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1. It is well known [6, 8, 12] that Haar functions constitute a (Schauder)
basis in Banach spaces L*[0,1] (1<p< + oo) and Orlicz spaces L,[0,1] with
the 4,-condition. Generalizing this fact to an arbitrary separable Banach func-
tion space E on a measure space, H. W. Ellis and I. Halperin showed in [3] that
Haar system of functions (in an extended sense) composes a basis in E, if a norm
of E satisfies a condition called levelling length property®. Although this con-
dition is sufficiently general, yet it is not always a necessary one.

In this note we shall show a sufficient condition in order that Haar functions
‘be a basis for the Banach function space L., [0,1] or L**[0,1]. In fact,
we shall establish, as for the space L*®, that if p(¢) satisfies the Lipschitz
a-condition (0<a<1) then Haar functions constitute a basis in L"® (Theorem
4). As a matter of course, the norms of these spaces.do not satlsfy the above
condition given in [3] except some special cases.

In 2 we shall introduce Haar functions, the function spaces Ly, and
L"®? with the notations used here. The main theorems shall be stated in 3,
and some remarks shall be presented in 4.

2. A sequence of functions defined on [0,1]: {X,(#)},2, is called a system
of Haar functions, if X,(¢)=1 for all £€[0,1] and for v=2"+k (n=0,1,2,---;

k=1,2,--,27 )"
( J2r for tE[kaz , Zk—l),

on+1 . Om+t |
(2.1) X, (8) = Xony 1 (8) =4 e for te ( 2k-—1 , 2k ] ’
) 2n+1‘ on+1
0 otherwise in [0,1].

1) A norm ||-]| of E is called to have the levelling length property, if | fe|=||f|| holds
for any f€E and measurable set ¢, where f. coincides with f outside the e and on e, fe=

{ﬁyg f(t)dt}Ce (Ce is the characteristic function of ¢). This property was first discussed by

them in the earlier paper [4]. At the same time, G.G. Lorentz and D. G. Wertheim also
found it independently and named it the average invariant property {9].

2) 1In the sequel, we eliminate [0,1] and write simply Lase,» (or LPW) in place of L,
[0,1] (resp. L@ [0,1]). L»® was first discussed by W. Orlicz in [11], and was investigated
precisely by H. Nakano [10].

3) This formulation of Haar functions is due to Z. Ciesielskii [2].
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"For any a(t)e L'[0,1] we denote by S, (@)=S,(a;t) (n=1,2,---) the n-th
partial sum of Haar Fourier series: - :

2.2)  S.a;f)= 5, where a"=jla(t)x,,(t)dt.

It is a well-known fact that if a(¢) is continuous on [0,1], S,(a; ?) converges
uniformly to a(t) and

8 Selwo=fz[Tegad (re(F5L. k)

holds for each =0, k=1,2,---,2".

Now let M(E, t) (=0, 0=¢t<1) be a convex function of £€=0 for each
t€[0,1] and a Lebesgue measurable SJunction of t€[0,1] for each §=0 with
the following properties:

M.1) M0O,5)=0 Sfor a.e. t€[0,1}];
M.2) lim M, &)= M(a,t)  for a.e. t€[0,1] and each a>0;

E>a—0

"M.3) lLmM(E )=+  for ae. t€[0,1];

M. 4) for any te€ [O,l] there exists a,>0 such that M (a,, t) <+ co. .

We denote by Ly, the set of all measurable functions x(#) satisfying
j‘lMa]x (8], )dt< + o0 for some a=a(x)>0.

Then Ly, 18 called a modulared Junction space and is considered as a
modulared semz -ordered linear space [5,10] with a modular m:

24 mix) = Miz@) 0de (€ Luen),
where 0 <z, x€ Ly, », means that x(£)=0 a.e. in [0,1]. Furthermore LM-@,,)
is a Banach space with a norm | .| defined by the modular: '

‘ 1 o ‘

(2.5) |zl = inf —- (x€ Ly, ») »

nenst |E|

and Ly, r is sepafablé if and only if m(x)<+ oo for every x€ L., which
is also equivalent to the fact that M(E, ¢) satisfies the generalized d,-condition

5,71, i.e.
(4,) there exist a positive number T >0 and 0=ZacL'[0,1] such that
(2. 6) O M@2&H)STM(E )+ a(?) for all £=0 and a.e. t€[0,1].

