\Lambda_{0}$ , then $\cap N_{\lambda}=\bigcap_{\lambda 4\lambda_{0}}N_{\lambda}$ , a contradiction. Next, assume $\cap N_{\lambda}(\neq M)$

be s-irredundant and $C$ a complement of $\cap N_{\lambda}$ . Then, $(\bigcap_{\lambda\neq\lambda_{0}}N_{\lambda})\cap C\neq 0$ for
arbitrary $\lambda_{0}$ , so that for $A=(\bigcap_{\lambda\in 4-A_{0}}N_{\lambda})\cap C$ we have $A\cap(\bigcap_{\lambda\in A_{0}}N_{\lambda})=0$ and
$A\cap(\bigcap_{\lambda\epsilon_{/1_{0}-\{\lambda_{0}\}}}N_{\lambda})\neq 0(\lambda_{0}\in\Lambda_{0})$ . If $\cap N_{\lambda}$ is a complemented submodule and irredun-
dant then it is s-irredundant by Prop. 1.7.

Assume now that $M$ is locally uniform, and let $\{V_{\lambda} ; \lambda\in\Lambda\}$ be a maxilnal
independent set of uniform submodules of $M$ For each $V_{\lambda_{0}}$ , choose a com-
plement $V_{\lambda_{0}}^{c}$ containing $\sum_{\lambda\neq\lambda_{0}}V_{\lambda}$ . Then there holds $\cap V_{\lambda}^{c}=0$ . If not, non-zero

$\cap V_{\lambda}^{c}$ contains a uniform submodule, and so by the maximality of $\{V_{\lambda}\}$ ,
$(\cap V_{\lambda}^{c})\cap(\sum V_{\lambda})\neq 0$ . Hence $V_{\lambda_{1}}^{c}\cap\cdots\cap V_{\lambda n}^{c}\cap(V_{\lambda}\oplus\cdots\oplus V_{\lambda_{n}})\neq 0$ for some finite
subset $\{V_{\lambda_{i}}\}$ . On the oiher hand, by the modular law, we can show
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$V_{\lambda_{1}}^{c}\cap\cdots\cap V_{\lambda_{n}}^{c}\cap(V_{\lambda}\oplus\cdots\oplus V_{\lambda_{n}})=0$ . This contradiction proves $\cap V_{\lambda}^{c}=0$ . Since
$\bigcap_{\lambda\neq\lambda_{0}}V_{\lambda}^{c}\supseteq V_{\lambda_{0}}$ for all $\lambda_{0},$ $\cap V_{\lambda}^{c}=0$ is irredundant, and eace $V_{\lambda}^{c}(\neq M)$ is a maximal
complemented submodule by Prop. 1. 13, Prop. 1.14 and Prop. 2.5. Next, let
$\bigcap_{\nu}C=0$ be an irredundant meet of maximal complemented submodules.
Then, as $C_{\nu_{0}}\cap(\bigcap_{\nu\neq\nu_{0}}C_{\nu})=0$ for all $\nu_{0}$ , each $\bigcap_{\nu\neq\nu_{0}}C_{\nu}$ is uniform by Prop. 2.5,
and evidently $\{\bigcap_{\nu\neq\nu_{0}}C_{\nu} ; \nu_{0}\in N\}$ is independent. The first assertion of the
following theorem is thus an easy consequence of Th. 2.2.

Theorem 2. 9. (i) Every proper complemented submodule $C$ of $M$ with
locally unzform $M/C$ can be represented as an s-irredundant meet ofmaximal
complemented submodules, and codim $C(=\dim M/C)$ coincides with the
maximum of the number of maximal comPlemented submodules aPpearing
in an s-irredundant representation of $C$.

(ii) If $A=C_{1}\cap\cdots\cap C_{n}$ is an s-irredundant finite meet of maximal com-
plemented submodules then $A$ is complemented, $M/A$ is finite-dimensional,
and $n$ coincides with codim $A(=\dim M/A)$ .

Proof. If is only left to prove (ii). As $(\bigcap_{i\neq i_{0}}C_{i})^{-}\supsetneqq A^{-}$ by assumption,
we have $V_{i_{0}}=(\bigcap_{i\neq i_{0}}C_{i})\cap A^{c}\neq 0$ for all $i_{0}$ . And then, as $V_{i}\cap C_{i}=0$ , each $V_{i}$

is uniform by Prop. 2.5, and $\sum V_{i}=\sum\oplus V_{i}\subset A^{c}$ . Hence, $n\leq\dim A^{c}=$

codim $A$ . Each $M/C_{i}$ is uniform by Prop. 2.5, and the direct sum $M^{*}=$

$\sum\oplus M/C_{i}$ is locally uniform by Prop. 1.3, so that $M^{*}$ is finite-dimensional by
Cor. to Th. 2.8. Since $M/A$ is a subdirect sum of $M/C_{i}’ s$ and $(C_{I}+$

$\bigcap_{i\neq 1}C_{i})/C_{1}\oplus\cdots\oplus(C_{n}+\cap {}_{i\neq n}C_{i})/C_{n}$ is dense in $M^{*}$ by Cor. to Prop. 1.1, $M/A$

is dense in $M^{*}$ , whence it follows dim $M/A=\dim M^{*}=n$ and that $M/A$ is
finite-dimensional. Now, $A^{c}$ being embedded in $M/A$ , dim $M/A=n\leq\dim A^{c}$

yields the equality between them and the density of $A^{c}$ in $M/A$ , which means
that $A$ is complemented (Prop. 1.13).

Corollary. $M$ is finite-dimensional if and only $\iota fM$ has a finite set
of maximal complemented submodules which has zero intersection. If it is
the case, a complemented submodule is nothing but an s-irredundant (finite)
meet of maximal complemented submodules. (Cf. [2; Lemma (3.7)].)

Proof. Let $M$ be finite-dimensional. If $C$ is a proper complemented sub-
module, $C^{c}$ being dense in $M/C,$ $M/C$ is finite-dimensional (so that locally
uniform). $C$ is therefore an s-irredundant finite meet of maximal complemented
submodules by Th. 2.9 (i). The first assertion and the converse of the second
one are evident by Th. 2.9.

A finite chain of submodules of $M:0=C_{0}\subsetneqq C_{\downarrow\neq\neq}\subset\cdots\subset C_{n}=M$ is called a
c-composition series of $M$ if each $C_{i}$ is a maximal complemented submodule of
$C_{t+1}$ . If $0=C_{0\neq}C_{1\neq\neq}C_{n}=M$ is a c-composition series of $M$, then each $C_{i}$
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is complemented in $M$ by Th. 2.6 and $C_{i}/C_{i- 1}$ is uniform by Prop 2.5. If
$V_{i}$ is a complement of $C_{i- 1}$ in $C_{i},$ $V_{i}$ is uniform by Prop. 2.5 and dense in
$C_{i}/C_{i-1}$ . Since each $C_{i- 1}\oplus V_{i}$ is dense in $C_{i}$ , so is $V_{1}\oplus\cdots\oplus V_{n}$ in $M$ (cf. Cor.
to Prop. 1. 1). Hence, $M$ is finite dimensional and $n=\dim M$. Conversely, if
$M$ is finite-dimensional then Th. 2.8 secures the existence of a c-compoistion
series. Combining the above with Th. 1.10, we readily obtain the following:

Proposition 2. 10. $M$ is finite-dimensional if and only if $M$ has a c-
composition series. If it is the case, the length of any c-composition series
of $M$ is equal to dim $M$ and for any two c-composition series $ O=C_{0\neq\neq}\subset c_{1}\subset$

$...\subset\neq c_{n}=M$ and $0=C_{0\neq}^{\prime\subset}C_{1\neq\neq}^{\prime\subset\ldots\subset}C_{n}^{f}=M$ there exists $a$ 1-1 mapping $f$ of
$\{C_{i}/C_{i-1} ; i=1,2, \cdots,n\}$ onto $\{C_{i}^{\prime}/C_{i-1}^{\prime} ; i=1,2, \cdots,n\}$ such that $C_{i}/C_{i-1}\sim f\langle C_{i}/C_{i- 1}$ )

$fo\check{r}$ all $i$ .

\S 3. Throughout this section we assume that the d.c-correspondence is $\dot{a}$

)

closure operation, or what is the same, $X^{cc}(X\in \mathfrak{M})$ is uniquely determined by
$X$ (Cor. 1. to Th. 2. 3).

Proposition 3.1. If the d.c-correspondence is a closure opention, then
there hold the following:

(i) $A$ finite or infinite meet of complemented submodules is comple-
mented.

(ii) For any $A,$ $B\in \mathfrak{M},$ $A\cap B^{cc}$ is the unique double complement of
$A\cap B$ in $A$ .

(iii) For $A,$ $B\in \mathfrak{M},$ $A^{-}\subseteq B^{-}\iota f$ and only if $A^{cc}\subseteq B^{cc}$ . Consequently, $A^{-}$

$=B^{-}$ if and only $\iota fA^{cc}=B^{cc}$ .

Proof. (i). Let $C_{\lambda}(\lambda\in\Lambda)$ be complemented submodules. Then, as $\cap C_{\lambda}\subseteq C_{\lambda_{0}}$

for all $\lambda_{0},$ $(\cap C_{\lambda})^{cc}\subseteq C_{\lambda_{0}}$ for all $\lambda_{0}$ by Prop. 1.7, and hence $(\cap C_{\lambda})^{cc}\subseteq\cap C_{\lambda}$ , that
is, $(\cap C_{\lambda})^{cc}=\cap C_{\lambda}$ . (ii). Let $0\neq(A\cap B)^{\prime}$ be a double complement of $A\cap B$ in
$A$ , then $(A\cap B)^{\prime}\subseteq(A\cap B)^{cc}\subseteq B^{cc},$

$a\dot{n}d$ so $(A\cap B)^{\prime}\subseteq A\cap B^{cc}$ . Since $B$ is dense
in $B^{cc}$, so is $A\cap B$ in $A\cap B^{cc}$ by Prop. 1.4. Hence $(A\cap B)^{\prime}=A\cap B^{cc}$ . (iii).
By Prop. 1. 4, if $A^{-}\subseteq B^{-}$ then $A^{-}=(A\cap B)^{-}$ . Hence $A^{cc}=(A\cap B)^{cc}\subseteq B^{cc}$.
Conversely, if $A^{cc}\subseteq B^{cc}$ then $A^{-}=(A^{cc})^{-}\subseteq(B^{cc})^{-}=B^{-}$ .

Under the same notations as in Th. 1.11, we obtain the following.

Theorem 3.2. If the d.c-correspondence is a closure operation, then
there hold the following:

(i) $(\sum_{\lambda\epsilon A_{P_{0}}}V_{\lambda})^{cc}$ depends on $P_{0}$ only (and is independent of the choice of
$\{V_{\lambda}\})$ . We set then $C(P_{0})=(\sum_{\lambda\in\Lambda_{P_{0}}}V_{\lambda})^{cc}$ .

(ii) $(\sum_{\lambda\in\Lambda_{P_{0}}}V_{\lambda})^{c}$ depends on $P_{0}$ only (and is independent of the choice of
$\{V_{\lambda}\}$ and complements).
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(iii) $C(P_{0})$ and $C(P_{0})^{c}$ are the unique complements of each other. $C(P)$

is zero or the unique maximal locally uniform submodule, and $C(P)^{c}$ is the
unique maximal submodule containing no uniform submodules, and is the
meet of all maximal complemented submodules.

