A NOTE ON HOCHSCHILD COHOMOLOGY GROUPS

By
Goro AZUMAYA

Let K be a commutative ring with identity element, and let Λ be a K algebra, that is, an algebra over K with identity element 1 . We denote by Λ^{*} the opposite algebra of Λ, which is in an opposite-isomorphism $\lambda \rightarrow \lambda^{*}$ with 1. Any right Λ-module is converted into a left Λ^{*}-module (and conversely) by setting the left multiplication of λ^{*} to be the right multiplication of λ. Furthermore, every two-sided Λ-module is, and in particular Λ is, regarded as a left module for the enveloping algebra $\Lambda^{e}=\Lambda \otimes \Lambda^{* 1)}$ in the natural manner.

Let A be a two-sided Λ-module. Hochschild defined in [2] the cohomology groups of Λ for A as the homology groups $H^{n}(\Lambda, A)$ of the complex whose components are the cochain groups $C^{n}(\Lambda, A)$, i. e., the module of all K-multilinear mappings $f=f\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ of Λ into A, and whose differentiation operators δ^{n} : $C^{n}(\Lambda, A) \rightarrow C^{n+1}(\Lambda, A)$ are defined by

$$
\begin{aligned}
& \left(\delta^{n} f\right)\left(\lambda_{1}, \cdots, \lambda_{n+1}\right)=\lambda_{1} f\left(\lambda_{2}, \cdots, \lambda_{n+1}\right)+ \\
& \quad \sum_{i=1}^{n}(-1)^{i} f\left(\lambda_{1}, \cdots, \lambda_{i} \lambda_{i+1}, \cdots, \lambda_{n+1}\right)+(\cdots 1)^{n+1} f\left(\lambda, \cdots, \lambda_{n}\right) \lambda_{n+1}
\end{aligned}
$$

Here, the two-sided Λ-module A needs not be assumed to be unital (i.e., the identity element 1 of Λ does not necessarily act on A as the identity-operator on both left and right hands), but we may replace A by the unital module $1 A 1$ to obtain the same cohomology groups according to Hchschild [3], Th. 1: $H^{n}(\Lambda, A) \cong H^{n}(\Lambda, 1 A 1)$. On the other hand, Cartan and Eilenberg gave in [1] another definition of cohomology groups for a unital two-sided Λ-module A; namely, they called $\operatorname{Ext}_{A e}^{n}(\Lambda, A)$ the n-th cohomology group of Λ for A. The defined two groups $H^{n}(\Lambda, A)$ and $\operatorname{Ext}_{\Lambda^{e}}^{n}(\Lambda, A)$, for unital A, coincide (that is, are naturally equivalent as functors of A) always for $n=0,1$ ([1], Chap. IX, Prop. 4.1.). But this is not the case in general for $n>1$. It is shown in [1], Chap. IX, §6 that the both groups coincide if Λ is K-projective. In this note, we shall however generalize this to prove that the both groups coincide whenever Λ^{e} is projective as a right Λ-module. In this connection, it may be of some interest to give in Proposition 2 below a homological significance of the Hochschild two-sided Λ-module $\operatorname{Hom}_{K}(\Lambda, A)$ introduced in [2].

1) We shall mean by the mere \otimes the tensor product over K; thus, $\Lambda \otimes \Lambda^{*}=\Lambda \otimes_{\boldsymbol{K}} \Lambda^{*}$.

Now, consider three K-algebras Λ, Γ, Σ. Let A, B, C be respectively a unital two-sided $\Lambda-\Gamma$, Γ - Σ-, $\Lambda-\Sigma$-module; they are also regarded respectively as a left $\Lambda \otimes \Gamma^{*}-\Gamma \otimes \Sigma^{*}-\Lambda \otimes \Sigma^{*}$-module in the natural manner. Then there is a well-known natural isomorphism ([1], Chap. IX, Prop. 2.2)

$$
\begin{equation*}
\operatorname{Hom}_{1 \otimes \Gamma *}\left(A, \operatorname{Hom}_{\dot{\Sigma}}(B, C)\right) \cong \operatorname{Hom}_{1 \& \Sigma^{*}}\left(A \otimes_{\Gamma} B, C\right) . \tag{1}
\end{equation*}
$$

On the basis of this isomorphism, we have the following analogy of [1], Chap. IX, Th. 2.8a:

Proposition 1. In the situation $\left({ }_{1} A_{\Gamma},{ }_{\Gamma} B_{\Sigma},{ }_{1} C_{\Sigma}\right)$ assume that A is Γ projective, B is Σ-projective, and $\Lambda \otimes \Gamma^{*}$ is (left) Γ^{*}-projective ${ }^{2)}$. Then there is a natural isomorphism

$$
\operatorname{Ext}_{A \otimes \Gamma^{*}}^{n}\left(A, \operatorname{Hom}_{\Sigma}(B, C)\right) \cong \operatorname{Ext}_{A \otimes \Sigma^{*}}^{n}\left(A \otimes_{\Gamma} B, C\right)
$$

Proof. Let X be a $\Lambda \otimes \Gamma^{*}$-projective resolution of A. Then, since $\Lambda \otimes \Gamma^{*}$ is Γ^{*}-projective, X is also a (Γ^{*} - or) Γ-projective resolution of A. Hence the homology group of $X \otimes_{r} B$ is $\operatorname{Tor}^{r}(A, B)$. But, since A is Γ-projective, $\operatorname{Tor}_{n}^{r}(A, B)=0$ for $n>0$. Further, since B is Σ-projective, $X \otimes_{r} B$ is $\Lambda \otimes \Sigma^{*}$ projective and so a $\Lambda \otimes \Sigma^{*}$-projective resolution of $A \otimes_{\Gamma} B$ by [1], Chap. IX, Prop. 2.3. Thus, replacing in (1) A by X and taking the homology group, we have the desired isomorphism.

As the particular case where $\Lambda=\Gamma=\Sigma$ and $A=\Lambda$, we obtain.
Corollary. Let B and C be unital two-sided 1 -modules, and assume
 there is a natural isomorphism

$$
\operatorname{Ext}_{A_{e}^{e}}^{n}\left(\Lambda, \operatorname{Hom}_{A^{*}}(B, C)\right) \cong \operatorname{Ext}_{\lambda^{e}}^{n}(B, C)
$$

We next consider a Λ^{e}-epimorphism $\rho: \Lambda^{e} \rightarrow \Lambda$ which is defined by $\rho\left(\lambda \otimes \mu^{*}\right)$ $\left(\lambda \otimes \mu^{*}\right) 1=\lambda \mu$. Let J be the kernel of ρ. Then J is a left ideal of Λ^{e}, and we have an exact sequence of left Λ^{e}-modules

$$
\begin{equation*}
0 \longrightarrow J \xrightarrow{\iota} \Lambda^{e} \xrightarrow{\rho} \Lambda \longrightarrow 0, \tag{2}
\end{equation*}
$$

where \& means the imbedding mapping. Hence, to every unital two-sided 1 module A, there corresponds, for each $n>1$, an exact sequence

$$
\operatorname{Ext}_{A e^{e}}^{n-1}\left(\Lambda^{e}, A\right) \longrightarrow \operatorname{Ext}_{A e^{n}}^{n-1}(J, A) \longrightarrow \operatorname{Ext}_{A e}^{n}(\Lambda, A) \longrightarrow \operatorname{Ext}_{A e}^{n}\left(\Lambda^{e}, A\right)
$$

But, since Λ^{e} is Λ^{e}-projective, the first and the last terms $=0$, and thus we have a natural isomorphism

[^0]\[

$$
\begin{equation*}
\operatorname{Ext}_{A e^{e}}^{n-1}(J, A) \cong \operatorname{Ext}_{A \in}^{n}(\Lambda, A), \quad n>1 \tag{3}
\end{equation*}
$$

\]

On the other hand, since (2) is exact as left Λ^{*}-modules too and since Λ is Λ^{*}-projective, (2) must splits, i. e., $\Lambda^{e}=J \oplus \Lambda^{*}$. It follows therefore that if Λ^{e} is Λ^{*}-projective then J is also Λ^{*}-projective. Thus, there is, by the above corollary, a natural isomorphism

$$
\operatorname{Ext}_{A_{e}}^{n}\left(\Lambda, \operatorname{Hom}_{A^{*}}(J, A)\right) \cong \operatorname{Ext}_{A e}^{n}(J, A)
$$

if Λ^{e} is Λ^{*}-projective. Now, replacing here n by $n-1$ and comparing with (3), we obtain the following reduction theorem:

Theorem 1. Let A be a unital two-sided 1-module, and assume that Λ^{e} is left Λ^{*}-projective. Then there is a natural isomorphism

$$
\operatorname{Ext}_{A_{e}}^{n-1}\left(\Lambda, \operatorname{Hom}_{A^{*}}(J, A)\right) \cong \operatorname{Ext}_{A_{e}}^{n}(\Lambda, A), \quad n>1
$$

