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Recently, in [7], we have succeeded in constructing Galois theory of simple
rings under the assumption that the extension $R/S$ considered is hereditarily
Galois (h-Galois) and locally fnute. However, we have believed that [7, Theorem
2.1] and [7, Theorem 3.1] should be stated under more desirable assumptions.
One of the purposes of the present paper is to give a settlement to this problem.
Concerning [7, Theorem 2.1], one will see that the assumption that $R/S$ is
locally finite can be excluded from those assumed there (Theorem 1). On the
other hand, as was shown in [7, Lemma 3.4], if $R/S$ is h-Galois and locally
finite then $\mathfrak{G}R_{r}$ is dense in Hom $s_{l}(R, R)$ . In \S 1, one will see also that if
$R/S$ is locally finite and $\mathfrak{G}R_{r}$ is dense in $Hom_{S_{l}}(R, R)$ then the fundamental
theorems in Galois theory of finite dimension hold still for regular intermediate
rings of $R/S$ left finite over $S$ (Theorems 2 ond 3). And, if $R/S$ is locally
finite, $\mathfrak{G}R_{r}$ dense in $Hom_{S_{l}}(R, R)$ , and $V_{R}(V_{R}(S^{\prime}))$ is simple for each regular
intermediate ring $S^{\prime}$ of $R/S$ with $[S^{\prime} : S]_{l}<\infty$ , then [7, Theorem 3.1] is still
valid even for a regular intermediate ring $R^{\prime}$ of $R/S$ (Theorem 6). The proof
of this improvement will be given in \S 3. \S 2 is devoted exclusively to the
treaty of algebraic Galois extensions, which is our second purpose. In fact,
Theorem 4 may be regarded as a complete extension of [2, Theorem 3] to
simple rings as well as an improvement of [7, Lemma 1.9]. \S 2 contains also
a sharpening of [7, Lemma 1.10] (Theorem 5).

Throughout the present paper, $R=\sum_{1}^{n}De_{ij}$ be a simple ring, where $e_{ij}’ s$ are
matrix units and $D=V_{R}(\{e_{ij}’ s\})$ is a division ring. And $S$ be always a simple
subring of $R$ (containing 1 of $R$), $\mathfrak{G}$ the group of all the $S-(ring)$ automorphisms
of $R$ . Further, we set $C=V_{R}(R),$ $Z=V_{S}(S),$ $V=V_{R}(S),$ $H=V_{R}(V)$ and $C_{0}=$

$V_{V}(V)$ . As to general notations and terminologies used here we follow the
previous paper [7].

1. Now, we shall begin our study with the following lemma.
Lemma 1. Let $S$ be a regular subring of $R$ , and $\mathfrak{H}$ a subgroup of $\mathfrak{G}$

containing V. If $T$ is an intermediate ring of $R/S$ left finite over $S$ such
that $R$ is TR-irreducible, and $T=J(\mathfrak{H}(T, R))$ , then $\infty>[(\mathfrak{H}|T)R_{r} : R_{r}]_{r}$
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$=[(\mathfrak{H}|T^{\prime})R_{r} : R_{r}]_{r}$ .
Proof. By [7, Lemma 1.3] and [7, Lemma 1.5], $(\mathfrak{H}|T)R_{r}=\sum_{1\oplus}^{t}(\overline{V}\sigma_{i}|T)R_{r}$

for some $\sigma_{i}’ s\in \mathfrak{H}$ As $V_{R}(T)=V_{R}(T^{\prime}),$ [ $7$ , Lemma 1.4 (iii)] will yield
$\infty>[(\overline{t^{7}}\sigma_{i}|T)R_{r} : R_{r}]_{r}=[V:V_{R}(T)]_{r}=[V:V_{R}(T^{\prime})]_{r}=[(\overline{V}\sigma_{i}|T^{\prime})R_{r} : R_{r}]_{r}$ . Fur-
ther, by [7, Lemma 1. 3 (iv)], $\sum_{1}{}^{t}(\overline{V}\sigma_{i}|T^{\prime})R_{r}=\sum_{1\oplus}^{t}(\overline{V}\sigma_{i}|T^{\prime})R_{r}$ . Combining
these facts mentioned above, it follows that $[(\mathfrak{H}|T)R_{r} : R_{r}]_{r}\leq[(\mathfrak{H}|T^{\prime})R_{r} : R_{r}]_{r}$ .
Now, if $[(\mathfrak{H}|T)R_{r} : R_{r}]_{r}<[(\mathfrak{H}|T^{\prime})R_{r} : R_{r}]_{r}$ then there exists some $\tau\in \mathfrak{H}$ such
that $\tau|T^{\prime}\not\in\Sigma_{1\oplus}^{t}(\overline{1/}\sigma_{i}|T^{\prime})R_{r}$ . While, $\tau|T\in\Sigma_{1}^{t}(\tilde{V}\sigma_{i}|T)R_{r}$ implies $\tau|T=\sigma_{j}\tilde{v}|T$

with some $\sigma_{j}$ and $\tilde{v}\in l^{7}\wedge$ by [7, Corollary 1.1]. And then, noting that $\tau^{\prime}$

$=\tau(\sigma_{j}\tilde{v})^{-1}\in \mathfrak{H}(T)$ , we obtain $\tau|T^{\prime}=\tau^{\prime}\sigma_{j}^{\sim_{J}}\tau|T^{\prime}=\sigma_{j}\tilde{v}|T^{\prime}\in\Sigma_{1}^{t}(\overline{V}\sigma_{i}|T^{\prime})R_{r}$ , which is
a contradiction.