Proof. (i) and (ii) are immediate consequences of Th. 1. 11 and Prop..
3. 1 (iii). (iii). By (i) and (ii), $C(P_{0})^{c}$ is evidently the unique complement of.
$C(P_{0})$ . Let $C$ be a complement of $C(P_{0})^{c}$ . Then $C\sim C(P_{0})$ by Prop. 1. 13. If
$C^{-}\not\in C(P_{0})^{-}$ , then $X\subseteq C$ and $X\cap C(P_{\mathfrak{v}})=0$ for some $X\in \mathfrak{U}t$ . As $ C\sim C(P_{0})\sim$

$\sum_{\lambda\epsilon_{4_{P0}}}V_{\lambda}$ , we may assume that $X(\subseteqq C)$ is isomorphically mapped in $\sum_{\lambda\in A_{P_{0}}}V_{\lambda}$ .
Then, by Prop. 1, 3, $X$ contains a uniform submodule $U$ such that $\tilde{U}\in P_{0}$ . As
$X\cap C(P_{0})=0,$ $U\cap\Sigma_{\lambda\epsilon_{/}4_{P_{0}}}V_{\lambda}=0$ . But this contradicts that $\{V_{\lambda} ; \lambda\in\Lambda_{P_{0}}\}$ is a
maximal independent subset of $\bigcup_{\rho\in P_{0}}\rho$ . Hence $C^{-}\subseteq C(P_{0})^{-}$ , and so, by Prop.
3.1 (iii), $C=C^{cc}\subseteq C(P_{0})^{rc}=C(P_{0})$ . Since $C$ is a complement of $C(P_{0})^{c}$ and
$C(P_{0})^{c}\cap C(P_{0})^{cc}=0$ , we have $C=C(P_{0})$ . Hence $C(P_{0})$ is the unique complement
of $C(P_{0})^{c}$ . Evidently $C(P)^{c}$ does not contain a uniform submodule, and $C(P)$

is locally uniform, because locally uniform $\sum V_{\lambda}$ is dense in $(\sum V_{i})^{r_{4}c}-\neg C(P)$ .
If $A$ is a locally uniform submodule, then $A\cap C(P)^{c}=0$ , and so $A\subseteq C(P)^{c}‘‘=$

$C(P)$ . If $B$ is a submodue containing no uniform submodules, then $B\cap C(P)=0$ ,
and so $B\subseteq C(P)^{c}$ . Next, if $C_{1}$ is a maximal complemented submodule, then
$C_{1}^{c}$ is uniform, and $C_{1}^{c}$ is contained in the unique maximal locally uniform
submodule $C(P)$ . Hence, by Th. 2.6, the unique complement $C(P)^{c}$ of $C(P$}
is contained in $C_{1}$ . By Prop. 2.5, the meet of all maximal complemented
submodules does not contain a uniform submodule, and hence it is contained
in $C(P)^{c}$ . Hence we conclude that $C(P)^{c}$ coincides with the meet of all maximal
complemented submodules.

Theorem 3.3. If the $d$. c-correspondence is a closure operation, then the
following conditions are equivalent to one another:

(i) $M$ is locally unzform.
(ii) The meet of all maximal complemented submodules is zen.
(iii) $M$ is an irredundant subdirect sum of uniform modules.

Proof. Since $M/C(P)^{c}(\sim C(P))$ is locally uniform, $C(P)^{c}$ is an irredundant
meet of maximal complemented submodules by Th. 2.9. Since $C(P)$ is the
meet of all maximal complemented submodules and the unique maximal sub-
module containing no uniform submodules, our equivalences will be obvious.

Theorem 3.4. If the $d$. c-correspondence is a closure operation then, for
$A,$ $B\in \mathfrak{M}$ , there hold dim $A+\dim B=\dim(A\cap B)+\dim(A+B)$ and $\rho$-dim $A+$
$\rho$-dim $ B=\rho$-dim $(A\cap B)+\rho$-dim $(A+B)(\rho\in P)$ .

Proof. Since $B^{rc}$ and $A^{cc}\cap B^{rc}=(A^{rc}\cap B^{cc})^{cc}$ are complemented in $A^{cc}+B^{cc}$
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and $A^{cc}$ respectively, we have $\rho$-dim $(A^{cc}+B^{cc})=\rho$-dim $(A^{cc}+B^{cc})/B^{cc3)}+\rho$-dim $B^{ec}$

and P-dim $ A^{cc}=\rho$-dim $ A^{cc}/(A^{cc}\cap B^{cc})+\rho$-dim $(A^{cc}\cap B^{cc})$ (Prop. 1. 12 and Prop.
1.13). Now, $(A^{cc}+B^{cc})/B^{cc}$ is isomorphic to $A^{cc}/(A^{cc}\cap B^{cc})$ , and so $\rho$-dim $(A^{cc}$

$+B^{cc})/B^{cc}=\rho$-dim $A^{cc}/(A^{cc}\cap B^{cc})$ . Hence $p$-dim $(A^{cc}\cap B^{cc})+p$-dim $(A^{cc}+B^{cc})=$

$\rho-\dim A^{cc}+\rho-\dim B^{cc}$ . By Prop. 1.4, $A\cap B$ is dense in $A^{cc}\cap B^{cc}$ , and so
$\rho$-dim $(A\cap B)=\rho$-dim $(A^{cc}\cap B^{cc})$ . Since $A$ and $B$ are dense in $A^{cc}$ and $B^{cc}$

respectively, $\rho$-dim $ A=\rho$-dim $A^{cc}$ and $\rho$-dim $ B=\rho$-dim $B^{cc}$ . Hence, as $\rho$-dim $(A+$

$ B)\leq\rho$-dim $(A^{cc}+B^{cc})$ , we have $\rho$-dim $(A\cap B)+\rho$-dim $(A+B)\leq P-\dim A+\rho$-dim $B$ .
Next, we take a maximal independent set $\{U_{\lambda}\}$ of $\rho(A\cap B)=\{X\in\rho;X\subseteq- 4\cap B\}$ ,
which can be extended to maximal independent sets $\{U_{\lambda}\}\cup\{A_{\mu}\},$ $\{U_{\lambda}\}\cup\{B_{\nu}\}$

of $P(A)$ and $\rho(B)$ , respectively. Then $\{U_{\lambda}\}\cup\{A_{t}\}\cup\{B_{\nu}\}$ is an independent
set of $\rho(A+B)$ . Because, if $(\sum A_{\mu}+\sum U_{\lambda})\cap\sum B_{\nu}\neq 0$ , then by Prop. 1.3, this
contains a member of $\rho(A\cap B)$ , and hence $0\neq\sum U_{\lambda}\cap((\sum A_{\mu}+\sum U_{\lambda})\cap\sum B_{\nu})=$

$\sum U_{\lambda}\cap\sum B_{\nu}$ , a contradiction. Thus we have $\rho$-dim $(A\cap B)+\rho-\dim(A+B)\geq P-$

dim $ A+\rho$-dim $B$ . Hence P-dim $(A\cap B)+\rho$-dim $(A+B)=\rho$-dim $A+P$-dimB for
every $\rho\in P$, and dim $(A\cap B)+\dim(A+B)=\dim A+\dim B$.

The d.c-closure operation (in $M$) is called continuous if for each endomor-
phism $\varphi$ of $M$ the inverse image $C\varphi^{-1}$ of any complemented submodule $C$ of
$M$ is complemented in $M$.

Proposition 3.5. If the $d$. c-correspondence is a closure operation, then
the following conditions are equivalent:

(i) The $d$. c-closure operation is continuous.
(ii) $X^{cc}\varphi\subseteq(X\varphi)^{cc}$ for any $X\in \mathfrak{M}$ and any endomorphism $\varphi$ of $M$.
(iii) For any endomorphism $\varphi$ of $M$, Ker $\varphi$ is a complemented submodule

of $M$

Proof. $(i)\Rightarrow(ii)$ . As $X\varphi\subseteq(X\varphi)^{cc},$ $X\subseteq(X\varphi)^{cc}\varphi^{-1}$ . Since $(X\varphi)^{cc}\varphi^{-1}$ is com-
plemented, $X^{cc}\subseteq(X\varphi)^{cc}\varphi^{-1}$ and so $X^{cc}\varphi\subseteq(X\varphi)^{cc}$ . $(ii)\Rightarrow(iii)$ . $(Ker\varphi)^{cc}\varphi\subseteq$

$((Kea\varphi)\varphi)^{cc}=0^{cc}=0$ , and hence Ker $\varphi=(Ker\varphi)^{cc}$, as desired. $(iii)\Rightarrow(i)$ . We
may assume $\varphi\neq 0$ . If $C$ is a complemented submodule of $M$, then $ C\cap M\varphi$ is
complemented in $M\varphi$ , by Prop. 3.1 (ii). Now, $ M/Ker\varphi\equiv M\varphi$ , and Ker $\varphi$ is
complemented in $M$ by assumption. Since $C\varphi^{-1}=(C\cap M\varphi)\varphi^{-1},$ $ C\varphi^{-1}/Ker\varphi$ is
complemented in $ M/Ker\varphi$ . Hence $C\varphi^{-1}$ is complemented in $M$, by Th. 2.2.

Let $K$ be the $(R_{-})$ endomorphism ring of $M$ acting on the right. If the
d.c-closure operation is continuous then, by Prop. 3.5. (ii), the (R-) double
complement of any R-K-submodule is also an R-K-submodule. We set $H(\rho)=$

$\sum_{V\epsilon\rho}V$, and $H(P_{0})=\sum_{\rho\in P_{0}}H(\rho)$ . Each $H(\rho)$ is called an $(R_{-})$ homogeneous com-
ponent of M. $H(P_{0})\subseteq C(P_{0})$ by Th. 3.2 (i), and evidently $H(P_{0})$ is dense in

3) For $A\in \mathfrak{M},$ $A\sim M/A^{c}$ by Prop. 1. 13.
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$C(P_{0})$ , that is, $H(P_{0})^{ct}=C(P_{0})$ .
Theorem 3.6. If the $d$. c-correspondence is a continuous closure opera-

tion, then there hold the following:
(i) The contnction of an endomorphism of $M$ to a unzform submodule

is zero or 1-1.
(ii) For any non-empty subset $P_{0}$ of $P,$ $H(P_{0}),$ $C(P_{0})(=H(P_{0})^{cc})$ and

$C(P_{0})^{c}$ are all R-K-submodules of $M$.
(iii) For any direct summand $C\in \mathfrak{M}$ of $M$, the $d.c$-correspondence in $C$

is a continuous closure operation.

