A NOTE ON HOCHSCHILD COHOMOLOGY GROUPS

By

Goro AZUMAYA

Let K be a commutative ring with identity element, and let Λ be a Kalgebra, that is, an algebra over K with identity element 1. We denote by Λ^* the opposite algebra of Λ , which is in an opposite-isomorphism $\lambda \rightarrow \lambda^*$ with Λ . Any right Λ -module is converted into a left Λ^* -module (and conversely) by setting the left multiplication of λ^* to be the right multiplication of λ . Furthermore, every two-sided Λ -module is, and in particular Λ is, regarded as a left module for the enveloping algebra $\Lambda^e = \Lambda \otimes \Lambda^{*1}$ in the natural manner.

Let A be a two-sided Λ -module. Hochschild defined in [2] the cohomology groups of Λ for A as the homology groups $H^n(\Lambda, A)$ of the complex whose components are the cochain groups $C^n(\Lambda, A)$, i.e., the module of all K-multilinear mappings $f=f(\lambda_1, \dots, \lambda_n)$ of Λ into A, and whose differentiation operators δ^n : $C^n(\Lambda, A) \to C^{n+1}(\Lambda, A)$ are defined by

$$(\delta^n f)(\lambda_1, \cdots, \lambda_{n+1}) = \lambda_1 f(\lambda_2, \cdots, \lambda_{n+1}) + \sum_{i=1}^n (-1)^i f(\lambda_1, \cdots, \lambda_i \lambda_{i+1}, \cdots, \lambda_{n+1}) + (-1)^{n+1} f(\lambda, \cdots, \lambda_n) \lambda_{n+1}.$$

Here, the two-sided Λ -module Λ needs not be assumed to be unital (i.e., the identity element 1 of Λ does not necessarily act on A as the identity-operator on both left and right hands), but we may replace A by the unital module 1A1 to obtain the same cohomology groups according to Hchschild [3], Th. 1: $H^n(\Lambda, A) \cong H^n(\Lambda, 1A1)$. On the other hand, Cartan and Eilenberg gave in [1] another definition of cohomology groups for a unital two-sided Λ -module A; namely, they called $\operatorname{Ext}_{A}^{n}(\Lambda, A)$ the *n*-th cohomology group of Λ for A. The defined two groups $H^n(\Lambda, A)$ and $\operatorname{Ext}_{A^e}^n(\Lambda, A)$, for unital A, coincide (that is, are naturally equivalent as functors of A) always for n=0, 1 ([1], Chap. But this is not the case in general for n > 1. IX, Prop. 4.1.). It is shown in [1], Chap. IX, §6 that the both groups coincide if Λ is K-projective. In this note, we shall however generalize this to prove that the both groups coincide whenever Λ^e is projective as a right Λ -module. In this connection, it may be of some interest to give in Proposition 2 below a homological significance of the Hochschild two-sided A-module $\operatorname{Hom}_{\kappa}(A, A)$ introduced in [2].

¹⁾ We shall mean by the mere \otimes the tensor product over K; thus, $\Lambda \otimes \Lambda^* = \Lambda \otimes_K \Lambda^*$.

G. Azumaya

Now, consider three K-algebras Λ , Γ , Σ . Let A, B, C be respectively a unital two-sided Λ - Γ , Γ - Σ -, Λ - Σ -module; they are also regarded respectively as a left $\Lambda \otimes \Gamma^*$ -, $\Gamma \otimes \Sigma^*$ - $\Lambda \otimes \Sigma^*$ -module in the natural manner. Then there is a well-known natural isomorphism ([1], Chap. IX, Prop. 2.2)

(1)
$$\operatorname{Hom}_{A\otimes I^*}(A, \operatorname{Hom}_{\Sigma}(B, C)) \cong \operatorname{Hom}_{A\otimes I^*}(A\otimes_{I}B, C).$$

On the basis of this isomorphism, we have the following analogy of [1], Chap. IX, Th. 2.8a:

Proposition 1. In the situation $({}_{A}A_{\Gamma}, {}_{\Gamma}B_{\Sigma}, {}_{A}C_{\Sigma})$ assume that A is Γ -projective, B is Σ -projective, and $A \otimes \Gamma^*$ is (left) Γ^* -projective²). Then there is a natural isomorphism