Now, by making use of the same method as in the proof of [7, Theorem
2.1], we can prove the following theorem which contains evidently [7,. Theorem
2. 1].

Theorem 1. Let $S$ be a regular subring of $R,$ $\mathfrak{H}$ a subgroup of $\mathfrak{G}$ con-
taining $t^{7}\sim$ , and $\mathfrak{H}R_{r}$ dense in $Hom_{S_{l}}(R, R)$ . If $T$ is an interrnediate ring
of $R/S$ left finite over $S$ such that $R$ is T-R-irrducible, then $J(\mathfrak{H}(T), R)=T$.

Proof. Suppose on the contrary $T^{\prime}=J(\mathfrak{H}(T), R)_{\frac{\wedge}{}}\supset T$. Then, we can find
an S-left submodule $M$ of $T^{\prime}$ such that $[T:S]_{l}<[M:S]_{l}<\infty$ . Since $Hom_{S_{l}}$

$(M,R)=\mathfrak{H}R_{r}|M=((\mathfrak{H}|T^{\prime})R_{r})|M$ by our assumption, there holds $[M:S]_{l}$

$=[Hom_{S\ell}(M, R):R_{r}]_{r}=[((\mathfrak{H}|T^{\prime})R_{r})|M:R_{r}]_{r}$ . Hence, we obtain $[(\mathfrak{H}|T)R_{r} : R_{r}]_{r}$

$=[T:S]_{l}<[M:S]_{l}\leq[(\mathfrak{H}|T^{\prime})R_{r} : R_{r}]_{r}$ , which contradicts Lemma 1.
If a division ring $R$ is Galois over $S,$ $\mathfrak{H}R_{r}$ is dense in $Hom_{S_{l}}(R, R)$ for

any subgroup $\mathfrak{H}$ of $\mathfrak{G}$ . Consequently, we obtain the following corollary, that
is [4, Theorem 1] itself. And, one should remark here that the proof of
Theorem 1 is notably easier than that of [4, Theorem 1] given in [4].

Corollary 1. Let a division ring $R$ be Galois over $S,$ $\mathfrak{H}$ a suhgroup
of $\mathfrak{G}$ containing $t^{\gamma^{\prime}}\wedge$ with $J(\mathfrak{H}, R)=S$. If $T$ is an intermediate ring of $R/S$

left finite over $S$, then $J(\mathfrak{H}(T), R)=T$.
To prove Theorems 2 and 3, the following generalization of [6, Lemma

4] will be needed.
Lemma 2. Let $R$ be locally finite over a regular subring $S$, and $\mathfrak{G}R_{r}$

dense in $Hom_{S_{l^{\neg}}}(R, R)$ . If $S^{\prime}$ is an intermediate simple ring of $R/S$ with
$[S^{\prime} : S]_{l}<\infty$ then $R$ is $S^{\prime}- R$-completely reducible. In particular, if additionally
$V_{R}(S^{\prime})$ is a division ring then $R$ is $S^{\prime}- R$-irreducible.

Proof. Let $M$ be an arbitrary minimal $S^{\prime}- R$-submodule of $R$ such that
the composition series of $M$ as R-right module is of the shortest length among
minimal $S^{\prime}- R$-submodules of $R$ . Then, $M=S^{\prime}aR$ with non-zero $a\in M$.

$a$

Now,
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we set $S^{*}=S^{\prime}[a, \{e_{ij}’ s\}]$ , which is a regular subring of $R$ l\’eft finite over $S$.
And, as $R$ is evidently $S^{*}- R$-irreducible, by [7, Lemma 1.3], $Hom_{S_{l}}(S^{*}, R)$

$=(\mathfrak{G}|S^{*})R_{r}=\Sigma_{1\oplus}^{s}(\sigma_{i}|S^{*})R_{r}$ with some $\sigma_{i}’ s\in \mathfrak{G}$ , where one may remark that
each $(\sigma_{i}|S^{*})R_{r}$ is $S_{r}^{*}- R_{r}$-irreducible. Accordingly, the $S_{r}^{*}- R_{r}$-submodule $Hom_{s_{l}^{\prime}}$

$(S^{*}, R)$ of $Hom_{S_{l}}(S^{*}, R)$ is completely reducible: $Hom_{s_{l}^{\prime}}\cdot(S^{*}, R)=\Sigma_{1\oplus}^{s^{\prime}}\mathfrak{M}_{j}$ , and
each $\mathfrak{M}_{j}$ is $S_{r}^{*}- R_{r}$-isomorphic to $(\sigma_{j}^{\prime}|S^{*})R_{r}$ for some $\sigma_{j}^{\prime}\in\{\sigma_{j}’ s\}$ . If $\mathfrak{M}_{j}\ni\epsilon_{j}\leftrightarrow$

