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Let $K$ be a commutative ring with identity element, and let $\Lambda$ be a K-
algebra, that is, an algebra over $K$ with identity element 1. We denote by
$\Lambda^{*}$ the opposite algebra of $\Lambda$ , which is in an opposite-isomorphism $\lambda\rightarrow\lambda^{*}$ with
$\Lambda$ . Any right $\Lambda$-module is converted into a left $\Lambda^{*}$-module (and conversely) by
setting the left multiplication of $\lambda^{*}$ to be the right multiplication of $\lambda$ . Further-
more, every two-sided $\Lambda$-module is, and in particular $\Lambda$ is, regarded as a left
module for the enveloping algebra $\Lambda^{e}=\Lambda\otimes\Lambda^{*1)}$ in the natural manner.

Let $A$ be a two-sided $\Lambda$-module. Hochschild defined in [2] the cohomology
groups of $\Lambda$ for $A$ as the homology groups $H^{n}(\Lambda, A)$ of the complex whose
components are the cochain groups $C^{n}(\Lambda, A),$ $i.e.$ , the module of all K-multilinear
mappings $f=f(\lambda_{1}, \cdots,\lambda_{n})$ of $\Lambda$ into $A$ , and whose differentiation operators $\delta^{n}$ :
$C^{n}(\Lambda, A)\rightarrow C^{n+1}(\Lambda, A)$ are defined by

$(\delta^{n}f)(\lambda_{1},\cdots,\lambda_{n+1})=\lambda_{1}f(\lambda_{2}, \cdots,\lambda_{n+1})+$

$\sum_{i=1}^{n}(-1)^{i}f(\lambda_{1}, \cdots,\lambda_{i}\lambda_{i+1}, \cdots,\lambda_{n+1})+(-1)^{n+1}f(\lambda, \cdots,\lambda_{n})\lambda_{n+1}$ .

Here, the two-sided $\Lambda$-module $A$ needs not be assumed to be unital ($i.e.$ , the
identity element 1 of $\Lambda$ does not necessarily act on $A$ as the identity-operator
on both left and right hands), but we may replace A’by the unital module
1A1 to obtain the same cohomology groups according to Hchschild [3], Th.
1: $H^{n}(\Lambda, A)\cong H^{n}$ ( $\Lambda$ , 1A1). On the other hand, Cartan and Eilenberg gave in
[1] another definition of cohomology groups for a unital two-sided $\Lambda$-module
$A$ ; namely, they called $Ext_{1^{e}}^{n}(\Lambda, A)$ the n-th cohomology group of $\Lambda$ for $A$ .
The defined two groups $H^{n}(\Lambda, A)$ and $Ext_{\Lambda^{C}}^{n}(\Lambda, A)$ , for unital $A$ , coincide
(that is, are naturally equivalent as functors of $A$ ) always for $n=0,1$ ([1], Chap.
IX, Prop. 4.1.). But this is not the case in general for $n>1$ . It is shown
in [1], Chap. IX, \S 6 that the both groups coincide if $\Lambda$ is K-projective. In
this note, we shall however generalize this to prove that the both groups coincide
whenever $\Lambda^{e}$ is projective as a right $\Lambda$-module. In this connection, it may be
of some interest to give in Proposition 2 below a homological significance of
the Hochschild two-sided $\Lambda$-module Hom $K(\Lambda, A)$ introduced in [2].

1) We shall mean by the mere $\otimes the$ tensor product over $K$ ; thus, $\Lambda\otimes\Lambda^{*}=\Lambda\otimes x\Lambda^{*}$ .
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Now, consider three K-algebras $\Lambda,$ $\Gamma,$ $\Sigma$ . Let $A,$ $B,$ $C$ be respectively
a unital two-sided $\Lambda-\Gamma\cdot,$ $\Gamma-\Sigma_{-},$ $\Lambda-\Sigma$-module; they are also regarded respec-
tively as a left $\Lambda\otimes\Gamma^{*}-,$ $\Gamma\otimes\Sigma^{*}-\Lambda\otimes\Sigma^{*}$-module in the natural manner. Then
there is a well-known natural isomorphism ([1], Chap. IX, Prop. 2.2)

(1) $Hom_{\Lambda\otimes\Gamma^{l}}(A, FIom_{\Sigma}(B, C))\cong Hom_{4\otimes\Sigma^{*}}(A\otimes_{\Gamma}B, C)$ .