 $\operatorname{Ext}_{A\otimes\Gamma^*}^n(A,\operatorname{Hom}_{\Sigma}(B,C))\cong\operatorname{Ext}_{A\otimes\Sigma^*}^n(A\otimes_{\Gamma}B,C).$

Proof. Let X be a $A \otimes \Gamma^*$ -projective resolution of A. Then, since $A \otimes \Gamma^*$ is Γ^* -projective, X is also a $(\Gamma^*$ - or) Γ -projective resolution of A. Hence the homology group of $X \otimes_{\Gamma} B$ is $\operatorname{Tor}^{\Gamma}(A, B)$. But, since A is Γ -projective, $\operatorname{Tor}_n^{\Gamma}(A, B) = 0$ for n > 0. Further, since B is Σ -projective, $X \otimes_{\Gamma} B$ is $A \otimes \Sigma^*$ projective and so a $A \otimes \Sigma^*$ -projective resolution of $A \otimes_{\Gamma} B$ by [1], Chap. IX, Prop. 2.3. Thus, replacing in (1) A by X and taking the homology group, we have the desired isomorphism.

As the particular case where $\Lambda = \Gamma = \Sigma$ and $A = \Lambda$, we obtain.

Corollary. Let B and C be unital two-sided A-modules, and assume that B is right A- (or left Λ^* -) projective and Λ^e is left Λ^* -projective. Then there is a natural isomorphism

$$\operatorname{Ext}_{\Lambda^e}^n(\Lambda, \operatorname{Hom}_{\Lambda^*}(B, C)) \cong \operatorname{Ext}_{\Lambda^e}^n(B, C)$$
.

We next consider a Λ^{e} -epimorphism $\rho: \Lambda^{e} \to \Lambda$ which is defined by $\rho(\lambda \otimes \mu^{*})$ $(\lambda \otimes \mu^{*}) = \lambda \mu$. Let J be the kernel of ρ . Then J is a left ideal of Λ^{e} , and we have an exact sequence of left Λ^{e} -modules

$$(2) \qquad \qquad 0 \longrightarrow J \xrightarrow{\iota} \Lambda^e \xrightarrow{\rho} \Lambda \longrightarrow 0 ,$$

where i means the imbedding mapping. Hence, to every unital two-sided Λ -module A, there corresponds, for each n > 1, an exact sequence

$$\operatorname{Ext}_{A^{e}}^{n-1}(A^{e}, A) \longrightarrow \operatorname{Ext}_{A^{e}}^{n-1}(J, A) \longrightarrow \operatorname{Ext}_{A^{e}}^{n}(A, A) \longrightarrow \operatorname{Ext}_{A^{e}}^{n}(A^{e}, A) .$$

But, since Λ^e is Λ^e -projective, the first and the last terms = 0, and thus we have a natural isomorphism

⁽²⁾ We regard $\Lambda \otimes \Gamma^*$ as a left Γ^* -module by setting the left multiplication of τ^* as the left multiplication of $1 \otimes \tau^*$.

(3)
$$\operatorname{Ext}_{A^{e}}^{n-1}(J,A) \cong \operatorname{Ext}_{A^{e}}^{n}(A,A), \qquad n > 1.$$

On the other hand, since (2) is exact as left Λ^* -modules too and since Λ is Λ^* -projective, (2) must splits, i.e., $\Lambda^e = J \oplus \Lambda^*$. It follows therefore that if Λ^e is Λ^* -projective then J is also Λ^* -projective. Thus, there is, by the above corollary, a natural isomorphism

$$\operatorname{Ext}_{A^{e}}^{n}(A, \operatorname{Hom}_{A^{*}}(J, A)) \cong \operatorname{Ext}_{A^{e}}^{n}(J, A),$$

if Λ^e is Λ^* -projective. Now, replacing here *n* by n-1 and comparing with (3), we obtain the following reduction theorem:

Theorem 1. Let A be a unital two-sided Λ -module, and assume that Λ^e is left Λ^* -projective. Then there is a natural isomorphism

$$\operatorname{Ext}_{A^{e}}^{n-1}(\Lambda, \operatorname{Hom}_{A^{*}}(J, A)) \cong \operatorname{Ext}_{A^{e}}^{n}(\Lambda, A), \qquad n > 1.$$

Now, let A be any two-sided A-module. Hochschild converted $\operatorname{Hom}_{\kappa}(\Lambda, A)$ into a two-sided A-module by setting, for any $f \in \operatorname{Hom}_{\kappa}(\Lambda, A)$ and $\lambda \in \Lambda$, λf and $f\lambda$ as the mappings $\mu \rightarrow \lambda f(\eta)$ and $\mu \rightarrow f(\lambda \mu) - f(\lambda) \mu$, $\mu \in \Lambda$, respectively ([2], §1). Since Λ is K-unital we have $1f(\mu) = f(\mu) = f(\mu)1$ for every $f \in \operatorname{Hom}_{\kappa}(\Lambda, A)$ and $\mu \in \Lambda$, and this implies first that $\operatorname{Hom}_{\kappa}(\Lambda, A)$ is unital as a left Λ -module. However, it is not necessarily unital as a right Λ -module (even if Λ is unital), and in fact $\operatorname{Hom}_{\kappa}(\Lambda, A) \cdot 1$ consists of those f in $\operatorname{Hom}_{\kappa}(\Lambda, A)$ which satisfy f(1)=0, because if f=g1 with some $g \in \operatorname{Hom}_{\kappa}(\Lambda, A)$ then f(1)=g(1)-g(1)1=0 and conversely if f(1)=0 then $f(\mu)-f(1)\mu = f(\mu)$ for all $\mu \in \Lambda$, showing f1=f.

Proposition 2. Let A be a two-sided A-module and $\operatorname{Hom}_{\kappa}(\Lambda, A)$ the Hochschild two-sided A-module. Let $\varphi: \Lambda \to J$ be the K-homomorphism defined by $\varphi(\lambda) = \lambda \otimes 1 - 1 \otimes \lambda^*$. Then, by associating with each $h \in \operatorname{Hom}_{A^*}(J, A)$ the product mapping $h \cdot \varphi \in \operatorname{Hom}_{\kappa}(\Lambda, A)$, we obtain a natural isomorphism $\operatorname{Hom}_{A^*}(J, A) \cong \operatorname{Hom}_{\kappa}(\Lambda, A) \cdot 1$ as two-sided A-modules.