$\sigma_{j}^{\prime}|S^{*}\in(\sigma_{j}^{\prime}|S^{*})R_{r}$ under the above isomorphism, then $x_{r}^{*}\epsilon_{j}\leftrightarrow x_{r}^{*}(\sigma_{j}^{\prime}|S^{*})=(\sigma_{j}^{\prime}|S^{*})$

$(x^{*}\sigma_{j}^{\prime})_{r}\leftarrow\epsilon_{j}(x^{*}\sigma_{j}^{\prime})_{r}$ for each $x^{*}\in S^{*}$ . And so, we have $x_{r}^{*}\epsilon_{j}=\epsilon_{j}(x^{*}\sigma_{j}^{\prime})_{r}$ , whence
it follows $x^{*}\epsilon_{j}=(1\epsilon_{j})\cdot(x^{*}\sigma_{j}^{\prime})$ . Hence, $\mathfrak{M}_{j}=\epsilon_{j}R_{r}=(\sigma_{j}^{\prime}u_{jl}|S^{*})R_{r}$ with $u_{j}=1\epsilon_{j}$ .
Since $\mathfrak{M}_{j}$ is contained in $Hom_{s_{l}^{\prime}}(S^{*}, R)$ , it will be easy to see that $M_{j}=(S^{\prime}a)\mathfrak{M}_{j}$

is an $S^{\prime}- R$-submodule of $R$ . Moreover, there holds $M_{j}=(S^{\prime}a)\sigma_{j}^{\prime}u_{jl}R_{r}=u_{j}$ .
$(S^{\prime}a)\sigma_{j}^{\nearrow}\cdot R=u_{j}\cdot(S^{\prime}a\cdot R\sigma_{J^{-1}}^{\prime})\sigma_{j}^{\prime}=u_{j}\cdot(S^{\prime}aR)\sigma_{j}^{\prime}=u_{j}\cdot M\sigma_{j}^{f}$ , whence it follows $[M_{j}|R]_{r}$

$=[u_{j}\cdot(M\sigma_{j}^{\prime})|R]_{r}\leq[M\sigma_{j}^{\prime}|R]_{r}=[M|R]_{r}$ where $[M|R]_{r}$ means the length of the
composition series of the R-right module $M$. Recalling here that $[M|R]_{r}$ is
chosen to be the least, we see that the $S^{\prime}- R$-submodule $M_{j}$ is $0$ or $S^{\prime}$-R-
irreducible. Finally, noting that $R$ is $S_{l}^{\prime}\cdot Hom_{S_{l}^{\prime}}(R, R)$-irreducible, there holds
$R=(S^{\prime}a)Hom_{s_{l}^{\prime}}(R, R)=(S^{\prime}a)(Hom_{s_{l}^{\prime}}(R, R)|S^{*})=(S^{\prime}a)Hom_{S_{l}^{\prime}}(S^{*},R)=(S^{\prime}a)\Sigma_{1}^{s^{\prime}}\mathfrak{M}_{j}$

$=\sum_{1}^{s^{J}}M_{j}$ , which proves evidently the complete reducibility of $R$ as an $S^{\prime}-$

R-module. The latter half of our theorem is a direct consequence of the fact
that $V_{Hom(R,R)}(S_{l}^{\prime}\cdot R_{r})=(V_{R}(S^{\prime}))_{l}$ .

Now, we can prove the next theorem:
Theorem 2. Let $R$ be locally finite over a regular subring $S,$ $\mathfrak{H}$ a sub-

group of $\mathfrak{G}$ containing $\hat{V}$ , and $\mathfrak{H}R_{r}$ dense in $Hom_{S^{p}}\wedge(R, R)$ . If $T$ is a regular
intermediate ring of $R/S$ left finite over $S$ then $J(\mathfrak{H}(T), R)=T$, and in
particular $R$ is Galois over $S$.

Proof. Let $V_{R}(T)=\sum Wc_{pq}$ , where $c_{pq}’ s$ are matrix units and $W=V_{V_{R}(T)}$

$(\{c_{pz}’ s\})$ is a division ring. Then $T^{\prime}=T[\{c_{pq}’ s\}]=\sum Tc_{pq}$ is a simple ring left
finite over $S$ and $V_{R}(T^{\prime})=W$ is a division ring, whence $R$ is $T^{\prime}- R$-irreducible
by Lemma 2. And so, in virtue of Theorem 1, there holds $J(\mathfrak{H} (T‘), R)=T$ ‘.
Moreover, if we set $V^{\prime}=\sum C^{\prime}c_{pq}$ with the center $C^{\prime}$ of $T^{\prime}$ then $V^{\prime}$ is a simple
subring of $V$ and $J(\tilde{V}‘, T^{\prime})=V_{T}(V^{\prime})=V_{T^{\prime}}(\{c_{p2}’ s\})=T$. Hence, we obtain
$J(\mathfrak{H}(T), R)=T$.

Further, Lemma 2 enables us to apply the same arguments as in the proofs
of [7, Lemma 3.11] and [7, Corollary 3.7] to see the following theorem that
contains [7, Corollary 3.7] obviously.