Proof. (i). Let $V\in \mathfrak{M}$ be uniform, and let $\varphi$ be any endomorphism of
$M$. If $ V\cap$ Ker $\varphi\neq 0$ , then $V\subseteq V^{cr}=$ $(V\cap$ Ker $\varphi)^{cc}\subseteq(Ker\varphi)^{cr}=Ker\varphi$ , and hence
$V\varphi=0$ . (ii). $H(P_{0})$ is R-K-admissible by (i), so that $H(P_{0})^{cc}=C(P_{0})$ is. Next,
if $C(P)^{c}$ is not K-admissble then $C(P)^{c}\varphi$ contains a uniform submodule for
some endomorphism $\varphi$ of $M$ by Th. 3.2 (iii). Then, for some non-zero sub-
module $A$ contained in $C(P)^{c},$ $ A\varphi$ is uniform, so that $(A\varphi)^{cc}$ is uniform and
$A^{cr,}\varphi\subseteq(A\varphi)^{cc}$ . Since Ker $\varphi$ is a complemented submodule, Ker $\varphi\cap A^{cc}$ is a com-
plemented submodule of $M$ properly contained in $A^{cc}$ . Hence there exists some
$X\in \mathfrak{M}$ with $(Ker\varphi\cap A^{cc})\oplus X\subseteq A^{cc}$ . Then, $\varphi$ maps $X$ isomorphically into the
uniform submodule $(A\varphi)^{\leftrightarrow}$ , and hence $X$ is uniform. Accordingly, $A$ being
dense in $A^{cc},$ $A$ contains a uniform submodule $A\cap X$. This contradiction
proves that $C(P)^{c}$ is R-K-admissible. We set $P_{1}=P-P_{0}$ . Then, since $C(P)^{c}$

$+C(P_{1})+C(P_{0})=C(P)^{c}\oplus C(P_{1})\oplus C(P_{0}),$ $C(P)^{c}+C(P_{1})$ is contained in $C(P_{0})^{c}$ , so
that dense in $C(P_{0})^{c}$ . Hence, as $C(P)^{c}+C(P_{1})$ is R-K-admissible, so is $(C(P)^{c}$

$+C(P_{1}))^{cc}=C(P_{0})^{c}$ . (iii). By Prop. 3.1 (ii), the $d$ . c-correspondence in $C$ is
a closure operation. Any endomorphism $\varphi$ of $C$ can be extended to an endo-
morphism $\overline{\varphi}$ of $M$. Let $C_{0}$ be a complemented submodule of $C$. As $C_{0}$ is
complemented in $M$ by Th. 2.6 (i), $C_{0}\overline{\varphi}^{-1}$ is complemented in $M$, and therefore
$C\cap C_{0}\overline{\varphi}^{-1}=C_{0}\varphi^{-1}$ is complemented (in $M$, and so) in $C$.

\S 4. Quasi,injective modules. A unital R-left module $M$ is said to be
R-quasi-injective, if every R-homomorphism of any R-submodule into $M$ can
be extended to an R-endomorphism of $M$ (cf. [6]). Throughout this section,
“quasi-injective” implies always “R-quasi-injective”.

Proposition 4. 1. $M$ is (R-) quasi-injective $\iota f$ and only if $M\cdot Hom_{R}(\hat{M},\hat{M})$

$\subseteq M$, where $\hat{M}$ is the R-injective envelope of M. (See [6; Theorem 1. 1].)

Corollary. Let $M$ be quasi-injective, and let $\{A_{\lambda} ; \lambda\in\Lambda\}$ be an independent
set of submodules of M. Then $M\cap\sum A_{\lambda}=\sum(M\cap A_{\lambda})$ .
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Proof. Let $\varphi_{\lambda}$ be the projection to $A_{\lambda}$ . Then, each $\varphi_{\lambda}$ can be extended
to an endomorphism $\overline{\varphi}_{\lambda}$ of $\hat{M}$ . Let $u=u_{\lambda_{1}}+\cdots+u_{\lambda_{n}}$ be any element of
$M\cap\sum A_{\lambda}$ , where $u_{i_{i}}\in A_{\lambda_{i}}(i=1,2,\cdots, n)$ . Then, since $M$ is quasi-injective,
$u_{\lambda_{i}}=u\varphi_{\lambda_{i}}=u\overline{\varphi}_{\lambda_{i}}\in M$ by Prop. 4. 1. Hence $M\cap\sum A_{\lambda}\subseteq\sum(M\cap A_{\lambda})$ . As $M\cap\sum A_{\lambda}$

$\supseteq\sum(M\cap A_{\lambda})$ is obvious, we have $M\cap\sum A_{\lambda}=\sum(M\cap A_{\lambda})$ .
Porosition 4. 2. (i) Let $M_{i}(i=1,2)$ be non-zero R-left modules, and

let $\varphi$ be an R-left homomorphism of $M_{1}$ into $M_{2}$ . If a contraction of $\varphi$ to
a dense R-submodule $M_{10}$ of $M_{1}$ is 1-1, then so is $\varphi$ .

(ii) Let $M_{i}(i=1,2)$ be non-zen R-left modules. Then, $M_{1}\sim M_{2}$ (similar)
$ z\beta$ and only if $\hat{M}_{1}\cong\hat{M}_{2}$ , where $\hat{M}_{i}$ means the R-injective envelope of $M_{i}$ .

(iii) Every complemented R-submodule of an injective R-left module $I$

is an R-direct summand of $I$.
Proof. (i). Since $M_{10}$ is dense in $M_{1}$ , Ker $\varphi\cap M_{10}=0$ yields Ker $\varphi=0$ .

(ii). If a dense R-submodule $M_{10}$ of $M_{1}$ is isomorphic to a dense R-submodule
$M_{20}$ of $M_{2}$ , then $\hat{M}_{1}=\hat{M}_{10}\equiv\hat{M}_{20}=\hat{M}_{2}$ . Hence $M_{1}\equiv\hat{M}_{2}$ . Conversely, assume
$\hat{M}_{1}\cong\hat{M}_{2}$ , then $M_{1}\sim\hat{M}_{1}\equiv\hat{M}_{2}\sim M_{2}$ . Hence $M_{1}\sim M_{2}$ . (iii). For any R-sub-
module of $I$, its R-injective envelope is embedded isomorphically in $I$. Hence,
by Prop. 1.7, every R-complemented submodule of $I$ is R-injective, and is an
R-direct summand of $I$.

Theorem 4.3. Let $M$ be quasi-injective, and let $C$ be a complemented
submodule of M Then $C$ is (R-) quasi-injective, and $M=C\oplus C^{c}$ for every
complement $C^{c}$ of $C$.

Proof. $C\oplus C^{C}$ is dense (in $M$, and so) in $\hat{M}$ . Let $C^{dd}$ and $(C^{c})^{dd}$ be
double complements of $C$ and $C^{c}$ in $\hat{M}$ respectively. Then $C^{dd}\oplus(C^{c})^{dd}$ is injective
by Prop. 4.2 (iii), and dense in $\hat{M}$ , and hence $\hat{M}=C^{dcl}\oplus(C^{c})^{\iota lcl}$ . By Cor. to Prop.
4.1, $M=(M\cap C^{dd})\oplus(M\cap(C^{c})(l(l)$ . As $M\cap C^{ld}=C$ and $M\cap(C^{r})^{dd}=C^{c}$ by Th.
2.1, we have $M=C\oplus C^{c}$ . Next, let $A$ be any submodule of $C$, and $\varphi$ any
homomorphism of $A$ into $C$. Then $\varphi$ can be extended to an endomorphism
$\varphi_{1}$ of $C^{dl}$, because $C^{cl_{l}l}$ is injective. Furthermore, $\varphi_{1}$ can be extended to an
endomorphism $\varphi_{2}$ of $\hat{M}$ , and, as $C=M\cap C^{dd},$ $C^{ltl}\varphi_{2}=C^{l\iota l}\varphi_{\iota}\subseteq C^{drl}$ and $M\varphi_{2}\subseteq M$

yield $C\varphi_{2}\subseteq M\cap C^{eld}=C$. The contraction of $\varphi_{2}$ to $C$ is an extension of $\varphi$ to an
endomorphism of $C$.

Proposition 4.4. Let $M$ be quasi-injective. Then there hold the
following:

(i) Every extension of an isomorphism between dense submodules of $\Lambda f$

is always an automorphism of $M$

(ii) If $A\sim B(\angle\not\subset, B\in \mathfrak{M})$ then $A^{cc}\equiv B^{cc}$ .
Proof. (i). By Prop. 4.2 (i), this is evident. (ii). If $A\sim B$, then $(A^{cc_{\text{ノ}}})^{dd}\equiv$
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$(B^{cc})^{dd}$ by some isomorphism $\varphi$ , because $(A^{cc})^{cld}$ and $(B^{rc})^{\iota ld}$ are injective envelopes
of $A$ and $B$, respectively (Prop. 4.2 (iii)). And, $\varphi$ is given by some endo-
morphism $\varphi_{1}$ of $\hat{M}$ . Since $M$ is quasi-injective, $ A^{c_{\iota}\sim}\varphi=A^{cc}\varphi_{1}=(M\cap(A^{cc})^{dd})\varphi\subseteq$

$M\cap(B^{rc})^{dd}=B^{cc}$ (Th. 2.1), and symmetrically $B^{cc}\varphi^{-1}\subseteq A^{cc}$ , and hence $A^{cc}\varphi_{1}=B^{cc}$ .
Now, for quasi-injective modules, Th. 1.10 can be sharpened as follows.
Theorem 4. 5. Let $M$ be quasi-injective, and let $\{V_{\lambda} ; \lambda\in\Lambda\}$ and { $W_{\gamma}$ ;

$\gamma\in\Gamma\}$ be maximal independent sets of complemented unzform submodules.
Then there exists $a$ 1-1 mapping $f$ of $\Lambda$ onto $\Gamma$ such that $V_{\lambda}\cong W_{f(i)}$ for all

$\lambda\in\Lambda$ . Furthermore there exists an automorphism $\varphi$ of $M$ such that $V_{\lambda}\varphi=W_{f(\lambda)}$

for all $\lambda\in\Lambda$ .
Proof. The first half is a direct consequence of Th. 1.10 and Prop.

4.4 (ii), and then there exists an isomrophism $\varphi_{1}$ of $\sum V_{\lambda}$ onto $\sum W_{\gamma}$ such that
$V_{\lambda}\varphi_{1}=W_{f(\lambda)}$ for all $\lambda$ . By Th. 1.11, an arbitrary complement $C$ of $\sum V_{\lambda}$ is
a complement of $\sum W_{\gamma}$ as well. Hence, $x+y\rightarrow x+y\varphi_{1}(x\in C, y\in\sum V_{i})$ is an
isomorphism $\varphi_{2}$ between the dense submodules $C\oplus\sum V_{\lambda}$ and $C\oplus\sum W_{\gamma}$ , and
then $\varphi_{2}$ can be extended to an automorphism $\varphi$ of $M$ by Prop. 4.4 (i).

Corollary 1. If $M$ is quasi-injective and finite-dimensional then $M$ is
a direct sum of a finite number of quasi-injective unzform submodules, and
such a representation of $M$ is unique up to isomorphism.

Proof. By the validity of Th. 4.5, it suffices to prove that $M$ is a direct
sum of a finite number of uniform submodules. Let $\{V_{i} ; i=1, \cdots, n\}$ be a
maximal independent set of complemented uniform submodules of $M$ Then
$\{V_{i}^{\prime ld} ; i=1, \cdots, n\}$ is independent, where $V_{i}^{dd}$ is a double complement of $V_{i}$ in
$\hat{M}$ . Since each $V_{i}^{tlrl}$ is injective by Prop. 4.2 (iii), so is the sum $\sum V_{i}^{dd}$ , and
hence $\sum V_{i}^{ld}$ is a direct summand of $\hat{M}$ . On the other hand, $M$ being locally
uniform, we readily see that $\sum V_{i}^{cld}$ is dense in $\hat{M}$ , whence it follows $\hat{M}=\sum V_{i}^{td}$ .
Since $M=M\cap\sum V_{i}^{dd}=\sum(M\cap V_{i}^{dd})$ and $V_{i}=M\cap V_{i}^{rlcl}$ by Cor. to Prop. 4. 1
and Th. 2. 1, we obtain eventually $M=\sum V_{i}$ , as desired.