Now, let A be any two-sided Λ-module. Hochschild converted $\operatorname{Hom}_{K}(\Lambda, A)$ into a two-sided Λ-module by setting, for any $f \in \operatorname{Hom}_{K}(\Lambda, A)$ and $\lambda \in \Lambda, \lambda f$ and $f \lambda$ as the mappings $\mu \rightarrow \lambda f(\eta)$ and $\mu \rightarrow f(\lambda \mu)-f(\lambda) \mu, \mu \in \Lambda$, respectively ([2], §1). Since Λ is K-unital we have $1 f(\mu)=f(\mu)=f(\mu) 1$ for every $f \in \operatorname{Hom}_{K}(\Lambda, A)$ and $\mu \in \Lambda$, and this implies first that $\operatorname{Hom}_{K^{\prime}}(\Lambda, A)$ is unital as a left Λ-module. However, it is not necessarily unital as a right Λ-module (even if A is unital), and in fact $\operatorname{Hom}_{\pi}(\Lambda, A) \cdot 1$ consists of those f in $\operatorname{Hom}_{K}(\Lambda, A)$ which satisfy $f(1)=0$, because if $f=g 1$ with some $g \in \operatorname{Hom}_{K^{\prime}}(\Lambda, A)$ then $f(1)=g(1)-g(1) 1=0$ and conversely if $f(1)=0$ then $f(\mu)--f(1) \mu=f(\mu)$ for all $\mu \in \Lambda$, showing $f 1=f$.

Proposition 2. Let A be a two-sided 1 -module and $\operatorname{Hom}_{K}(\Lambda, A)$ the Hochschild two-sided Λ-module. Let $\varphi: \Lambda \rightarrow J$ be the K-homomorphism defined by $\varphi(\lambda)=\lambda \otimes 1-1 \otimes \lambda^{*}$. Then, by associating with each $h \in \operatorname{Hom}_{A^{*}}(J, A)$ the product mapping $h \cdot \varphi \in \operatorname{Hom}_{K}(\Lambda, A)$, we obtain a natural isomorphism $\operatorname{Hom}_{A^{*}}(J, A) \cong \operatorname{Hom}_{K}(\Lambda, A) \cdot 1$ as two-sided Λ-modules.

Proof. Let $h \in \operatorname{Hom}_{1^{*}}(J, A)$ and put $f=h \cdot \varphi$. Then, since $\varphi(1)=0$, it follows that $f(1)=h(\varphi(1))=h(0)=0$. Further, for any λ, μ in Λ, we have $\lambda f(\mu)$ $=\lambda h\left(\mu \otimes 1-1 \otimes \mu^{*}\right)$, i.e., $\lambda f=(\lambda h) \cdot \varphi$, while $f(\lambda \mu) \cdots f(\lambda) \mu=f(\lambda \mu)-\mu^{*} f(\lambda)=h((\lambda \mu)$ $\left.\otimes 1-1 \otimes(\lambda \mu)^{*}\right)-h\left(\left(1 \otimes \mu^{*}\right)\left(\lambda \otimes 1-1 \otimes \lambda^{*}\right)\right)=h\left((\lambda \mu) \otimes 1-\lambda \otimes \mu^{*}\right)=h((\lambda \otimes 1)(\mu \otimes 1-$ $\left.1 \otimes \mu^{*}\right)$), i.e., $f \lambda=(h \lambda) \cdot \varphi$. These together show that the mapping $h \rightarrow h \cdot \varphi$ gives a homomorphism $\operatorname{Hom}_{A^{*}}(J, A) \rightarrow \operatorname{Hom}_{K}(\Lambda, A) \cdot 1$ as two-sided Λ-modules. Now J is, as a left Λ^{*}-module, generated by the elements $\varphi(\lambda), \lambda \in \Lambda$, because $\sum \lambda_{i} \otimes \mu_{i}^{*} \in J$. means $\sum \lambda_{i} \mu_{i}=0$ whence $\sum \lambda_{i} \otimes \mu_{i}^{*}=\sum \lambda_{i} \otimes \mu_{i}^{*}-1 \otimes\left(\sum \lambda_{i} \mu_{i}\right)^{*}=\sum\left(\lambda_{i} \otimes \mu_{i}^{*} \ldots 1 \otimes\right.$ $\left.\left(\mu_{i}^{*} \lambda_{i}^{*}\right)\right)=\sum\left(1 \otimes \mu_{i}^{*}\right)\left(\lambda_{i} \otimes 1-1 \otimes \lambda_{i}^{*}\right)$ (cf. [1], Chap. IX, Prop. 3.1), which implies that the mapping $h \rightarrow h \cdot \varphi$ is one-to-one. In order to see that the mapping is moreover an epimorphism, take any f from $\operatorname{Hom}_{K}(\Lambda, A) \cdot 1$. As is easily seen,
there exists a K-homomorphism $\overline{\bar{h}}: \Lambda^{e} \rightarrow A$ such that $\bar{h}\left(\lambda \otimes \mu^{*}\right)=(f(\lambda) \mu=) \mu^{*} f(\lambda)$, and \bar{h} is necessarily a Λ^{*}-homomorphism because $\bar{h}\left(\left(1 \otimes \nu^{*}\right)\left(\lambda \otimes \mu^{*}\right)\right)=\bar{h}\left(\lambda \otimes(\mu \nu)^{*}\right)$ $=(\mu \nu)^{*} f(\lambda)=\nu^{*} \mu^{*} f(\lambda)=\nu^{*} \bar{h}\left(\lambda \otimes \mu^{*}\right)$. Let h be the restriction of \bar{h} to J. Then $h \in \operatorname{Hom}_{A^{*}}(J, A)$ and $h\left(\lambda \otimes 1-1 \otimes \lambda^{*}\right)=\bar{h}(\lambda \otimes 1) \cdots \bar{h}\left(1 \otimes \lambda^{*}\right)=f(\lambda) 1 \cdots \lambda^{*} f(1)=f(\lambda)$, i. e., $h \cdot \varphi=f$. This completes our proof.