The $0$rem 3: Let $R$ be locally finite over a regular subring $S,$ $\mathfrak{H}$ a sub-
group of $\mathfrak{G}$ containing V and $\mathfrak{H}R_{r}$ dense in Hom$s,$

$(R, R)$ . If $\sigma$ is an S-
(ring) isomorphism of a regular intermediate ring $T$ of $R/S$ left finite over
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$S$ onto a regular subring of $R$ , then $a$ is contained in $\mathfrak{H}|T$.
Here, as careful readers realize at once, in the proofs of Theorems 1-3

no theorems from Galois theory of finite dimension are needed. And, [8,
Theorem 5] and [8, Theorem 6] may be regarded as special cases of Theorem
2 and Theorem 3 respectively.

2. If $R$ is left algebraic over a simple subring $S$, and $r$ a regular element
of $R$ , then $r^{-1}\in S[r]$ . In fact, as $R$ is left algebraic over a division subring
$E$ of $S,$ $[E[r]:E]_{l}<\infty$ , whence it will be easy to see that $r^{-1}\in E[r]\subseteq S[r]$ .
As an easy consequence of this fact, we see that if $R$ is left algebraic over
$S$ then each intermediate ring of $R/S[\{e_{ij}’ s\}]$ is a regular subring of $R$ . In
what follows, the above remark will be used often without mention.

The next two lemmas, Lemmas 3 and 4, have been given in [3]. However,
for the sake of completeness, we shall present here their proofs those are rather
easier than the earlier ones.

Lemma 3. Let $R/S$ be outer Galois, and $T$ an intermediate ring of
$R/S$ left finite over S. If $R$ is T-R-irreducible then $\#\{x\mathfrak{G}\}<\infty$ for each
$x\in T$.

Proof. As $\infty>[T:S]_{l}=[Hom_{S_{l}}(T, R) : R_{r}]_{r}$ , by [7, Lemma 1.3], we
have $(\mathfrak{G}|T)R_{r}=\sum_{1\oplus}^{t}(\sigma_{i}|T)R_{r}$ with some $\sigma_{i}’ s$ in G. And so, if $\sigma$ is an arbitrary
element of $\mathfrak{G}$ then $\sigma|T=\sigma_{j}|T$ for some $\sigma_{j}$ by [7, Corollary 1.1]. Hence, it
follows that $\#\{x\mathfrak{G}\}=\#\{x\sigma_{1}, \cdots,x\sigma_{t}\}$ for $x\in T$.

Lemma 4. If $R/S$ is outer Galois and left algebraic then it is locally
finite.

Proof. If $S\subseteq C$ then $C=V=R$ and our assertion is obviously true. And
so, in what follows, we shall assume that $S\not\subset C$.

Case $I$ : $n=1$ . As $R$ is evidently S-R-irreducible, $S[x]- R$-irreducible for
each $x\in R$ . And so, $\mathfrak{G}$ is locally finite by Lemma 3. Now, our assertion is
clear by $[10, (a^{*})]$ .

Case $\Pi;n>1$ . Let $a$ be an arbitrary element of $S\backslash C$. By [6, Lemma
7 $(i)$ ], there exists such a regular element $r\in R$ that $a\tilde{r}=\sum_{1}^{n}d_{ij}e_{ij}$ with $d_{1n}=1$

and $d_{in}=0(i\geq 2)$ . $R$ is then outer Galois and left algebraic over $S\tilde{r}$ and
$S\overline{r}\not\subset C$. To our end, it suffices to prove that $R/S\tilde{r}$ is locally finite. And so,
without loss of generality, we may assume from the beginning that $S$ contains
$a=\sum_{1}^{n}d_{ij}e_{ij}$ with $d_{\iota n}=1$ and $d_{in}=0(i\geq 2)$ . If $D$ (and so $R$) is finite, there
is nothing to prove. And so, we may restrict further our attention to the case
where $D$ is infinite. Now, let $Q$ be the set of all $q\in R$ with the property that
each intermediate (simple) ring $T$ of $R/S[q, \{e_{ij}’ s\}]$ is $S[q]- T$-irreducible. By
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[6, Lemma 8], $t_{xi}=e_{nn- 1}+\cdots+xe_{ii}1+\cdots+e_{21}\in Q$ for each non-zero $x\in D$ . Ac-
cordingly, if $x\in D$ is neither $0$ nor 1 then $e_{ii- 1}=t_{xi}-t_{x- 1i}$ and $xe_{ii- 1}=t_{1i}-t_{1- xt}$

are both contained in $S[Q](2\leq i\leq n)$ , whence we obtain $De_{nj}\subseteq S[Q](n>j\geq 1)$

and $De_{i1}\subseteq S[Q](n\geq i>1)$ . Further, $De_{1j}=aDe_{nj}\subseteq S[Q](n>j\geq 1)$ , whence it
follows $e_{nn}=1-\sum_{1}^{n-1}e_{k1}e_{1k}\in S[Q]$ . And then, $e_{1n}=ae_{nn}\in S[Q]$ . Now, it is easy
to see that $e_{ij}’ s$ and $D$ are contained in $S[Q]$ , that is, $S[Q]=R$ , whence $\mathfrak{G}$

is locally finite by Lemma 3. Accordingly, $R/S$ is locally finite again by [10,
$(a^{*})]$ .