Corollary 2. Let $M$ be quasi-injective.
(i) Every isomorphism of a finite-dimensional submodule $A$ of $M$ into

$M$ can be extended to an automorphism of $M$.
(ii) Iffinite-dimensional submodules $A,$ $B$ of

$\cdot$

$M$ are similar, then $ A^{ac}\equiv$

$B^{cc}$ and $A^{c}\equiv B^{c}$ .
Proof. (i). Let $\varphi$ be an isomorphism of $\dot{A}$ into $M$ . As $A^{cc}$ is quasi-

injective (Th. 4.3) and finite-dimensional, $A^{cc}$ is a direct sum of a finite number
of uniform submodules (Cor. 1 to Th. 4.5). Hence, by the proof of Th. 4.5,
we can extend $\varphi$ to an automorphism $\psi$ of M. (ii). By Th. 4.3 and Prop.
4.4 (ii), $M=A^{cc}\oplus A^{c}=B^{cc}\oplus B^{c}$ and $A^{cc}\equiv B^{cc}$ . We have seen in (i) that the
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isomorphism $A^{cc}\cong B^{cc}$ can be extended to an automorphism $\psi$ of $M$. And,
$ B^{cc}\oplus B^{c}=M=M\psi=A^{cr}\psi\oplus A^{e}\psi=B^{cc}\oplus A^{c}\psi$ , whence it follows $B^{c}\equiv A^{c}\psi\equiv A^{c}$ .

Theorem 4.6. If $R$ is a left Noetherian ring with 1, and $M$ is quasi-
injective, then $M$ is a direct sum of uniform submodules, and such a repre-
sentation of $M$ is unique up to isomorphism.

Proof. For any non-zero element $u$ of $M,$ $Ru$ is an R-module with the
ascending chain condition for its submodules. Hence, $Ru$ is locally uniform
by Th. 2.7, so that $M$ is locally uniform. Now, let $\{V_{\lambda}\}$ be a maximal
independent set of complemented uniform submodules of $M$ . Each double
complement $V_{\lambda}^{rld}$ of $V_{\lambda}$ in $\hat{M}$ is injective by Prop. 4.2 (iii), and so $\sum\oplus V_{\lambda}^{ld}$ is
an injective4) dense submodule of $\hat{M}$ . Hence, $\hat{M}=\sum\oplus V_{\lambda}^{dd}$ . Recalling here
that $M\cap V_{\lambda}^{\prime ld}=V_{\lambda}$ by Th. 2. 1, Cor. to Prop. 4. 1 yields $M=M\cap\sum\oplus V_{i}^{c}u=$

$\sum\oplus(M\cap V_{\lambda}^{dd})=\sum\oplus V_{\lambda}$ . The final assertion is a consequence of Th. 4.5.
The proof of the following lemma proceeds just like in [1; Th. 22.3].

Lemma 4.7. Let $M=A\oplus B$ . In order that $B$ is R-K-admissible, it is
necessary and sufficient that $M=A\oplus B^{\prime}$ implies $B=B^{\prime}$ .

Under the same notations as in Th. 1. 11, there holds the following:

Theorem 4.8. Let the $d$. c-correspondence in a quasi-injective module
$M$ be a closure operation. If $P_{0}$ is a non-empty subset of $P$ then $M$ is the
direct sum of R-K-submodules $(\sum\lambda\in A_{P_{0}}\oplus V_{i})^{c}$ and $C(P_{0})=(\sum_{\lambda\epsilon A_{P_{0}}}\oplus V_{\lambda})^{cc}$ .

Proof. By Th. 4.3, $M=(\sum_{\lambda\epsilon A_{P_{0}}}\oplus V_{\lambda})^{c}\oplus C(P_{0})=C(P_{0})^{c}\oplus C(P_{0})$ . And, by
Th. 3.2 (iii) and Lemma 4.7, $C(P_{0})^{c}$ and $C(P_{0})$ are R-K-submodules.

Proposition 4.9. Let $M^{\prime}$ be a unital $R^{\prime}- K^{\prime}$-module, where $R^{\prime},$ $K^{\prime}$ are
rings with 1. And, assume that each R’-homomorphism of any finitely gener-
ated R’-submodule of $M^{\prime}$ into $M^{\prime}$ is induced by an element of $K^{\prime}$ .

(i) Let $u$ be a non-zen element of M. If $R^{\prime}u$ is a uniform $R^{\prime}-$

submodule and each $\alpha\in K^{\prime}$ with $u\alpha\neq 0$ induces an R’-isomorphism of $R^{\prime}u$ onto
$ R^{\prime}u\alpha$, then $uK^{\prime}$ is a minimal K’-submodule of $M^{\prime}$ , and conversely.

(ii) Let $uK^{\prime}$ and $vK^{\prime}(u, v\in M)$ be minimal K’-submodules of M. If
$R^{\prime}u$ is similar to $R^{\prime}v$ then $uK^{\prime}$ is K’-isomorphic to $vK^{\prime}$ .

Proof. (i). Assume first that $uK^{\prime}$ is minimal. If $R^{\prime}u$ is not uniform,
there exist two non-zero elements au, $bu(a, b\in R’)$ with $R^{\prime}au\cap R^{\prime}bu=0$ .
$x+y\rightarrow x(x\in R^{\prime}au, y\in R^{\prime}b\dot{u})$ defines evidently an R’-homomorphism $\varphi$ of
$R^{\prime}au\oplus R^{\prime}bu$ into $M$ , which is induced by an element 7 of $K^{\prime}$ . Since $uK^{\prime}$ is
minimal, $uK’\cong auK^{\prime}$ and $uK^{\prime}\equiv buK^{\prime}$ naturally, and hence $auK^{\prime}\cong buK$’ where

4) Since $R$ is a left Noetherian ring, every left ideal of $R$ is finitely generated. There $\cdot$

fore, every homorphic image of any left ideal of $R$ is finitely generated.
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$au\leftarrow bu$ . Therefore, as $0\neq au=(au)\varphi=au7,$ $(bu)\varphi=bu7\neq 0$ . This contra-
diction proves the uniformity of $R’ u$ . For any $\alpha\in K^{\prime}$ with non-zero $ u\alpha$ , we
have $u\alpha K^{\prime}=uK^{\prime}$ , and hence $au\alpha=0(a\in R^{\prime})$ implies $au=0$ . Conversely, assume
that $R^{\prime}u$ is a uniform R’-submodule and each $\alpha\in K^{\prime}$ with non-zero $ u\alpha$ induces
an R-isomorphism $ R^{\prime}u\equiv R^{\prime}u\alpha$ . Then, for any $\alpha$ with non-zero $ u\alpha$ , there exists
an element $\delta$ of $K^{\prime}$ such that $(u\alpha)\delta=u$ . Hence, $u=u\alpha\delta\in u\alpha K^{\prime}$ . This implies
that $uK^{\prime}$ is minimal. (ii). Let $R^{\prime}au\equiv R^{\prime}bv,$ $0\neq au\leftrightarrow bv(a, b\in R^{\prime})$ . Then,
there exists an element $\gamma\in K$ such that $au7=bv$ . Accordingly, $uK^{\prime}\equiv auK^{\prime}=$

au $7K^{\prime}=bvK^{\prime}\equiv vK^{\prime}$ , and hence $uK^{\prime}\equiv vK^{\prime}$ .

\S 5. Aunital R-left module $M$ is called an R-c. $q$ . i-module if $M$ is R-quasi-
injective and the R-d.c-correspondence in $M$ is a continuous closure operation.
We set $K=Hom_{R}(M, M)$ , which acts on the right.

Noting that the kernel of any R-endomorphism of an R-c.q.i-module is an
R-direct summand (Th. 4. 3), the next proposition will be proved as in [7;
3.3 Theorem].

Proposition 5. 1. If $M$ is an R-c. q-i-module, then $K$ is a regular ring.
Corollary. Let $M$ be an R-c. q.i-module. If $C$ and $C^{\prime}$ are R-direct

summands (or equivalently, R-complemented submodules) of $M$ then so is
$C+C^{\prime}$ (cf. [6; 1.4 Theorem]).

Proof. As is well known, $ C=M\sigma$ and $C^{\prime}=M\sigma^{\prime}$ with some idempotent
elements $\sigma,$

$\sigma^{\prime}\in K$. Then, $K$ being a regular ring by Prop. 5.1, $ K\sigma+K\sigma^{\prime}=K\epsilon$

with an idempotent element $\epsilon\in K$ , and so $M\sigma+M\sigma^{\prime}=M\cdot K\sigma+M\cdot K\sigma^{\prime}=$

$ M\cdot(K\sigma+K\sigma^{\prime})=M\cdot K\epsilon=M\epsilon$ . $C+C^{\prime}$ is therefore an R-direct summand of $M$

Theorem 5.2. Let $M$ be an R-c.q. i-module.
(i) Let $u$ be a non-zen element of M $Ru$ is unzform if and only if

$uK$ is minimal.
(ii) Every K-uniform submodule of $M$ is isomorphic to a minimal (or

equivalently, unzform) right ideal of $K$.
(iii) Let $Ru,$ $Rv(u, v\in M)$ be uniform. $Ru\sim Rv$ (similar) $zf$ and only $\iota f$

$uK\equiv vK$ (or equivalently, $uK\sim vK$ ).
(iv) The sum $H(P)$ of all R-unzform submodules of $M$ coincides with

the K-socle ($i.e$. the sum of all minimal K-submodules) of M. The set
$\{H(p);\rho\in P\}$ of all R-homogeneous components of $M$ coincides with the set
of all K-homogeneous components of (the K-socle of) $M$, and each $H(\rho)$ is a
direct sum of R-unzform submodules (as well as of minimal K-submodules).