4) This norm is called the modular norm by the modular . In the sequel, we consider
Ly,»» with this norm.
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This norm ||:]|, as is easily seen, does not satisfy the levelling length
property in general®. If there exists a convex function M (&) such that M(&,2)
=DM(£) holds for every £=0 and a.e. #z€[0,1], then L, , is nothing but an

- Orlicz space Ly, and if M(g, £)=&"® holds, where p(2) is a measurable function
with 1=p(¢) (¢€[0,1]), L. is denoted by L”® [10,11]. L*® is separable if
and only if p(#) is bounded: p(#)<K for a.e. £€[0,1] and a constant K>0.

3. For a system of convex N-functions {¢,(£)},c., there exist always the
join (the least upper bound function) and the meet (the greatest lower bound
function) as a convex function in the family F of positive convex functions.
In fact, put @(E)ZSZIEIE) 0:(§) (6=0), then @ is a convex function which is the

join of {@;},( in F (it is possible that @ (&)= + oo may hold for each &£>0).
Here we denote this join of {¢,},, in F by conv-Ue,  As for the meet,
A€4 .

put ¥ =conv-U ¢;, where ¢,(&) is the complementary function to ¢,(1€4) in the
A€A

sense of H. W. Young, and further let @, be the complementary function to ¥
in the above sense too, then @, comes to be a convex function which is the meet
of {¢:}:esin F (it is possible also that @,(¢€)=0 may hold for every £=0). We

denote the meet of {¢,}.cs iIn F by conv-Ng, as well. From the definitions,
2€A ’

it is clear that conv-N g, (t) < ¢.(#)<conv-U ¢,(t) holds for each =0 and 2eA.
A€A €A1
Now let L, ,, be a modulared function space. Since M(£,#) is convex
N-functions of £=0 for all £€[0,1] by M. 1)-M. 4) in 2, we can define convex
functions M, ,(¢€) and Mn,‘k(é) as follows :

(3.1) M@ =como- U MEDO - (£20),
: tel,
(3' 2) ‘ —Mn,k(f) = Conv- Gm M(E’ t) (52.0) 5
z I’Ilyk ‘
where I,,,Cz(-&—l ,L> (n=0,1,2,---; k=1,2,---,2"). We put also
’ 2" ‘2” .
; frmared rMn’k_(?j)_] —_— “es
‘(3- 3) o, k:l}gf’.‘ffgn SYARCLE (n=1,2--),

if it has a sense. ;
With these preparations, we have

Theorem 1. Haar functions {X,}, constitute a basis for a modulared
Junction space L, ., if M(E,t) satisfies the following conditions :

5) Indeed, we can show fhat if the norm ||-|| on FEare,» fulfils the requirement of the
levelling length property, Lare,s reduces to an Orlicz space Lar.

6) Since M(§,t) satisfies- M.1)}-M.4), M(£,#) is considered as convex N-functions for
a.e. t&[0,1]. ’ » ,
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C.1) the d,condition in 2 holds true for M(E,1);

C.2) there exists a positive number 6 such that ess. inf M(0,8)=1;
220,1]

C.3) _there exists a positive number « such that Iim w,<k.”

- Before entering into the proof of Theorem 1, we first prove the auxiliary
lemmas. ‘

Lemma 1. If M, t) satisfies C. 2), then |x|=1 (xeLM(E,,)) implies
j |2(8)|de <25, hence LS L. |

Proof. If ||x| <1 (x€Lye.ys), then the formulas (2.4) and (2.5) imply
m(x)<1. Hence we get

12[‘M<|x<t>|,t>dt=je M(|=(@)), ddz+ [, Mz (@), 0de

[ @)\de

where e;={t: ]x( )|= 06} and e; is the complement of e;, since M(§, 2 =
—g—M(é, )= %holds for every & with £=26>0 and a.e. £€[0,1] by virtue of

convexity of M(£, ¢) and C.2). Therefore we obtain j‘llx(t)ldt§25. , QED

Lemma 2. If Mg, 1) satisfies C. 3), then 1(1(t)=1 for all t€[0,1]) belongs
to Ly, -

Proof. As Max { (2

M, .(27))
k= Il =g, we have for some 7

M, .(27) . )
Ml,z(l)g ax {M, (2"} < + oo (=12,

E=1,2,,2
whence

_ fM(l, t)dtgf’zﬂg,l(ndt +f M, ,(1)dt < + oo .
0 o 1/2

which implieS IELM(g’t)- - Q.E.D.
Proof of Theorem 1: Putting for n=1,2,---; k=1,2,---,2"