Corollary 2. If $R$ is Galois and left algebraic over $S$ and [V: $C$] $<\infty$

then $V/Z$ and $H[V]/S$ are locally finite.
Proof. At first, as $S[V]=S\times ZV,$ $V/Z$ is algebraic. We set here $V=$

$\sum_{1}^{t}C_{0}v_{k},$ where $v_{1}=1$ and $v_{i}v_{j}=\sum c_{ij1c}v_{k}(c_{ijk}\in C_{0})$ . Let $\{u_{f}, \cdots,u_{s}\}$ be a finite
subset of $V$ and write $u_{h}=\sum c_{hk}v_{k}(c_{hk}\in C_{0})$ . Evidently, $C^{*}=Z[\{c_{ij\lambda_{i}}’ s\}, \{c_{hk}’ s\}]$

is a subfield of $C_{0}$ finite over $Z$. Hence, $V^{*}=\sum_{1}^{t}C^{*}v_{\lambda:}$ is an intermediate ring
of $V/Z[u_{1}, \cdots,u_{s}]$ and finite over $Z$. This means evidently that $V/Z$ is locally
finite. Next, as the simple ring $H$ is outer Galois and left algebraic over $S$,
$H/S$ is locally finite by Lemma 4. If $F$ is an arbitrary finite subset of $H[V]$ ,
there exist finite subsets $F_{1}\subseteq H$ and $F_{2}\subseteq V$ such that $S[F_{1}, F_{2}]\supseteq S[F]$ . We
set here $S[F_{1}]=\sum_{1}^{p}Sx_{i}$ and $Z[F_{2}]=\sum_{1}^{q}Zy_{j}$ . Then, $S[F]\subseteq S[F_{1}, F_{2}]=S[F_{1}]$ .
$Z[F_{2}]=\sum_{1}^{p}\sum_{1}^{q}Sx_{i}y_{j}$ , whence it follows $[S[F] : S]_{l}<\infty$ .

Corollary 3. If $R$ is outer Galois and left algebraic over $S$, then for
each finite subset $F$ of $R$ there exists an element $a$ such that $S[F\rfloor=S[a]$ .

Proof. As $R/S$ is locally finite by Lemma 4, $[10, (b^{*})]$ implies that $\mathfrak{G}$ is
1. $f.d$ . Accordingly, our assertion is a consequence of [6, Theorem 2].

Lemma 5. Let $R/S$ be Galois, $T$ an intermediate ring of $R/S$ left finite
over $S$ such that $R$ is T-R-irreducible. If $H$ is a simple ring left algebraic
over $S$, and $T^{\prime}=J(\mathfrak{G}(T), R)$ then $[T^{\prime}\cap H:S]<\infty$ .

Proof. By Lemma 1, $(\mathfrak{G}|T^{\prime})R_{r}=\sum_{1\oplus}^{t}(\sigma_{i}|T^{\prime})R_{r}$ with some $\sigma_{i}’ s\in \mathfrak{G}$ . And
so, in virtue of [7, Corollary 1. 1], there holds $\mathfrak{G}|T^{\prime}=\cup^{t}$

}
$(\overline{V}a_{i}|T^{\prime})$ , whence

$\mathfrak{G}|T^{\prime}\cap H=\bigcup_{1}^{t}(\overline{V}\sigma_{i}|T^{\prime}\cap H)=\{a_{1}|T^{\prime}\cap H, \cdots,\sigma_{t}|T^{\prime}\cap H\}$ . Consequently, it fol-
lows $\#(\mathfrak{G}|T^{\prime}\cap H)<\infty$ . Recalling here that $H$ is outer Galois and locally
finite over $S$ by Lemma 4 and $J(\mathfrak{G}|H, H)=S,$ [ $7$ , Lemma 1.8] yields at once
$[T^{\prime}\cap H:S]<\infty$ .

Lemma 6. Let $R$ be Galois and left algebraic over $S,$ $[V:C]<\infty,$ $T$

an intermediate ring of $R/S$ left finite over $S$ such that $R$ is T-R-irreducible,
and $T^{\prime}=J(\mathfrak{G}(T), R)$ .

(i) $H[T](=H[T‘])$ and $T^{\prime}$ are simple rings, and $H[T]$ is outer Galois
and locally finite over $T^{\prime}$ .
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(ii) $[T^{\prime} : S]_{l}<\infty$ , and so $H[T]/S$ is locally finite.
Proof. (i) Since $R$ is (inner) Galois and finite over $H$ and $\dot{H}[T]$ -R-

irreducible, $H[T]$ is a simple ring by [6, Lemma 3]. And so, $H[T]=$
$V_{R}(V_{R}(H[T]))=V_{R}(V_{R}(T))\supseteq T^{\prime}$ , whence $H[T]=H[T^{\prime}]$ . We set here $\mathfrak{T}=$