(v) If $Ru(u\in M)$ contains an R-uniform submodule then $uK$ contains
a minimal K-submodule,and conversely. (Cf. [4; pp. 60-64 and pp. 124-126].)
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Proof. (i). Combining Prop. 3.6 (i) and Prop. 4.9 (i), it will be evident.
(ii). Let $uK(u\in M)$ be uniform, and set $r(u)=\{\alpha\in K;u\alpha=0\}$ . Then, $(Ru)^{cc}=$

$ M\epsilon$ with an idempotent $\epsilon\in K$, and $M\epsilon\cdot r(u)=(Ru)^{cc}\cdot r(u)\subseteq(Ru\cdot r(u))^{cc}=0$ by
Prop. 3.5, whence it follows $r(u)=r(M\epsilon)=(1-\epsilon)K$. Hence, we have $ uK\equiv$

$K/r(u)=K/(1-\epsilon)K\cong\epsilon K$. Since $K$ is a regular ring, a uniform right ideal of
$K$ is minimal. Hence $uK(\equiv\epsilon K)$ is minimal. (iii) and (iv). Each R-homo-
geneous component $H(\rho)$ is R-K-admissible by Th. 3.6 (ii), and is contained in
a K-homogeneous component of $M$ by (i) and Prop. 4.9 (ii). And, by (i), the
sum $\Sigma_{\rho}\oplus H(\rho)$ of all R-uniform submodules coincides with the K-socle. Now,
let $\{V_{\lambda} ; \lambda\in\Lambda\}$ be a maximal independent set of complemented R-uniform sub-
modules of $M$, and let $V$ be arbitrary R-uniform submodule of $M$ Then,
$V\cap(V_{\lambda_{1}}\oplus\cdots\oplus V_{\lambda_{n}})\neq 0$ for some finite subset $\{V_{\lambda_{i}}\}$ of {V,}, and so $V\subseteq V^{cr}=$

$(V\cap(V_{\lambda_{1}}\oplus\cdots\oplus V_{\lambda_{n}}))^{cr,}\subseteq(V_{\lambda_{1}}\oplus\cdots\oplus V_{\lambda_{n}})^{cc}=V_{\lambda_{1}}\oplus\cdots\oplus V_{\lambda_{n}}$ by Cor. to Prop. 5. 1,
whence it follows that $\Sigma_{\rho}\oplus H(\rho)=\sum_{\lambda}\oplus V_{\lambda}$ . Further, noting that $H(\rho)\supseteq$

$\sum_{\lambda\in\Lambda_{\rho}}\oplus V_{\lambda}(\Lambda_{\rho}=\{\lambda\in\Lambda;V_{\lambda}\in\rho\})$ , we obtain $H(\rho)=\sum_{\lambda\epsilon_{/1_{\rho}}}\oplus V_{\lambda}$ . Choose a K-homo-
geneous component $N$ containing $H(\rho)$ . If we set $S=Hom_{X}(N, N)$ acting on
the left, then it is well known that $N$ is S-K-minimal (cf. [4]). For any
$V_{\lambda}(\lambda\in\Lambda_{\rho}),$ $M=V_{\lambda}\oplus V_{\lambda}^{c}$ and the projection $\pi$ of $M$ onto $V_{\lambda}$ is contained in $K$,

so that for each $a\in S$ and $v\in V_{\lambda}$ we have $av=a(v\pi)=’\backslash av)\pi\in V_{\lambda}$ . Hence each
$V_{\lambda}(\lambda\in\Lambda_{\rho})$ and so $H(\rho)$ is an S- submodule of $N$, which implies $H(\rho)=N$.
And, at the same time, we obtain (iii). (v). Let Rau $(a\in R)$ be an R-uniform
submodule of $Ru$ , and set $(Rau)^{cx}=M\epsilon$ with an idempotent $\epsilon\in K$ . As $ M\epsilon$ is
still uniform, $ K\epsilon$ is directly indecomposable, whence so is $\epsilon K$. Further, recalling
that $K$ is a regular ring, $\epsilon K$ is minimal. Since $M\epsilon=M\epsilon\cdot\epsilon=(Rau)^{cc}\epsilon\subseteq(Rau\epsilon)^{\iota c}$

yields $u\epsilon\neq 0$ , we have then $\epsilon K\equiv u\epsilon K\subseteq uK$. Conversely, let $u\delta K(\delta\in K)$ be
a minimal K-submodule of $uK$. Then $ Ru\delta$ is uniform by (i). Since the
unique maximal R-submodule $H(P)^{c}$ containing no R-uniform submodules is K-
admissible (Th. 3.6 (ii)), $Ru$ have to contain an R-uniform submodule.

In particular, Th. 5.2 (iv) and (v) yield at once.

Corollary. $M$ is R-locally uniform $ z\beta$ and only if it is K-locally uniform,
and $M$ is a (direct) sum of R-uniform submodules if and only if it is a (direct)

sum of K-uniform (or equivalently, K-minimal) submodules ( $i.e$ . $M$ is K-
completely reducible). (Cf. Th. 4.5.)

Combining Prop. 3.6 (iii) and Th. 4.3, we obtain

Theorem 5.3. If $M$ is an R-c. $q$ . i-module, then every complemented
R-submodule of $M$ is an R-direct summand of $M$ and an R-c. $q$ . i-module.

We set $Q=Hom_{K}(M, M)$ , which acts on the left. We note here that every
R-direct summand of $M$ is Q-admissible, and so a Q-direct summand of $M$ .
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Now, let $Q_{0}$ be an arbitrary intermediate ring of $Q$ and the ring $R_{0}$ of all the
(additive group) endomorphisms induced by $R$ . For any $Q_{0}$-submodule $A$ , one
will easily see that a complement $A^{c}$ in the R-module $M$ is a complement $A^{d}$

in the $Q_{0}$-module $M$, and conversely. And then, we see also that any double
complement $A^{dd}$ in the $Q_{0}$-module $M$ coincides with $A^{cc}$ uniquely determined.
Noting here that $Hom_{Q_{0}}(M, M)=K$ and for each $\alpha\in K$ there holds $A^{dd}\alpha=$

$A^{cc}\alpha\subseteq(A\alpha)^{cc}=(A\alpha)^{dd}$, the $d$ . c-correspondence in the $Q_{0}$-module $M$ is seen to be
a continuous closure operation. If $\varphi$ is a $Q_{0}$-homomorphism of a $Q_{0}$-submodule
$A$ into $LI$, then $\varphi$ is given by an element of $K$, because $\varphi$ is an R-homo-
morphism. Since Hom$Q_{0}(\Lambda 4, M)=K$, this implies that $M$ is $Q_{0^{-}}quasi$-injective.
We have proved thus

Theorem 5.4. Let $M$ be an R-c. $q$ . i-module. Then, for any inter-
mediate ring $Q_{0}$ between $Q$ and $R_{0},$ $M$ is a $Q_{0^{-}}c.q$ . i-module, and for any
$Q_{0}$-submodule $A,$ $\{A^{c}\}=\{A^{d}\}$ and $A^{cc}=A^{dd}$ .

Lemma 5. 5. Let $T$ be a ring with 1, which has no nilpotent (one-sided)
ideals, and let $e$ be an idempotent element of $T$ such that $Te$ is a (two-sided)
ideal. Then $e$ belongs to the center of $T$.

Proof. Since $Te$ is an ideal, $Te\cdot T(1-e)=0$ . As $(T(1-e)\cdot Te)^{2}=0$ ,
$T(1-e)\cdot Te=0$ and hence $T(1-e)\subseteq l(Te)=\{a\in T;aTe=0\}$ . As $(l(Te)\cap Te)^{2}$

$=0,$ $l(Te)\cap\prime l^{7}e=0$ . Hence $T(1-e)=l(Te)$ is an ideal of $T$ Let $1=f+q$ ,
where $f\in Te,$ $g\in T(1-e)$ . Then, as is easily seen, $f$ and $q$ are idempotent
elements belonging to the center of $T$ As $Te=Tf$, we have $f=e$.

Let $M$ be a unital R-left, $K_{1}$-right module, where $K_{1}$ is a non-zero ring
with 1. Let $K_{1}^{0}$ be the opposite ring of $K_{1}$ . We can consider $M$ as a unital
$R\otimes_{J}K_{1}^{0}$-left module by means of $(a\otimes\beta^{0})u=au\beta(a\in R, \beta\in K_{1}, u\in M),\cdot$ where $J$

means the ring of rational integers. If $M$ is an $R\otimes K_{1}^{0}- c.q$ .i-module, $M$ is
called an $R- K_{1}- c.q$ . i-module.

Let $M$ be an R-c. $q$ . i-module. If $B$ is an R-K-submodule, then $ B^{cc}\alpha\subseteq$

$(B\alpha)^{cc}\subseteq B^{rc}$ for every $\alpha\in K$, so that $B^{cr}$ is also an R-K-submodule. If we set
$ B^{cc}=M\epsilon$ with an idempotent $\epsilon$ in $K$ , then Me $\cdot$

$ K\subseteq M\epsilon$ , and hence $\epsilon K\subseteq K\epsilon$ ,
that is, $ K\epsilon$ is an ideal of $K$ . And, $K$ being a regular ring, $\epsilon$ is a central
idempotent of $K$ by the preceding lemma. As $M=B^{c}\oplus B^{cc},$ $B^{c}$ is also an
R-K-submodule of $M$, and is the unique complement of $B$ in the R-module $M$

(Lemma 4. 7). Hence, to be easily seen, the complement $B^{e}$ of $B$ in the $R$-K-
(or $R\otimes K_{1^{-}}^{0}$ ) module $M$ coincides with the one of $B$ in the R-module $M$, which
implies also $B^{rx}=B^{ee}$ . Since $Hom_{R,R}\cdot(M, M)$ is the center of $K$, for each 7 of
the center of $K$, we have $B^{ee}7=B^{ce}\cdot 7\subseteq(B7)^{cc}=(B\gamma)^{ee}$ . Hence, the R-K- (or
$R\otimes K_{1^{-}}^{0})d$ . c-correspondence in $M$ is a continuous closure operation. Let $N$ be
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a dense R-K-submodule of $M$ and let $\varphi$ be an R-K-homomorphism of $N$ into
$M$. Extending $\varphi$ as an R-homomorphism to an element $\delta$ of $K$, we have
$N(\alpha\delta-\delta\alpha)=0$ for all $\alpha\in K$ . By the continuity, $ M(\alpha\delta-\delta\alpha)=N^{cc}(\alpha\delta-\delta\alpha)\subseteq$

$(N(\alpha\delta-\delta\alpha))^{cc}=0$ , whence $\alpha\delta-\delta\alpha=0$ for all $\alpha\in K$ . Thus we have proved the
following theorem:

Theorem 5.6. If $M$ is an R-c. $q$ . i-module, then $M$ is an R-K-c. $q.$ i-
module, and $B^{r,}=B^{e}$ (uniquely determined), $B^{cc}=B^{ee}$ for every R-K-submodule
$B$ of $M$.

Theorem 5.7. Let $M$ be an R-c. $q$ . i-module. If $N$ is any R-K-sub-
module of $M$ then $N$ is an R-c. $q.i$ and R-K-c. $q$ . i-module. (See Prop. 3.1 (ii).)

Proof. The R-quasi-injectivity of $N$ is evident. And, by Prop. 3.1 (ii),
the R-d.c-correspondence in $N$ is a closure operation. In fact, if $A$ is an R-
submodule of $N$, then $A^{cr}\cap N$ is the unique R-double complement of $A$ in $N$

Now, $K^{\prime}=Hom_{R}(N, N)$ is the contraction of $K$ to $N$. For any $\gamma\in K$ ,
$(A^{cc}\cap N)7\subseteq A^{cc}\gamma\cap N\subseteq(A\gamma)^{cc}\cap N=$ the R-double complement of $ A\gamma$ in $N$ .
Hence, $N$ is an R-c. $q$ . i-module. Moreover, by Th. 5.6, $N$ is an $R- K^{\prime}- c.q.$ i-
module, or what is the same, $N$ is an R-K-c. $q$ . i-module.

The following lemma is well known.

Lemma 5.8. If $r_{M}(I)=\{u\in M;Iu=0\}=0$ for every dense left ideal I of
$R$ , then the R-d. c-correspondence is a continuous closure operation. In fact,
$zf$ $A$ is an R-submodule of $M$ then $A^{cc}=\{u\in M;Iu\subseteq A$ for some dense left
ideal I}.