On the basis of this isomorphism, we have the following analogy of [1], Chap.
IX, Th. 2. $8a$ :

Proposition 1. In the situation $(_{\Lambda}A_{\Gamma’\Gamma}B_{\Sigma’\Lambda}C_{\Sigma})$ assume that $A$ is $\Gamma-$

projective, $B$ is $\Sigma$-projective, and $\Lambda\otimes\Gamma^{*}$ is (left) $\Gamma^{*}$-projective 2). Then there
is a natural isomorphism

$Ext_{\Lambda\otimes\Gamma^{*}}^{n}(A, Hom_{\Sigma}(B, C))\cong Ext_{4\otimes\Sigma}^{n}(A\otimes_{\Gamma}B, C)$ .
Proof. Let $X$ be a $\Lambda\otimes\Gamma^{*}$-projective resolution of $A$ . Then, since $\Lambda\otimes\Gamma^{*}$

is $\Gamma^{*}$-projective, $X$ is also a ( $\Gamma^{*}-$ or) $\Gamma$-projective resolution of $A$ . Hence the
homology group of $X\otimes_{\Gamma}B$ is $Tor^{\Gamma}(A, B)$ . But, since $A$ is $\Gamma$-projective,
$Tor_{n}^{\Gamma}(A, B)=0$ for $n>0$ . Further, since $B$ is $\Sigma$-projective, $X\otimes_{\Gamma}B$ is $\Lambda\otimes\Sigma_{-}^{*}$

projective and so a $\Lambda\otimes\Sigma^{*}$-projective resolution of $A\otimes_{\Gamma}B$ by [1], Chap. IX,
Prop. 2.3. Thus, replacing in (1) $A$ by $X$ and taking the homology group,
we have the desired isomorphisin.

As the particular case where $\Lambda=\Gamma=\Sigma$ and $ A=\Lambda$ , we obtain.
Corollary. Let $B$ and $C$ be unital two-sided $\Lambda$-modules, and assume

that $B$ is right $\Lambda-$ (or left $\Lambda^{*}-$ ) projective and $\Lambda^{e}$ is left $\Lambda^{*}$-projective. Then
there is a natural isomorphism

$Ext_{\Lambda^{e}}^{n}(\Lambda, Hom_{\Lambda^{*}}(B, C))\cong Ext_{\Lambda^{e}}^{n}(B, C)$ .
We next consider a $\Lambda^{e}$-epimorphism $\rho$ : $\Lambda^{e}\rightarrow\Lambda$ which is defined by $\rho(\lambda\otimes\mu^{*})$

$(\lambda\otimes\mu^{*})1=\lambda\mu$ . Let $J$ be the kemel of $\rho$ . Then $J$ is a left ideal of $\Lambda^{e}$ , and
we have an exact sequence of left $\Lambda^{e}$-modules

(2) $0\rightarrow J\Lambda^{e}\succ\Lambda->0\underline{f}\underline{\beta}$

where $f$ means the imbedding mapping. Hence, to every unital two-sided $\Lambda-$

module $A$ , there corresponds, for each $n>1$ , an exact sequence
$Ext_{A^{e}}^{n- 1}(\Lambda^{e}, A)-Ext_{1^{e}}^{n-1}(J, A)-Ext_{\Lambda^{e}}^{n}(\Lambda, A)-Ext_{\Lambda^{e}}^{n}(\Lambda^{e}, A)$ .

But, since $\Lambda^{e}$ is $\Lambda^{e}$-projective, the first and the last terms $=0$ , and thus we have
a natural isomorphism

(2) We regard $\Lambda\otimes\Gamma^{*}$ as a left $\Gamma$“’-module by setting the left multiplication of $\gamma*as$ the
left multiplication of $1\otimes\gamma*$ .
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(3) $Ext_{\Lambda^{e}}^{n- l}(J, A)\cong Ext_{4^{\epsilon}}^{n}(\Lambda, A)$ , $n>1$ .