$\mathfrak{G}(T)$ . Then, $\mathfrak{T}|H[T]$ and $\mathfrak{T}|H$ are automorphism groups of $H[T]$ and $H$

respectively, and $J(\mathfrak{T}|H[T], H[T])=T^{\prime},$ $J(\mathfrak{T}|H, H)=T^{\prime}\cap H$. Further, as $H/S$

is locally finite by Lemma 4, $\mathfrak{G}(H/S)$ is locally finite by [7, Lemma 1.6],

whence $\mathfrak{T}|H$ is locally finite, that is, $\#\{F^{\prime}\mathfrak{T}\}<\infty$ for each finite subset $F^{\prime}$ of
$H$. Let the simple ring $H[T]$ be represented as a complete matrix ring over
a division subring of $H[T]$ with matrix units $\{f_{ij}’ s\}$ . If $F$ is an arbitrary
finite subset of $H[T]$ , there exists a finite subset $E$ of $H$ such that $F\cup\{f_{ij}’ s\}$

$\underline{\subset}T[E]$ . Since $\#\{E\mathfrak{T}\}<\infty,$ $T^{*}=T^{\prime}[E\mathfrak{T}]$ is $\mathfrak{T}$-normal and $\#(\mathfrak{T}|T^{*})<\infty$ .
Moreover, noting that $H[T]\supseteq T^{*}\supseteq\{f_{ij}’ s\}$ , we see that $T^{*}$ is a simple ring.
And, as $H[T]=V_{R}(V_{R}(T))\supseteq T^{*}\supseteq T,$ $\mathfrak{T}|T^{*}$ is a finite outer group. Hence,
$T^{\prime}=J(\mathfrak{T}|T^{*}, T^{*})$ is a simple ring and $[T^{*} : T^{\prime}]=\#(\mathfrak{T}|T^{*})<\infty$ , which proves
that $H[T]$ is outer Galois and locally finite over $T^{\prime}$ .

(ii) We shall use the same notations as in (i), and in particular we set
$F=\{d_{hk}’ s\}$ (matrix units of $H$ ). As $H/S$ is locally finite by Lemma 4, $\mathfrak{G}(H/S)$

is 1. $f.d$ . by $[10 (b^{*})]$ . Accordingly, every intermediate ring of $H/S$ is simple
by [5, Theorem 1.1]. And, this fact will be used often in the sequel.

Since $T^{*}\cap H$ is $\mathfrak{T}$-normal and $\#(\mathfrak{T}|T^{*}\cap H)\leq\#(\mathfrak{T}|T^{*})<\infty,$ $\mathfrak{T}|T^{*}\cap H$ is
a finite outer group. Hence, $[T^{*}\cap H:T^{\prime}\cap H]=\#(\mathfrak{T}|T^{*}\cap H)<\infty$ . On the
other hand, $[T^{\prime}\cap H:S]<\infty$ by Lemma 5. Consequently, there holds

$(*)$ $[T^{*}\cap H : S]=[T^{*}\cap H:T^{\prime}\cap H]\cdot[T^{\prime}\cap H:S]<\infty$ .

We set here $\mathfrak{T}^{*}=\mathfrak{G}(T^{*})=\mathfrak{T}(T^{*}),$ $H^{*}=T^{*}\cap H,$ $K^{*}=V_{B}$. $(\{d_{hk}’ s\})$ and $K$

$=1^{\tau_{H}}/(\{d_{hk}’ s\})$ (a division ring). Then, as is shown in (i), $[T^{*} : T^{\prime}]<\infty$ and
$H[T]$ is outer Galois and locally finite over $T^{\prime}$ . Since $H[T]$ is $T^{*}-H[T]-$

irreducible and $\mathfrak{T}|H[7^{\tau}]$ is a Galois group of $H[T]/T^{\prime},$ [ $7$ , Corollary 2.1]

enables us to see that $J(\mathfrak{T}^{*}, R)=J(\overline{V_{R}(H[T}]),$ $R$) $\cap J(\mathfrak{T}^{*}, R)=J(\mathfrak{T}^{*}|H[T]$ ,

$H[T])=T^{*}$ , whence one will readily see that $\mathfrak{T}^{*}|K$ is a Galois group of $K/K^{*}’$.
We shall prove here that $[T^{*} : K^{*}]_{l}\leq[R:K]_{l}$ . To this end, suppose $\{t, \cdots,t_{m}\}$

$\subseteq T^{*}$ is linearly left independent over $K^{*}$ but linearly dependent over $K$.
Then, without loss of generality, we may assume that $t_{1}=\sum_{2}^{m^{\prime}}x_{i}t_{i}(x_{i}\in K)$ is
a non-trivial relation of the shortest length and $x_{2}\in K\backslash K^{*}$ . Recalling that $\mathfrak{T}^{*}|K$

is a Galois group of $K/K^{*}$ , there exists some $\sigma\in \mathfrak{T}^{*}$ witn $x_{2}\sigma\neq x_{2}$ . Accordingly,
we obtain $0=t_{1}-t_{1}\sigma=\sum_{2}^{m^{\prime}}(x_{i}-x_{i}\sigma)t_{i}$ and $x_{i}-x_{i}a\in K$. This contradiction
proves evidently $[T^{*} : K^{*}]_{l}\leq[R:K]_{l}=[R:H]_{l}\cdot[H:K]<\infty$ . Combining this
with $(^{*})$ , we obtain eventually $[T^{\prime} : S]_{l}\leq[T^{*} : S]_{l}=[T^{*} : H^{*}]_{l}\cdot[H^{*} : S]\leq$
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$[T^{*} : K^{*}]_{l}\cdot[T^{*}\cap H:S]<\infty$ .
Now, by the light of Lemmas 4, 6 we can prove the following theorem:
Theorem 4. If $R$ is Galois and left algebraic over $S$ and [V: $C$] $<\infty$

then $R/S$ is locally finite.
Proof. In case $S\subseteq C$, our assertion is clear by Corollary 2. Thus, in

what follows, we shall assume $S\subseteq EC$.
Case $I$ : $n=1$ . Since $H\not\subset C,$ $R=H[d]$ with some $d\in R$ by [6, CorolIary