Proof. Let $A$ be a non-zero R-submodule of $M$ . For any $u\in A^{cc}$,
$R\ni a\rightarrow au\in A^{cc}$ is an R-homomorphism of $R$ into a double complement $A^{cc}$ of
$A$ . Since $A$ is dense in $A^{cc},$ $\{a\in R;au\in A\}$ is a dense left ideal of $R$ by
Prop. 1.5. Hence $A^{cc}$ is contained in $A^{+}=\{u\in M;Iu\subseteq A$ for some dense left
ideal I}. If $I_{1}u_{1},$ $I_{2}u_{2}\subseteq A$ for dense left ideals $I_{1}$ and $I_{2}(u_{1}, u_{2}\in M)$ , then $I_{1}\cap I_{2}$

is a dense left ideal and $(I_{1}\cap I_{2})(u_{1}\pm u_{2})\subseteq A$ . Further for any $a\in R,$ $(I_{1} : a)_{l}=$

$\{b\in R;ba\in I_{1}\}$ is a dense left ideal by Prop. 1.5, and $(I_{1} : a)_{l}$ au $1\subseteq I_{1}u_{1}\subseteq A$ .
Hence, $A^{+}$ is an R-submodule of $M$. Next, if $A^{cc\subset}\neq A^{+},$ $A^{cc}$ being non-dense
in $A^{+}$ , there exists a non-zero submodule $X$ of $A^{+}$ with $A^{cc}\cap X=0$ . Choosing
an arbitrary non-zero element $u\in X$, there exists a dense left ideal I with $Iu\subseteq A$ .
On the other hand, as $u\in X,$ $Iu\subseteq X$, and hence $Iu=0$ , contradicting our as-
sumption. Hence, we have $A^{cc}=A^{+}$ . The continuity of R-d. c-correspondence
will be evident by Prop. 3.5 (ii).

As is seen from the above proof, $0^{+}=\{u\in M;Iu=0$ for some dense left
ideal I} is an R-K-submodule of $M$, and is called the R-singular part (or
singular submodule) of M. (And the K-singular part is defined in the similar
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way.) Lemma 5.8 is now restated as follows: If the R-singular part of $M$

is zero, then the R-d. c-correspondence is a continuous closure operation.
Proposition 5.9. If $M$ is an R-c. $q$ . i-module, then the K-singular part

of $M$ and the left singular part of $K(i.e$. the singular part of $K$ as a K-
left module) are $0$ .

Proof. Let $\mathfrak{r}$ be an arbitrary dense right ideal of $K$ . If $u\mathfrak{r}=0(u\in M)$

then $Rur=0$ . Setting $(Ru)^{cc}=M\epsilon$ with an idempotent $\epsilon\in K,$ $ M\epsilon \mathfrak{r}=(Ru)^{cc}\mathfrak{r}\subseteq$

$(Rur)^{cc}=0$ , that is, $e\mathfrak{r}=0$ , whence $\mathfrak{r}\cap\epsilon K=\epsilon(\mathfrak{r}\cap\epsilon K)=0$ . Since $\mathfrak{r}$ is dense in $K$,
$\epsilon K$ has to be $0$ , and so we have $u=0$ . Next, let I be an arbitrary dense left
ideal of $K$. If $r(I)=\{\alpha\in K;I\alpha=0\}$ is non-zero, $r(I)$ contains a non-zero
idempotent $\tau$ , and so $\downarrow\subseteq K(1-\tau)$ , which contradicts the density of I.

The next theorem has been stated in [7] without proof.
Theorem 5. 10. If $M$ is an R-c. $q$ . i-module, then $K$ is an injective K-

left module in which the K-d. $c$-correspondence is a continuous closure operation
(or equivalently, $K$ is a maximal left quotient ring with zen left singular
part. (Cf. [8].))

Proof. Since the left singular part of $K$ is $\{0\}$ by Prop. 5.9, the K-
$d$ . c-correspondence in the K-left module $K$ is a continuous closure operation
by Lemma 5.8. Accordingly, it is left only to prove the injectivity of $K$. Let
I be a left ideal, and $\varphi$ a K-homomorphism of I into $K$. For given $u_{i}\in M$

and $\alpha_{i}\in I(i=1, \cdots, n)$ , choose an element $7\in K$ with $\sum K\alpha_{i}=K7$ , and set $\alpha_{i}=\alpha_{i}^{\prime}7$

$(\alpha_{i}^{\prime}\in K),$ $u=\sum u_{i}\alpha_{i}^{\prime}$ . If we set $r_{X}(u)=\{\alpha\in K;u\alpha=0\}$ then, by Prop. 3.5 (ii),
$r_{X}(u)=r_{X}(Ru)=r_{X}((Ru)^{cc})=\epsilon K$ with an idempotent $\epsilon\in K$. Hence, if $\sum u_{i}\alpha_{i}=0$

then $7\in\epsilon K\cap I$ , and so $7\varphi=(\epsilon\gamma)\varphi=\epsilon(7\varphi)\in eK$. And then, $\sum u_{i}(\alpha_{i}\varphi)=u(7\varphi)=0$ ,
which enables us to see that $\sum v_{j}\beta_{j}\rightarrow\sum v_{j}(\beta_{j}\varphi)(v_{j}\in M, \beta_{j}\in I)$ defines an R-
homomorphism $\psi$ of $MI$ into $M$ . Since $M$ is R-quasi-injective, $\psi$ can be
extended to some $\delta\in K$. And, we have then $\beta\varphi=\beta\delta$ for all $\beta\in I$ , which proves
that $K$ is injective.

Let $A$ be an R-submodule of an R-c. $q$ . i-module $M$, and set $ A^{cc}=M\epsilon$ with
an idempotent $\epsilon\in K$. Then, $r_{X}(A)=r_{X}(A^{cc})=(1-\epsilon)K$ and $l_{M}((1-\epsilon)K)=\{u\in M$ ;
$u(1-\epsilon)K=0\}=M\epsilon=A^{cc}$ . In particular, by Th. 5.10, $l(r(I))$ coincides with
the double complement 1” of I in $K$ for any left ideal 1 of $K$, where $r(*)$ ,
$l(*)$ denote the right annihilator and left annihilator of $*inK$. As $l(r_{K}(A)=$

$l((1-\epsilon)K)=K\epsilon,$ $A^{tic}=M\cdot l(r_{X}(A))$ and, in particular, $(M\cdot I)^{c,\sim}=M\cdot l(r_{X}(MI))=$

$M\cdot l(r(I))=MI^{\prime\prime}$ . We have proved therefore the following:
Proposition 5. 11. Let $M$ be an R-c. $q$ . i-module. If $A$ is an R-sub-

module of $M$, and I a left ideal of $K$ with the double complement $I^{\prime\prime}$ in $K$,
then $A^{cc}=l_{M}(r_{K}(A))=M\cdot l(r_{X}(A)),$ $I^{\prime\prime}=l(r(I))$ and $(MI)^{cc}=MI^{\prime\prime}$ .
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Let $A$ be an R-submodule of $M$. For $\alpha\in K,$ $A\alpha\cdot r_{K}(A\alpha)=0$ , and so
$\alpha\cdot r_{K}(A\alpha)\subseteq r_{Jf}(A)$ . Hence $l_{M}(r_{X}(A))\cdot\alpha\cdot r_{X}(A\alpha)=0$ , that is, $ l_{M}(r_{K}(A))\cdot\alpha\subseteq$

$l_{M}(r_{X}(A\alpha))$ . Thus we have the following:
Corollary. $M$ is an R-c. $q$ . i-module if and only $\iota fM$ is R-quasi-injective

and $A^{rc}=l_{M}(r_{X}(A))$ for any R-submodule $A$ .
Let $M$ be an R-c. $q$ . i-module. Every R-complemented submodule of $M$ is

an R-direct summand of $M$ (Th. 4.3). Every R-K-complemented submodule
of $M$ is an R-K-direct summand of $M$, by Th. 4.3 and Th. 5.6. Consequently,
by Th. 5.10, every complemented left ideal of $K$ is a left direct summand of
$K$, and every complemented ideal of $K$ is a two-sided direct summand of $K$.
For any R-direct summand Me $(\epsilon^{z}=\epsilon\in K)$ , we correspond a left direct summand
$K\epsilon=l(r_{X}(M\epsilon))$ of $K$. Then this is an order-isomorphism of the R-direct sum-
mands of $M$ onto the left direct summands of $K$. From this fact and Th.
2.7, $M$ is R-locally uniform if and only if $K$ is $(K_{-})$ left locally uniform. And,
$ M\epsilon$ is uniform if and only if $Ke$ is uniform (Cor. to Th. 2.3). Therefore, $M$

contains an R-uniform submodule if and only if $K$ contains a uniform (or
equivalently, minimal) left ideal. To be easily seen, $ M\epsilon$ is K-admissible if and
only if $ K\epsilon$ is an ideal, that is $\epsilon K\subseteq Ke$ . In this case $\epsilon$ is a central idempotent
(Lemma 5.5). Hence $M$ is R-K-locally uniform if and only if $K$ is ideal- $(i.e$ .
$K- K_{-})$ locally uniform (Th. 2.7). And, $ M\epsilon$ is R-K-uniform if and only if $ K\epsilon$

is a uniform ideal (Cor. 2 to Th. 2.3). Therefore $M$ contains an R-K-uniform
submodule if and only if $K$ contains a uniform ideal. Let $\{\epsilon_{\lambda} ; \lambda\in\Lambda\}$ be a set
of idempotent elements of $K$. Then, $\sum Me_{\lambda}=\sum\oplus M\epsilon_{\lambda}$ if and only if $\sum K\epsilon_{\lambda}=$

$\sum\oplus K\epsilon_{\lambda}$ . To prove this fact, let $Me_{1}+\cdots+Me_{n}=M\epsilon_{1}\oplus\cdots\oplus Me_{n}$ , where $\epsilon_{i}^{2}=$

$e_{i}\in K$. If $Ke_{1}\cap(Ke_{2}+\cdots+K\epsilon_{n})$ contains $0\neq\alpha\in K$, then $ 0\neq u\alpha$ for some $u\in M$.
Then $0\neq u\alpha\in M\epsilon_{1}\cap(Me_{2}+\cdots+M\epsilon_{n})$ a contradiction. Conversely, we assume
that $K\epsilon_{1}+\cdots+K\epsilon_{n}=K\epsilon_{\underline{\tau}}\oplus\cdots\oplus K\epsilon_{n}$ . Let $K\epsilon_{1}+\cdots+K\epsilon_{n}=K\epsilon,$ $\epsilon^{2}=\epsilon\in K$ and
$\epsilon=\epsilon_{1}^{\prime}+\cdots+\epsilon_{n}^{/},$ $\epsilon_{i}^{/}\in K\epsilon_{i}$ . Then $K\epsilon_{i}^{/}=K\epsilon_{i},$ $\epsilon_{i}^{\prime 2}=\epsilon_{i}^{\prime}$ and $e_{i}^{\prime}\epsilon_{j}^{\prime}=0$ , if $i\neq j$. Hence,
as $M\epsilon_{i}^{\prime}=Me_{i},$ $M\epsilon_{1}+\cdots+M\epsilon_{n}=Me_{1}\oplus\cdots\oplus Me_{n}$ . From this fact, R-dim $M$ is
equal to the left dimension of $K$, and R-K-dim $M$ is equal to the ideal-dimension
of $K$ .