Tz = 27 j dt} (2€ Lge) »
k—1 k

where ¢! is the characteristic function of the interval I, , = o —Z—n—) , we

7) 1In the ‘definition of wn, we -can substitute conv- U M(£&,¢?) (or conv- N M(£,t) by
N €70 1 - telp,z
conv- U MI(E,1) (resp. conv- N M(§,1) in the formulae (3.1) and (3.2), where e is a set of
€1, ¢ 13 .
measure zero, as the proof shows below. .
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obtain by Lemma 2 a linear operator 7 of L., into itself for each 7, k.
Then (2.3) can be written as

(3.4) Spn () = kf T

Now let x€ Ly ,, with ||x||<1. From Lemma 1 we have |(T}(x)(8)|=<
027" ck () (¢€[0,1]).. According to C.3) we can find a natural number 7, such

that n=#n, implies ®,<2x. Then we get for any n with n>#n, and any k
1=sk=2

(3. 5) —~T’”x> J.

|

(Tt 0)) e

/

M
M, (—)(Tﬁ

= Max{ij x)( \.> dt, m(2”°c,’§)} .

Loy

Because, if 2”°§2”<2L5'(T,’§x) (t)‘ <2**'<2" (¢tel, ,) holds, it follows from the

definitions (3.1), (3.2) of M, . and M, , that

W (| (T52) (0] ) S Mo (277) S 26 Mo (277)

<26, 2-5151<T:x> (0]) <2-M. (= (Th2) 1))

where k' is a suitable natural number such that 1,,, D1, .
Now, applying the Jensen’s inequality to the last term of (3.5), we get

m (% Tix) < Max { 2ELMM,L,,C (%133@) ) m (znoc:;)}
éij M(—;—l’x(t)l, t) dt+ m(2mck) < 2em (-;—xc"> (27 |

Consequently (3.4) gives for n>n,

m( 1 Szn (x)) = < Z Trix g}m (é{ T{ix)

20 20 k=1

=2k Z m<——x c >+ Zm (270cf) = 2xm<—é—x>+m(2”ol)

Therefore, | x||<1 implies m( znx> </c’ (n>n,)® for a suitable chosen

£’ >0, which also ‘shows sup HSan< + oo.

zl|£1, n>n,

, ' 1
~'8) Since M(%,1) satisfies the 4,-condition, we have sup m (—a— x><+00.

lxll =1
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As the result of the above, we can see directly that the operator norms
of S, (v=1,2,--:) are uniformly bounded. Since the set of all continuous func-
tions is dense in. L, ,, in case M(&,¢) satisfies the (4.)-condition, and uniform
convergence implies the norm convergence in L. ,, our assertion is obtained.

Q.E.D.

Next we shall replace the condition C.3) in Theorem 1 by a somewhat

simpler one. For this purpose we define from M(g, ?)

(3. 6) L(& 2 =log M(&,9)/log ¢,
if Mg, t) and & are both greater than 1, and

L 8=0
otherwise, where z€[0,1] and £=0.
Using L(&, t) we shall prove

" Theorem 2. Suppose that C.1) and C.2) hold for Mg, ) If L&
(defined by (3.6) from M, t)) satisfies the Lipschitz a-condition (0<a=<1)
with a constant T>0 for all £=&,, i.e. C

C.3) |LE&)—LE )| sTr|e—2| for all ¢,¢€[0,1], £=¢&,, where a,T and
& =0 are all certain fixed constants®.
Then Haar functions {X,(8)}, constitute a basis in Lse,rs-

Proof. It follows by C.2) L(&, t)=log M(&, t)/log & for all & with £=Max
(0,1), which implies also for sufficiently large &>1

3.7 M =g "M, r) - (6re[0,1], e28)
by virtue of C.3’). |
Let n, be a natural number such that both 2 =% <1 and 2%>¢&, hold.

0

Then for any »n>n,, the inequality (3.7) gives M (f,t)_S_Ez’i“ M(¢,2) for all ¢,¢'
€l,, and £=¢&, where k=1,2,---,2®, Recalling the definition of ZV[%,C(E_), we
obtain for every t,t'el, , and £=¢,

3.8) C MESMLLESETME ).

Now we put

9) In view of the proof of Theorem 2, we can see that Theorem 2 remains to be true
if we replace C.3’) by a somewhat general condition: C.3”) |L(&,2)—L (&, )| Sw([t—2|) (=80,

[©))
t,t’ € [0,1]), where w(&) is a function defined on [0, o) satisfying hm (%—)w <+oo.
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(3.9) Bk =ess. inf (27, #),
_ €0,
M (2", t)— M(2"—e¢,t)

where ¢(2% ¢) = lim (tel, i, k=1,2,--, 2"); From the

&0 I
condition C. 2) and the fact.that M(&,2) is a convex function for each z€[0,1],
we have BE>0 for every n>n, and 1<k=<2» Thus, for each 7,k (n>n,
1=k=2") there exists #,€1, , such that

1
7‘90(2", t,) =< Bt .