2]. Then, $T=S[d]$ is left finite over $S,$ $R=H[T]$ , and $R$ is TR-irreducible.
Hence, $R=\dot{H}[T]$ is locally finite over $S$ by Lemma 6.

Case $\Pi$ : $n>1$ . By the same reason as in the proof of Lemma 4, without
loss of generality, we may assume that $S$ contains $a=\sum_{1}^{n}d_{ij}e_{ij}$ with $d_{\downarrow n}=1$

and $d_{in}=0(i\geq 2)$ . We set $R^{\prime}=H[\{e_{ij}’ s\}]=\Sigma_{1}^{n}D^{\prime}e_{ij}$ with $D^{\prime}=V_{R^{\prime}}(\{e_{ij}’ s\})$ (a
division ring), and distinguish further two cases:

(1) $D^{\prime}=C$. Since $[R:C]=[R:R^{\prime}]\cdot[R^{\prime} : D^{\prime}]<\infty,$ $[S:Z]<\infty$ by [9,
Lemma]. The Peld $Z[C]$ contained in the center of $V$ is locally finite over
$Z$ by Corollary 2. If $F$ is an arbitrary finite subset of $C,$ $\mathfrak{G}|Z[F\mathfrak{G}]$ and
$\mathfrak{G}|(Z\cap C)(F\mathfrak{G})$ are (outer) Galois groups of $Z[F\mathfrak{G}]/Z$ and $(Z\cap C)(F\mathfrak{G})/Z\cap C$

respectively. Further, to be easily seen, they are of same finite order. And
so, we have $Z[F\mathfrak{G}]=Z\times Z\cap C(Z\cap C)(F\mathfrak{G})$ . We have proved therefore that
$Z[C]=Z\times {}_{Z\cap C}C$, whence it follows particularly $[Z:Z\cap C]=[Z[C] : C]\leq[R:C]$

$<\infty$ . Since $V$ is locally finite over $Z$ (Corollary 2) and $D=V_{R}(R^{\prime})$ is contained
in $V,$ $D$ is evidently locally finite over $Z\cap C$. Accordingly, $R/Z\cap C$ is locally
finite. Combining this with $[S:Z\cap C]=[S:Z]\cdot[Z:Z\cap C]<\infty$ , our assertion
will be easily seen.

(2) $D^{\prime\supset}\neq C$. Since $R$ is Galois and finite over $H$, it will be easy to see
that $D$ is Galois and finite over $D^{\prime}$ not contained in $C$. Hence, by [6, Corol-
lary 2], $D=D^{\prime}[d]$ with some non-zero $d$ in $D$ . And then, $R=R$ ‘

$[d]$ of course.
We set.here $u=de_{21}+\sum_{3}^{n}e_{ii-1}$ . Then, $T=S[u]=S[a, u]$ is left finite over $S$,
and $R$ is T-R-irreducible by [6, Lemma 8]. And so, $H[T]$ is a simple ring
by Lemma 6 (i). Since $u^{k-1}au^{n-1}=d^{2}e_{k1}$ is a non-zero element of $H[T]\cap e_{kk}R$

$(k=1, \cdots,n),$ $H[T]$ contains $e_{11},$ $\cdots,e_{nn}$ by [6, Lemma 5]. It follows therefore
$e_{1n}=\acute{e}_{11}ae_{nn}\in H[T]$ and $d=(u+e_{1n})^{n}\in H[T]$ , whence $e_{k1}\in H[T](k=1, \cdots,n)$ .
Accordingly, $V_{R}(H[T])\subseteq V_{R}(\{e_{11}, e_{21}, \cdots, e_{n1}\})=D$ , which implies $H[T]=$
$V_{R}(V_{R}(H[T]))\supseteq V_{R}(D)\supseteq\{e_{ij}’ s\}$ . And moreover, $H[T]=H[u, \{e_{ij}’ s\}]=H[d$,
$\{e_{ij}’ s\}]=R^{\prime}[d]=R$ . Hence, $R=H[T]$ is locally finite over $S$ by Lemma 6.

Theorem 3 enables us to restate [7, Conclusion 2.1] and [7, Corollary
4.2] under the same assumptions as in [1, VII. \S 6]:

Corollary 4. Let $R$ be Galois and left algebraic over $S$ and [V: $C$ ] $<\infty$ .
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(i) For each regular intermediate rings $R_{1},$ $R_{2}$ of $R/S$, every S-nng
isomorphism $\rho$ of $R_{1}$ onto $R_{2}$ can be extended to an automorphism of $R$ .