Proof. Let $h \in \operatorname{Hom}_{A^*}(J, A)$ and put $f = h \cdot \varphi$. Then, since $\varphi(1) = 0$, it follows that $f(1) = h(\varphi(1)) = h(0) = 0$. Further, for any λ, μ in Λ , we have $\lambda f(\mu) = \lambda h(\mu \otimes 1 - 1 \otimes \mu^*)$, i.e., $\lambda f = (\lambda h) \cdot \varphi$, while $f(\lambda \mu) - f(\lambda) \mu = f(\lambda \mu) - \mu^* f(\lambda) = h((\lambda \mu) \otimes 1 - 1 \otimes (\lambda \mu)^*) - h((1 \otimes \mu^*) (\lambda \otimes 1 - 1 \otimes \lambda^*)) = h((\lambda \mu) \otimes 1 - \lambda \otimes \mu^*) = h((\lambda \otimes 1) (\mu \otimes 1 - 1 \otimes \mu^*))$, i.e., $f\lambda = (h\lambda) \cdot \varphi$. These together show that the mapping $h \to h \cdot \varphi$ gives a homomorphism $\operatorname{Hom}_{A^*}(J, A) \to \operatorname{Hom}_K(\Lambda, A) \cdot 1$ as two-sided Λ -modules. Now Jis, as a left Λ^* -module, generated by the elements $\varphi(\lambda), \lambda \in \Lambda$, because $\sum \lambda_i \otimes \mu_i^* \in J$ means $\sum \lambda_i \mu_i = 0$ whence $\sum \lambda_i \otimes \mu_i^* = \sum \lambda_i \otimes \mu_i^* - 1 \otimes (\sum \lambda_i \mu_i)^* = \sum (\lambda_i \otimes \mu_i^* - 1 \otimes (\mu_i^* \lambda_i^*)) = \sum (1 \otimes \mu_i^*)(\lambda_i \otimes 1 - 1 \otimes \lambda_i^*)$ (cf. [1], Chap. IX, Prop. 3.1), which implies that the mapping $h \to h \cdot \varphi$ is one-to-one. In order to see that the mapping is moreover an epimorphism, take any f from $\operatorname{Hom}_K(\Lambda, A) \cdot 1$. As is easily seen, there exists a K-homomorphism $\bar{h}: \Lambda^e \to A$ such that $\bar{h}(\lambda \otimes \mu^*) = (f(\lambda)\mu =) \mu^* f(\lambda)$, and \bar{h} is necessarily a Λ^* -homomorphism because $\bar{h}((1 \otimes \nu^*)(\lambda \otimes \mu^*)) = \bar{h}(\lambda \otimes (\mu\nu)^*)$ $= (\mu\nu)^* f(\lambda) = \nu^* \mu^* f(\lambda) = \nu^* \bar{h}(\lambda \otimes \mu^*)$. Let h be the restriction of \bar{h} to J. Then $h \in \operatorname{Hom}_{A^*}(J, A)$ and $h(\lambda \otimes 1 - 1 \otimes \lambda^*) = \bar{h}(\lambda \otimes 1) - \bar{h}(1 \otimes \lambda^*) = f(\lambda) 1 - \lambda^* f(1) = f(\lambda)$, i.e., $h \cdot \varphi = f$. This completes our proof.

We can now prove

Theorem 2. Let A be a unital two-sided A-module and $H^n(\Lambda, A)$ the n-th Hochschild cohomology group of Λ for A. Suppose that $\Lambda^e = \Lambda \otimes \Lambda^*$ is left Λ^* -projective (or equivalently, right Λ -projective)³). Then there is a natural isomorphism $H^n(\Lambda, A) \cong \operatorname{Ext}_{A^e}^n(\Lambda, A)$.

Proof. The theorem is true for n=0, 1 by [1], Chap. IX, Prop. 4.1 (even without assuming the Λ^* -projectivity of Λ^e). So we may assume n>1, and we suppose the theorem is true for n-1 instead of n and for all (unital) A. Then in particular

$$(4) \qquad \qquad H^{n-1}(\Lambda, \operatorname{Hom}_{A^*}(J, A)) \cong \operatorname{Ext}_{A^e}^{n-1}(\Lambda, \operatorname{Hom}_{A^*}(J, A)).$$

By Theorem 1 the right side of (4) is naturally isomorphic to $\operatorname{Ext}_{A^e}^n(\Lambda, A)$. On the other hand, the left side of (4) is by Proposition 2, whence, by [3], Th. 1, naturally isomorphic to $H^{n-1}(\Lambda, \operatorname{Hom}_K(\Lambda, A))$, and moreover this is isomorphic to $H^n(\Lambda, A)$ according to [2], Th. 3.1. Thus, $H^n(\Lambda, A) \cong \operatorname{Ext}_{A^e}^n(\Lambda, A)$, and by induction this proves our theorem completely.

References

- 1) H. CARTAN and S. EILENBERG: Homological algebra, Princeton, 1956.
- G. HOCHSCHILD: On the cohomology groups of an associative algebra, Ann. of Math. vol. 46 (1945) pp. 58-67.
- 3) G. HOCHSCHILD: On the cohomology theory for associative algebra, Ann. of Math. vol. 47 (1946) pp. 568-579.

Department of Mathematics Hokkaido University

(Received December 5, 1962)

3) The mapping $\lambda \otimes \mu^* \to \mu \otimes \lambda^*$ defines an involution of Λ^e , and by this mapping $\nu^*(\lambda \otimes \mu^*)$ is mapped on $(\mu \otimes \lambda^*) \nu = (\mu \nu) \otimes \lambda^*$. This shows that Λ^e is left Λ^* -projective if and only if it is right Λ -projective.