’On the other hand, since (2) is exact as left $\Lambda^{*}$-modules too and since $\Lambda$ is
$\Lambda^{*}$-projective, (2) must splits, $i.e.,$ $\Lambda^{e}=JC+\Lambda^{*}$ . It follows therefore that if $\Lambda^{e}$

is $\Lambda^{*}$-projective then $J$ is also $\Lambda^{*}$-projective. Thus, there is, by the above
corollary, a natural isomorphism

$Ext_{\Lambda^{e}}^{n}(\Lambda, Hom_{\Lambda^{i}}(J, A))\cong Ext_{4^{e}}^{n}(J,A)$ ,

if $\Lambda^{e}$ is $\Lambda^{*}$-projective. Now, replacing here $n$ by $n-1$ and comparing with
(3), we obtain the following reduction theorem:

Theorem 1. Let $A$ be a unital two-sided $\Lambda$-module, and assume that
$\Lambda^{e}$ is left $\Lambda^{*}$-projective. Then there is a natural isomorphism

$Ext_{\Lambda^{e}}^{n- 1}(\Lambda, Hom_{\Lambda^{\aleph}}(J, A))\equiv Ext_{4^{e}}^{n}(\Lambda, A)$ , $n>1$ .
Now, let $A$ be any twa-sided $\Lambda$-module. Hochschild converted $Hom_{X}(\Lambda, A)$

into a two-sided $\Lambda$-module by setting, for any $f\in Hom_{w}(\Lambda, A)$ and $\lambda\in\Lambda,$ $\lambda f$ and
$ f\lambda$ as the mappings $\mu\rightarrow\lambda f(\eta)$ and $\mu\rightarrow f(\lambda\mu)-f(\lambda)\mu,$ $\mu\in\Lambda$ , respectively ([2], \S 1).
Since $\Lambda$ is K-unital we have $1f(\mu)=f(\mu)=f(\mu)1$ for every $f\in Hom_{K}(\Lambda, A)$ and
$\mu\in\Lambda$ , and this implies first that $Hom_{K}(\Lambda, A)$ is unital as a left A-module.
However, it is not necessarily unital as a right $\Lambda$-module (even if $A$ is unital),
and in fact $Hom_{It^{\prime}}(\Lambda, A)\cdot 1$ consists of those $f$ in $Hom_{X}(\Lambda, A)$ which satisfy
$f(1)=0$ , because if $f=g1$ with some $g\in Hom_{J_{1}^{\prime}}(\Lambda, A)$ then $f(1)=g(1)\cdot-g(1)1=0$

and conversely if $f(1)=0$ then $f(\mu)-f(1)\mu=f(\mu)$ for all $\mu\in\Lambda$ , showing $f1=f$.

Proposition 2. Let $A$ be a two-sided $\Lambda$-module and $Hom_{R}-(\Lambda, A)$ the
Hochschild two-sided $\Lambda$-module. Let $\varphi:\Lambda\rightarrow J$ be the K-homomorphism de-
fined by $\varphi(\lambda)=\lambda\otimes 1-1\otimes\lambda^{*}$ . Then, by associating with each $h\in Hom_{\Lambda^{\vee}}’(J, A)$

the product mapping $h\cdot\varphi\in Hom_{K}(\Lambda, A)$ , we obtain a natural isomorphism
$Hom_{\Lambda^{\prime}}(J, A)\cong Hom_{1\zeta}(\Lambda, A)\cdot 1$ as two-sided $\Lambda$-modules.

Proof. Let $h\in Hom_{F}(J, A)$ and put $ f=h\cdot\varphi$ . Then, since $\varphi(1)=0$ , it
follows that $f(1)=h(\varphi(1))=h(0)=0$ . Further, for any $\lambda,$

$\mu$ in $\Lambda$ , we have $\lambda f(\mu)$

$=\lambda h(\mu\otimes 1-1\otimes\mu^{*}),$ $i.e.,$ $\lambda f=(\lambda h)\cdot\varphi$ , while $f(\lambda\mu)-f(\lambda)\mu=f(\lambda\mu)-\mu^{*}f(\lambda)=h((\lambda\mu)$

$\otimes 1-1\otimes(\lambda\mu)^{*})-h((1\otimes\mu^{*})(i\otimes 1-1\otimes\lambda^{*}))=h((\lambda\mu)\otimes 1-\lambda\otimes\mu^{*})=h((\lambda\otimes 1)(\mu\otimes 1-$

$1\otimes\mu^{*})),$ $i.e.,$ $ f\lambda=(h\lambda)\cdot\varphi$ . These together show that the mapping $ h\rightarrow h\cdot\varphi$ gives
a homomorphism Hom $t*(J, A)-*Hom_{X}(\Lambda, A)\cdot 1$ as two-sided $\Lambda$-modules. Now $J$

is, as a left $\Lambda^{*}$-module, generated by the elements $\varphi(\lambda),$ $\lambda\in\Lambda$ , because $\sum\lambda_{i}\otimes\mu_{i}^{*}\in J$

means $\sum\lambda_{i}\mu_{i}=0$ whence $\sum\lambda_{i}\otimes\mu_{i}^{*}=\sum\lambda_{i}\otimes\mu_{i}^{*}-1\otimes(\sum\lambda_{i}\mu_{i})^{*}=\sum(\lambda_{i}\otimes\mu_{t}^{*}-1\otimes$