Let $W,$ $W^{\prime}$ be two maximal R-K-uniform submodules such that $W\sim W^{\prime}$

as R-K-submodules. Then, by the R-quasi-injectivity, there exists some $\gamma\in K$

such that $W\gamma\cap W^{\prime}\neq 0$ . As $W\gamma\subseteq W,$ $W\cap W\neq 0$ , and so $W=(W\cap W)^{cc}=W$

(Th. 5.6). This shows that $M$ has the unique maximal independent set of
maximal R-K-uniform submodules (Th. 1.10). Let $V$ and $V^{\prime}$ be R-uniform sub-
modules such tnat $V\sim V^{\prime}$ . Then, by the R-quasi-injectivity, $V\delta\cap V^{\prime}\neq 0$ for some
$\delta\in K$. Hence each R-homogeneous component $H(\rho)$ is R-K-uniform, and each
$(H(\rho)^{cc}=)C(\rho)$ is an R-K-homogeneous component of $M$ . Hence the unique
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maximal R-locally uniform submodule $C(P)=(\sum\oplus H(\rho))^{cc}$ is R-K-locally uniform.
Hence the unique maxmal R-locally uniform submodule is contained in the
unique maximal R-K-locally uniform submodule. Consequently, by Th. 3.2 (iii)
and Th. 4. 8 (and Th. 5. 6), $M$ has the following representation: $M=$
$M_{1}\oplus M_{2}\oplus M_{3}$ . Each $M_{i}$ is R-K-admissible. The first component $M_{1}$ is R-
locally uniform. The second component $M_{2}$ is R-K-locally uniform, but does
not $c$ontain an R-uniform submodule. The third component $M_{3}c$ontains neither
an R-uniform submodule nor an R-K-uniform submodule. In this meaning,
such a representation of $M$ is unique. Because $M_{1}$ is the unique maximal R-
locally uniform submodule, and $M_{1}\oplus M_{2}$ is the unique maximal R-K-locally
uniform submodule (see Lemma 4.7). Let each $\tau_{i}(i=1,2,3)$ be the projection
to $M_{i}$ . Then each $\tau_{i}$ is a central idempotent. And, $K=K\tau_{1}\oplus K\tau_{2}\oplus K\tau_{3}$ and,
to be easily seen, $Hom_{R}(M_{i}, M_{i})=\tau_{i}K\tau_{i}=K\tau_{i}$ . And further $Hom_{R}(M\tau_{1}\oplus M\tau_{2}$ ,
$M\tau_{1}\oplus M\tau_{2})=K(\tau_{1}+\tau_{2})=K\tau_{1}+K\tau_{2}$ and $Hom_{R}(M\tau_{2}\oplus M\tau_{3}, M\tau_{z}\oplus M\tau_{3})=K(\tau_{z}+$

$\tau_{3})=K\tau_{2}+K\tau_{3}$ . As $M_{1}$ is R-locally uniform, $K\tau_{1}$ is left locally uniform. As
$M\tau_{2}+M\tau_{3}$ does not contain an R-uniform submodule, $K\tau_{2}+K\tau_{3}$ does not contain
a uniform left ideal. Hence $K\tau_{1}$ is the unique maximal locally uniform left
ideal of $K$. Similarly we can see that $K\tau_{1}+K\tau_{2}$ is the unique maximal locally
uniform ideal of $K$. Hence $K\tau_{i}$ is.the i-th component of a left injective ring
$K$ with zero (left) singular part.

Let $A$ be an R-submodule. By the R-quasi-injectivity, $Hom_{R}(A, M)=$

$K/r_{X}(A)$ . Since $r_{X}(A)=r_{X}(A^{cc})$ (Prop. 3.5 (ii)), $Hom_{R}(A, M)=Hom_{R}(A^{cc}, M)$ .
If $B$ is an R-K-submodule, then $B^{cc}$ is also an R-K-submodule and $(Hom_{R}(B, M)=)$

Hom$R(B, B)=Hom_{R}(B^{cc}, B^{cc})$ . Let $M\tau=B^{c\prime,}$ , where $\tau^{2}=\tau\in K$. Then $Hom_{R}(B^{cc}$ ,
$ B^{cc})=\tau K\tau$ , and $\tau K\tau=K\tau$ is a two-sided direct summand of $K$. Let $ M\epsilon$ be
R-uniform, where $\epsilon^{2}=\epsilon\in K$ . Then $ K\epsilon$ is a uniform left ideal, and further, as
$K$ is a regular ring, $ K\epsilon$ is a minimal left ideal. Hence Hom$R$ (Me, $ M\epsilon$) $=\epsilon K\epsilon$ is
a division ring.

Theorem 5. 12. (i) $K$ is a direct sum of three rings $\{K_{i} ; i=1,2,3\}$ .
The ring $K_{1}$ is left locally unzform. The ring $K_{2}$ is ideal-locally unzform,
but does not contain a uniform left ideal. The $r\dot{\tau}ngK_{3}$ contains neither
a uniform left ideal nor a uniform ideal. Such a representatiin of $K$ is
unique. And, the first component $K_{1}$ is uniquely represented as a complete
direct sum of right) endomorphiSm rings of vector spaces (over division rings).
The second component $K_{2}$ is uniquely represented as a complete direct sum
of prime rings containing no unzform left ideals.

(ii) The center of $K$ is also an injective ring with zero singular part.

5) The “right” implies “acting on the right”.
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For any idempotent $v$ of $K$, vKv is also a left injective ring with zero left
singular part.

Proof. The first half was already proved. In fact $K_{i}=K\tau_{i}(i=1,2,3)$ .
Since $\sum\oplus H(\rho)$ is R-K-admissible and R-dense in $M_{1},$ $K_{1}=Hom_{R}(M_{1}, M_{1})=$

$Hom_{R}(\sum H(\rho), \sum H(p))$ , and further, since each $H(\rho)$ is R-K-admissibie, $K_{1}=$

$\sum^{c}\oplus Hom_{R}(H(\rho), H(P))$ (complete direct sum). Each $H(\rho)$ is a direct sum of
R-uniform submodules whi$ch$ are isomorphic to one another. Let $V_{\rho}$ be a
complemented uniform submodule belonging to $\rho$ . Then $Hom_{R}(H(P), H(\rho))$ is
isomorphic to the ring of row-finite ( $\rho$-dim $M$)-dimensional matrixes over the
division ring $Hom_{R}(V_{\rho}, V_{\rho})$ , that is, the right endomorphism ring of a ( $\rho$-dim $M$) $-$

dimensional $Hom_{R}(V_{\rho}, V_{\rho})$-left vector space. Let $\{W_{\gamma} ; \gamma\in\Gamma\}$ be the maximal
independent set of complemented R-K-uniform submodules of $M_{2}$ . Since
$\sum\oplus W_{r}$ is R-K-admissible and (R-K-dense in $M_{2}$ , and so) R-dense in $M_{2}$ ,
Hom$R(M_{2}, M_{z})=Hom_{R}(\sum W_{\gamma}, \sum W_{\gamma})$ , and further $Hom_{R}(M_{2}, M_{2})=\sum^{c}\oplus$

$Hom_{R}(W_{\gamma}, W_{\gamma})$ . Since each $W_{\gamma}$ is an R-c. $q$ . i.-module (Th. 5.7), $Hom_{R}(W_{\gamma}, W_{\gamma})$

is a regular ring (Prop. 5.1). And, since $W_{\gamma}$ is R-K-uniform and an R-K-direct
summand of $M,$ $Hom_{R}(W_{\gamma}, W_{\gamma})$ is an ideal-direct summand of $K$ and an ideal-
uniform (and regular) ring. Hence each Hom $R(W_{\gamma}, W_{\gamma})$ is a prime ring. Let
$K_{1}\equiv\sum_{\lambda\in A}^{c}\oplus K_{1\lambda}^{*}$ and $K_{1\lambda}-(0, \cdots, 0, K_{1\lambda}^{*}0, \cdots, 0)$ (finite or infinite), where each
$K_{12}^{*}$ is a left locally uniform ring. Then, to be easily seen, $\sum K_{1\lambda}=\sum\oplus K_{1\lambda}$ is
a dense ideal ( $i.e$ . $K_{1}- K_{1}$-dense submodule) of $K_{1}$ , and each $K_{1\lambda}$ is a comple-
mented uniform ideal of $K_{1}$ , because each $(0, \cdots, 0, K_{1\lambda}^{*}, 0, \cdots, 0)$ is a two-sided
direct summand of $\sum^{c}\oplus K_{1\lambda}^{*}$ . Hence $\{K_{1\lambda} ; \lambda\in\Lambda\}$ is a maximal independent set
of complemented uniform ideals of $K_{1}$ , whi$ch$ is uniquely determined. The
uniqueness of the representation of $K_{2}$ is similarly proved. (ii) follows from
Th. 5.3, Th. 5.6 and Th. 5.10.

Remark. Let $\{D_{\gamma}; \gamma\in\Gamma\}$ be a collection of division rings, and let $\{\Lambda_{\gamma} ; 7\in\Gamma\}$

be a collection of sets. We denote by $D_{\gamma}^{(I_{\gamma})}$ the direct sum of $\Lambda_{\gamma}$ copies of
the $D_{\gamma}$-left vector space $D_{\gamma}$ . Then $D_{\gamma}^{(\Lambda_{\gamma})}$ is a $’,\Lambda_{r}$-dimensional $D_{\gamma}$-left vector
space. And, $Hom_{D_{\gamma}}(D_{\gamma}^{(r_{\gamma})}, D_{\gamma}^{(\Lambda_{\gamma})})=End(_{D_{\gamma}}D_{\gamma}^{(1_{\gamma})}/)$ acting on the right is (isomor-
phic to) the ring of row-finite $ff\Lambda_{\gamma}$-dimensional matrixes over $D_{\gamma}$ . Next, we
consider the $\sum\oplus D_{\gamma}$-left module $\sum\oplus D_{\gamma}^{(4_{\gamma})}$ , where $D_{\gamma_{1}}\cdot\sum\oplus D_{r_{z}}^{(}A_{\gamma)}:=0$ , if $7_{1}\neq 7_{2}$ .
Then $\sum\oplus D_{\gamma}^{(A_{\gamma})}$ is $\sum\oplus D_{\gamma}$-left $c$ompletely reducible. Hence $\sum\oplus D_{\gamma}^{(\Lambda_{\gamma})}$ is a
$\sum\oplus D_{\gamma}\cdot c.q$ . i-module. Therefore the $\sum\oplus D_{\gamma}$-endomorphism ring acting on the
right of $\sum\oplus D_{\gamma}^{(t_{\gamma})}$ is a left injective ring with zero (left) singular part. This
ring is a complete direct sum of right endomorphism rings of vector spaces
$\{D_{v}^{(\Lambda_{\gamma})} ; \gamma\in\Gamma\}$ , because for any $\sum\oplus D_{\gamma}$-endomorphism $\varphi$ of $\sum\oplus D_{\gamma}^{(\Lambda_{\gamma})},$ $D_{\gamma}^{(A_{\gamma})}\varphi=$

$(1_{\gamma}\cdot D_{\gamma}^{(1_{f})})\varphi=1_{\gamma}\cdot(D_{\gamma}^{(\Lambda_{\gamma})}\varphi)\subset D_{\gamma}^{(4_{\gamma})}$ , where $1_{\gamma}$ is the identity of $D_{\gamma}$ .
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Theorem 5. 13. If an R-c. $q$ . i-module $M$ is R-locally uniform and R-
faithful, then the following conditions are equivalent to each other:

(i) $M$ is K-quasi-injective and $Hom_{X^{-}}(M, M)=R$ .
(ii) The R-singular part of $M$ is zen, and every R-uniform submodule

is minimal. And further $R$ is a complete direct sum of left endomorphism
rings of vector spaces (over division rings).