For this %, we put

%M({:, t,) for 0=&=<27;

(3.10)  @ni(58) = n n
4 _9_0(27,150_)_(5__?)_‘_%%@, for 2"=¢.

Then, according to (3.8), @,,:(5,2) is a convex N-function satisfying for each
§=2m

(3.11) B i€ < M, 9  for ae. t€l,,

and

(3.12) M, . (6)=4¢, (&) for all 27=&=2™,

because, E?‘% = 227:’_7“ <2 holds for £€<2”. ,
Then, substituting M, ; in the proof of Theorem 1 by ¢, :, we can prove

by (3.11) and (3.12) that m(zla Sznx)§4m(2"°1)+4m<%x> holds for all

n=n,, hence sup ||S;=x|| <+ oo (n>n,), in the quite same way. From this the

llzf| £1, =>n,

proof is immediately established. 0QO.E.D.

For the L*® spaces (1=p(¢) for a.e. t€[0,1]), the matters in question
come to be quite simple. In this case, M(&, ¢)=£7* satisfies C.2) always, and
C.1) is also implied from the condition corresponding to C.3) or C.3’). In
fact, we obtain

Theorem 3. Haar functions {X, (&)}, constitute a basis in L*®, if

C. 4) Eﬁw@bg%<+®

" 80

holds, where w(6)=ess. sup |p(t)—p(t)].

z,e’ef0,1], |22 <8
Furthermore from Theorem 2 we have
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Theorem 4. If p(¢) satisfies the szschztz a-condition (0 <axl), then
Haar functions {X,(t)}, constztute a basis in L”(‘) -
C.1) is also necessarily fulfiled, as easily verified. Therefore the assertion is
obtained from Theorem 1 and 2.

4. In this section some remarks concerning the theorems in 3 shall be
presented.

Remark 1. The condition C. 2) in Theorems 1 and 2 can not be erased..
Indeed, in case M(&,¢) satisfies only C. 1) and C. 3), it may occur, as an easy

1
example shows, that a,=j a(t)X,(t)dt= + oo holds for some v (hence necessarily
. :
for an infinite number of v), where a(z) is an element of L,y .
" Remark 2. Theorems 3 and 4 have the direct extensions, without adding

any assumption, to the following spetial modulared function spaces: L,, or
L,y, where M* and p* are defined such that

(4.1) M?(§, )= ME*® and  p¥( 8= ME™)
hold respectively for all £=0 and #€[0,1] with a convex N-function M (S)
satisfying the 4,-condition and p(:)=1.

For the proof based on Theorems 1 and 2, we only note: here that if
a convex N-function M (§) satisfy the 4.- cond1t10n M(&)<7e® holds (6=¢&,) for
some 7>0, p=1 and &=0.

Remark 3. In Theorems 3 and 4 we can not weaken the assumption by

the continuity of p(¢) without failing to hold the wvalidity, as the following
example shows.

Example: Let {v;}7, be a sequence of natural numbers such that
1 1

and (2¢%")#% >4 and v, <y, -- for all =1, and I,= <—W, 4)
B - 2vi+1 2”i
Now we put . .
1+ 1 for te[l —t. 1];
v2n Don 3.2%n+17 vy ‘
(4.2) 20 (8) = 1+_1 for te[ 1 , 1, 1 ];
’ 271.+1 2"'7l+1 2vn+1 . 3_2vn+1
linear otherwise.

for all. #=1, and also

Br for te[ 1 , - 1 + 1 ];
(4' 3) fn (t) = l 2vn +1 2'n +1 3.2vnt1
0

otherwise,
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where 8, = (3-2*)7 51 for all n=1. Then po(2) is continuous, 1<p,(£)<2
for all z€[0,1], f,€ L*® and | f.||=1 for all n=1.

Now, suppose that the set of Haar functions be a basis for the space LY
and by virtue of the Banach’s Theorem [1], the norms |S,|] (v=1) must be
bounded from above. On the other hand, we can deduce without difficulty
that for a sequence of natural numbers {k,},_. suitable chosen we have
m (Si, fn) =+ n [9 for all =1, whence we have sup 1S, Sl = sup [:S,.]] = + oo.

Therefore we obtain a contradiction. Consequently, we conclude that Haar
Sunctions {X,(¢)}2, do not compose a basis in the space L»® thus constructed.

@
’
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