$(\mu_{i}^{*}\lambda_{i}^{*}))=\sum(1\otimes\mu_{i}^{*})(\lambda_{i}\otimes 1-1\otimes\lambda_{i}^{*})$ (cf. [1], Chap. IX, Prop. 3.1), which implies
that the mapping $ h\rightarrow h\cdot\varphi$ is one-to-one. In order to see that the mapping is
moreover an epimorphism, take any $f$ from $Hom_{X}(\Lambda, A)\cdot 1$ . As is easily seen,
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there exists a K-homomorphism $\overline{h}$ : $\Lambda^{e}\rightarrow A$ such that $\overline{h}(\lambda\otimes\mu^{*})=(f(\lambda)\mu=)\mu^{*}f(\lambda)$ ,

and $\overline{\hslash}$ is necessarily a $\Lambda^{*}$-homomorphism because $\overline{h}((1\otimes\nu^{*})(\lambda\otimes\mu^{*}))=\overline{h}(\lambda\otimes(\mu\nu)^{*})$

$=(\mu\nu)^{*}f(\lambda)=\nu^{*}\mu^{*}f(\lambda)=\nu^{*}\overline{h}(\lambda\otimes\mu^{*})$ . Let $h$ be the restriction of $\overline{h}$ to $J$. The\’{n}
$h\in Hom_{t\#}(J, A)$ and $h(\lambda\otimes 1-1\otimes\lambda^{*})=\overline{h}(\lambda\otimes 1)-\overline{h}(1\otimes\lambda^{*})=f(\lambda)1-\lambda^{*}f(1)=f(\grave{\Lambda})$ ,

$i.e.,$ $h\cdot\varphi=f$ This completes our proof.
We can now prove
Theorem 2. Let $A$ be a unital two-sided $\Lambda$-module and $H^{n}(\Lambda 4, A)$ the

n-th Hochschild cohomology group of $\Lambda$ for A. Suppose that $\Lambda^{e}=\Lambda\otimes\Lambda^{*}$ is

left $\Lambda^{*}$-projective (or equivalently, right $\Lambda$-projective)3). Then there is a
natural isomorphism $H^{n}(\Lambda, A)\cong Ext_{\Lambda^{e}}^{n}(\Lambda, A)$ .

ProoJ. The theorem is true for $n=0,1$ by [1], Chap. IX, Prop. 4.1 (even

without assuming the $\Lambda^{*}$-projectivity of $\Lambda^{e}$). So we may assume $n>1$ , and we
suppose the theorem is true for $n-1$ instead of $n$ and for all (unital) $A$ . Then
in particular

(4) $H^{n- 1}(\Lambda, Hom_{\Lambda^{*}}(J, A))\cong Ext_{1^{e}}^{n- 1}(\Lambda, Hom_{\Lambda^{t}}(J,A))$ .

By Theorem 1 the $right$ side of (4) is naturally isomorphic to $Ext_{t^{e}}^{n}(\Lambda, A)$ . On
the other hand, the left side of (4) is by Proposition 2, whence, by [3], Th.
1, naturally isomorphic to $H^{n-1}(\Lambda, Hom_{X}(\Lambda, A))$ , and moreover this is.isomor-
phic to $H^{n}(\swarrow 4, A)$ according to [2], Th. 3.1. Thus, $H^{n}(\Lambda, A)\equiv Ext_{\Lambda^{e}}^{n}(\Lambda, A)$ ,

and by induction this proves our theorem completely.
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3) The mapping $\lambda\otimes\mu^{*}\rightarrow\mu\otimes\lambda^{*}$ defines an involution of $\Lambda^{e}$ , and by this mapping $\nu^{*}(\lambda\otimes\mu^{\#})$

is mapped on ( $\mu\otimes\lambda^{*}$] $\nu=(\mu\nu)\otimes\lambda^{*}$ . This shows that $\Lambda^{e}$ is left $\Lambda^{*}$-projective if and only if it is
right $\Lambda$ -projective.