Proof. $(i)\Rightarrow(ii)$ . This part follows from Th. 5.2 (ii), Prop. 5.9 and Th.
5.12. $(ii)\Rightarrow(i)$ . By Cor. to Th. 5.2, $M$ is K-locally uniform. Let $\dot{M}$ be the
K-injective envelope of $M$ Then, as $M$ is K-dense in $\dot{M}$, the K-socle $M_{0}$ of
$M$ coincides with the K-socle of $\dot{M}$ , and further, by assumption, coincides with
the R-socle of $M$ (Th. 5.2 (iv)). Since $M_{0}$ is R-K-admissible and R-dense in
$M,$ $Hom_{R}(M_{0}, M_{0})=K$. We set $R^{\prime}=Hom_{K}(\dot{M}, \dot{M})$ acting on the left. Then,
since $M_{0}$ is R’-K-admissible and K-dense in $\dot{M}$ and the K-singular part (of $M$

is zero, and so) of $\dot{M}$ is zero, $R^{\prime}=Hom_{K}(\dot{M}, \dot{M})=Hom_{X}(M_{0}, M_{0})$ by Lemma
5.8 and the K-injectivity of $\dot{M}$ . We shall prove that $R^{\prime}=R$ . Let $Ru$ be R-
minimal. Then $R/l_{R}(u)\equiv Ru$ . Let $Ia\subseteq l_{R}(u)(a\in R)$ , where I is a dense left
ideal of $R$ . Then I$au=0$ , and, since R-singular part of $M$ is zero, $au=0$ ,
that is, $a\in l_{R}(u)$ . Hence $l_{R}(u)(\neq R)$ is a complemented left ideal of $R$ (Lemma
5.8). Since $l_{R}(u)^{r}$ is dense in $R/l_{R}(u),$ $Ru$ is naturally isomorphic to a minimal
left ideal of $R$ . Conversely, let $I_{0}$ be a minimal left ideal. Then, since $M$ is
R-faithful, $I_{0}u\neq 0$ for some $u\in M$. Evidently $I_{0}\equiv I_{0}u(\subseteq M_{0})$ . Hence $M_{0}=S\cdot M=$

$\sum_{\rho\in P}S_{\rho}\cdot M$, where $S=\sum_{\rho\epsilon P}\oplus S_{\rho}$ is the (left) socle of $R$ and each $S_{\rho}s$ \’a (left)
homogeneous component of $R$ such that $S_{\rho}\cdot M=H(\rho)(\rho\in P)$ . Let I. be a
minimal left ideal such that $I_{\rho}\subseteq S_{\rho}$ . Then, $S_{\rho}$ and $S_{\rho}\cdot M$ are direct sums
of $I_{\rho}’ s$ (up to isomorphism). From this fact, End2 $\{_{R}S_{\rho}$) $\equiv End^{2}(_{R}I_{\rho})^{6)}$ and
End2 $(_{R}S_{\rho}\cdot M)\equiv End^{z}(I)$ , where End2 $(_{R}S_{o})$ means the End $(_{R}S_{\rho})$-endomorphism
ring of $S_{\rho}$ acting on the left. Now, since $R$ is a regular ring, $(S\cap r(S))^{2}=0$

implies $S\cap r(S)=0$ , and symmetrically $S\cap l(S)=0$ . Since $R$ is a right locally
uniform regular ring, $S$ is a dense right ideal. Hence $r(S)=l(S)=0$ . Since
$R$ is a right injective ring with zero (right) singular part, End $(S_{R})=End(R_{R})=R_{l}$

(the left multiplications of elements of $R$). As End $(_{R}S)\supseteq R_{r},$ $(R_{l}\subseteq)$ End2 $(_{R}S)\subseteq$

End $(S_{R})=R_{l}$ . Hence $R_{l}=End^{2}(RS)$ . Since $S_{\rho}$ and $S_{\rho}\cdot M$ are an ideal and
6) Let $N$ be an $\Omega$-left module, where $\Omega$ is any operator domain, and let $N^{(A)}$ be a direct

sum of $\Lambda$ copies of $N$, where $A$ is a non-empty set. Then End2 $(oN^{(A)})=End^{2}(oN)$ naturally.
$\lambda$

$2^{\prime}$

To see this, let $\epsilon_{\lambda\lambda^{\prime}}$ be the $\Omega$-endomorphism such that $(0. \cdots, 0, u, 0, \cdots, 0)\rightarrow(0, \cdots, 0, u, 0, \cdots, 0)$.
Then any $\varphi\in End^{2}(oN^{(A)})$ is commutative with every $\epsilon_{\lambda\lambda^{\prime}}$ . Set $N_{\lambda}=(0, \cdots, 0, N\lambda 0, \cdots, 0)$ . Since
$\varphi(N_{\lambda}\cdot\epsilon_{\lambda\lambda})=(\varphi N_{\lambda})\epsilon_{\lambda\lambda}\subseteq N_{\lambda}$ , we have $\varphi N_{\lambda}\subseteq N_{\lambda}$ . We correspond $\varphi|N_{\lambda}$ (the contraction of $\varphi$ to $N_{\lambda}$ )
to an element $\varphi_{\lambda}$ in End2 $(gN),naturally$ . Then, since $\varphi$ is commutative with every $\epsilon_{\lambda\lambda^{\prime}},$ $\varphi_{\lambda}=$

$\varphi_{\lambda^{\prime}}$ for all $\lambda,$ $\lambda^{\prime}\in\Lambda$ .
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an R-K-submodule respectively, $R_{l}=End^{2}(_{R}S)\equiv\Sigma_{\rho}^{c}\oplus End^{2}(S)$ and End2 $(_{R}S\cdot M)$

$\equiv\sum_{\rho}^{c}\oplus End^{2}(_{R}S_{\rho}\cdot M)$ naturally. As End2 $(_{R}S_{\rho})\equiv End^{2}(_{R}I_{\rho})\equiv End^{2}(_{R}S_{\rho}\cdot M),R_{l}=$

End2 $(_{R}S)\equiv End^{2}(_{R}S\cdot M)$ . Hence we have End2 $(_{R}S\cdot M)=R$ , as desired. Since
End2 $(_{R}S\cdot M)=Hom_{X}$ (M. $\dot{M}$), this implies that $M$ is K-quasi-injective (Prop.
4. 1) and $Hom_{K}(M, M)=R$ .

\S 6. Throughout this section, we assume that $R$ is a ring with 1 su$ch$

that for each non-zero left ideal $I,$ $R/I$ contains a minimal R-left submodule.
Theorem 6. 1. Let $A$ be an R-submodule of M. Then, the following

conditions are equivalent to each other:
(i) $A$ is a complemented submodule of $M$.
(ii) Let I be a maximal left ideal of $R,$ $u$ an element of M. If $Iu\subseteq A$

then there exists an element $v\in A$ such that $au=av$ for all $a\in I$.

Proof. $(i)\Rightarrow(ii)$ . We may assume that $u$ is not contained in $A$ (and so,
$A$ is a proper complemented submodule of $M$). Now, $(Ru+A)/A$ is a minimal
submodule of $M/A$ . Since $A$ is complemented, $(A+A^{c})/A$ is dense in $M/A$

by Prop. 1.13, and hence $(Ru+A)/A\subseteq(A+A^{c})/A$ , that is, $u\in A+A^{c}$ . Setting
$u=v+v^{\prime}$ with $v\in A$ and $u^{\prime}\in A^{c},$ $Iu\subseteq A$ yields $Iv^{\prime}=0$ . Hence, $I(u-v)=0$ , that
is, $au=av$ for all $a\in I$. $(ii)\Rightarrow(i)$ . Suppose $A^{cx}\supsetneqq A$ , and choose an arbitrary
$x\in A^{cc}$ not contained in $A$ . As $A$ is dense in $A^{cc}$ , there exists a non-zero
$a\in R$ with $(0\neq)ax\in A$ . Then, $R/L\equiv(Rx+A)/A\subseteq A^{cc}/A$ , where $L=\{b\in R$ ;
$bx\in A\}$ is a non-zero left ideal of $R$ , so that, by the assumption for $R,$ $A^{ce,}/A$

contains a minimal submodule $(Ru+A)/A(u\zeta A)$ . As $I=\{b\in R;bu\in A\}$ is
a maximal left ideal and $Iu\subseteq A$ , there exists an element $v\in A$ such that
$I(u-v)=0$ . $R(u-v)$ is then a minimal submodule of $A^{cc}$ , and so $R(u-v)\subseteq A$

by the density of $A$ in $A^{cc}$ . But, $u-v\in A$ and $v\in A$ yield a contradiction
$v\in A$ . We have proved therefore $A^{cc}=A$ .

Theorem 6. 2. $M$ is R-injective $\iota f$ and only $\iota f$ every R-homomorphism
of any maximal left ideal of $R$ into $M$ can be extended to an R-homo-
morphism of $R$ into $M$.

Proof. It suffices to prove the “if” part. To this end, we $c$onsider the
R-injective envelope $\hat{M}$ of $M$ Let $I$ be a maximal left ideal of $R$ , and let
$Iu\subseteq M$ for an element $u\in\hat{M}$ . Since $I\ni a\rightarrow au\in M$ is an R-homomorphism $\varphi$ of
$I$ into $M,$ $\varphi$ can be extended to an R-homomorphism $\psi$ of $R$ into $M$. If
$1\psi=v\in M$, then $a(u-v)=a\varphi-a\psi=0$ for all $a\in I$. Hence, $M$ is complemented
(and dense) in $\hat{M}$ by Th. 6.1, which proves $M=\hat{M}$ .

Theorem 6.3. Let $R$ be further a left principal ideal ring.
(i) $A$ is a complemented submodule of $Mzf$ and only if A $npM=pA$
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for each $p\in R$ generating a maximal left ideal of $R$ .
(ii) If $pM=M$ for each $p\in R$ generating a maximal left ideal of $R$ ,

then $M$ is R-injective. (Cf. [1; p. 92].)

Proof. (i). Let $Rp$ be an arbitrary maximal left ideal of $R$ . Then, the
condition that if $Rpu\subseteq A(u\in M)$ then $Rp(u-v)=0$ for some $v\in A$ is equivalent
to A $npM=pA$ . Hence, (i) follows immediately from Th. 6.1. (ii). Let $\hat{M}$

be the R-injective envelope of $M$. Since $M\cap p\hat{M}\subseteq M=pM,$ $M$ is $c$omple-
mented (and dense) in $\hat{M}$ by (i). Hence $M=\hat{M}$ , as desired.

Example. Let $Ja$ and $Jb$ be (additive) cyclic groups of orders 4 and 2
repectively, where $J$ denotes the ring of rational integers. We consider $M=$
$Ja\oplus Jb$ . Now, $J(a+b)$ is a $c$omplemented submodule by Th. 6.3. In fact,
$J(a+b)\cap 2M=\{0, a+b, 2a, 3a+b\}\cap\{0,2a\}=\{0,2a\}=2(J(a+b))$ and $p(J(a+$

$b))=J(a+b)$ for all prime $p\neq 2$ . $Ja$ is a direct summand and $Ja\cap J(a+b)=$

$\{0,2a\}=J(2a)$ . But $J(2a)$ is not complemented in $M$, for $J(2a)\cap 2M=$

$\{0,2a\}\neq 0=2(J(2a))$ . This elementary example shows that the $d$ . c-corre-
spondence is not always a closure operation.
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