We can now prove
Theorem 2. Let A be a unital two-sided Λ-module and $H^{n}(1, A)$ the n-th Hochschild cohomology group of Λ for A. Suppose that $\Lambda^{e}=\Lambda \otimes \Lambda^{*}$ is left Λ^{*}-projective (or equivalently, right Λ-projective) ${ }^{3}$. Then there is a natural isomorphism $H^{n}(\Lambda, A) \cong \operatorname{Ext}_{A c}^{n}(\Lambda, A)$.

Proof: The theorem is true for $n=0,1$ by [1], Chap. IX, Prop. 4.1 (even without assuming the Λ^{*}-projectivity of Λ^{e}). So we may assume $n>1$, and we suppose the theorem is true for $n-1$ instead of n and for all (unital) A. Then in particular

$$
\begin{equation*}
H^{n-1}\left(\Lambda, \operatorname{Hom}_{\Lambda^{*}}(J, A)\right) \cong \operatorname{Ext}_{A e^{n}}^{n-1}\left(\Lambda, \operatorname{Hom}_{A^{*}}(J, A)\right) \tag{4}
\end{equation*}
$$

By Theorem 1 the right side of (4) is naturally isomorphic to $\operatorname{Ext}_{1 i}^{n}(\Lambda, A)$. On the other hand, the left side of (4) is by Proposition 2, whence, by [3], Th. 1 , naturally isomorphic to $H^{n-1}\left(\Lambda, \operatorname{Hom}_{K}(\Lambda, A)\right)$, and moreover this is isomorphic to $H^{n}(A, A)$ according to [2], Th. 3.1. Thus, $H^{n}(\Lambda, A) \cong \operatorname{Ext}_{A e}^{n}(\Lambda, A)$, and by induction this proves our theorem completely.

References

1) H. Cartan and S. Eilenberg: Homological algebra, Princeton, 1956.
2) G. Hochschild : On the cohomology groups of an associative algebra, Ann. of Math. vol. 46 (1945) pp. 58-67.
3) G. Hochschild : On the cohomology theory for associative algebra, Ann. of Math. vol. 47 (1946) pp. 568-579.

Department of Mathematics Hokkaido University

(Received December 5, 1962)

[^1]
[^0]: (2) We regard $\Lambda \otimes \Gamma^{*}$ as a left Γ^{*}-module by setting the left multiplication of γ^{*} as the left multiplication of $1 \otimes r^{*}$.

[^1]: 3) The mapping $\lambda \otimes \mu^{*} \rightarrow \mu \otimes \lambda^{*}$ defines an involution of Λ^{e}, and by this mapping $\nu^{*}\left(\lambda \otimes \mu^{*}\right)$ is mapped on $\left(\mu \otimes \lambda^{*}\right) \nu=(\mu \nu) \otimes \lambda^{*}$. This shows that Λ^{e} is left Λ^{*}-projective if and only if it is right Λ-projective.