(ii) For each regular intermediate ring $R^{\prime}$ of $R/S,$ $R/R^{\prime}$ is $\mathfrak{G}(R^{\prime})$-locally
Galois.

(iii) There exists $a$ 1-1 dual correspondence between closed $(*)$-regular
subgroups of $\mathfrak{G}$ and regular intermediate rings of $R/S$, in the usual sense
of Galois theory.

Next, we shall improve [7, Lemma 1.10].

Lemma 7. Let $R$ be Galois and left 2-algebraic over $S,$ $[V:C_{0}]<\infty$ ,

and $Q$ the set of all $q\in R$ with the property that each intermediate (simple)
ring $T$ of $R/S[q, \{e_{ij}’ s\}]$ is $S[q]- T$-irreducible. If $S[Q]$ coincides with $R$

and there exists an element $r^{\prime}\in Q$ such that $R^{\prime}=V_{R}(V_{R}(S[r^{\prime}]))\supseteq\{e_{if},s\}$ and
$H\subseteq EV_{R^{\prime}}(R^{\prime})$ then $H$ is a simple ring and $R/S$ is locally finite.

Proof. If 7‘ is an arbitrary intermediate ring of $R/R^{\prime}$ , then $H_{\frac{d_{-}^{-}}{}}V_{T}(T)$ .
In fact, $H\subseteq V_{T}(T)$ implies $H\underline{\subset}R^{\prime}\cap V_{T}(R^{\prime})=V_{R^{\prime}}(R$

‘
$)$ , which is a contradiction.

At first, we shall prove that there exists an element $r_{1}\in R$ such that $R_{1}=$

$V_{R}(V_{R}(S[r_{1}]))\supseteq\{e_{ij}’ s\},$ $H\not\subset V_{R_{1}}(R_{1})$ and $V_{R}(S[r_{1}])\subseteq C_{0}$ . To this end, we shall
distinguish two cases, and set $S^{\prime}=S[r^{\prime}]$ :

Case $I$ : $V_{R^{\prime}}(R^{\prime})\not\subset C_{0}$ . As $V$ is (inner) Galois and finite over $C_{0}$ , by [6,

Theorem 5], for arbitrary $x\in V_{R^{\prime}}(R^{\prime})(\subseteq V)$ not contained in $C_{0}$ there exists
some $y\in V$ such that $V=C_{0}[x, y]$ . If we set $S^{\prime\prime}=S^{\prime}[y]=S[r^{\prime}, y]$ , then $R^{\prime\prime}$

$=V_{R}(V_{R}(S^{\prime\prime}))\supseteq S^{\prime\prime}[V_{R}(V_{R}(S^{\prime}))]=S^{\prime\prime}[R^{\prime}]\supseteq H[x, y, \{e_{ij}’ s\}]$ . And so, $ R^{\prime\prime}(\supseteq$

$\{e_{if}’ s\})$ is a simple ring containing $V=C_{0}[x, y]$ . Further, recalling that $R^{\prime\prime}$ is
( $S^{\prime}- R^{\prime\prime}-$ and so) $S^{\prime\prime}- R^{\prime\prime}$-irreducible, we see that $\infty>[S^{\prime\prime} : S]_{l}\geq[V_{R^{\prime\prime}}(S):V_{R^{\prime\prime}}(R^{\prime\prime})]$

$=[V:V_{R^{\prime\prime}}(R^{\prime/})]$ by [7, Lemma 1.5]. Hence, $R^{\prime\prime}$ is inner Galois and finite
over (simple) $H=V_{R^{\prime\prime}}(V)$ and, as is noted at the opening, $H\not\subset V_{R^{\prime\prime}}(R^{\prime\prime})$ .
Accordingly, by [6, Corollary 2], $R^{\prime\prime}=H[r_{1}]$ with some $r_{1}$ . Evidently, there
holds $V_{R}(S[r_{1}]))=V_{R}(H[r_{1}])=V_{R}(R^{\prime\prime})=V\cap V_{R}(R^{\prime\prime})\subseteq V\cap V_{R^{\backslash }}(V)=C_{0}$ and $R_{1}=$

$V_{R}(V_{R}(S[r_{1}]))\supseteq R^{\prime}$ . Needless to say, as is noted at the opening, $H\not\subset V_{R_{1}}(R_{1})$ .
Case $\Pi$ : $V_{R^{\prime}}(R^{\prime})\subseteq C_{0}$ . Evidently, $V_{R}(S^{\prime})=V_{R}(R^{\prime})$ is a division subring

of $D$, and its center coincides with the center $C^{\prime}$ of $R^{\prime}$ . Since $V^{\prime}=C_{0}[V_{R}(S^{\prime})]$

$=C_{0}\times_{C^{\prime}}V_{R}(R^{\prime})$ and [V’ : $C_{0}$] $\leq[V:C_{0}]<\infty$ , we see that $[V_{R}(R^{\prime}) : C^{\prime}]<\infty$ and
$V^{\prime}$ is a simple ring. $ConSequently$ , there holds $V_{V}(V_{V}(V^{\prime}))=V^{\prime}$ . Now, in
case $V^{\prime}\subsetneqq V$, there holds $C_{0}\subsetneqq V_{V}(V^{\prime})=V_{V}(V_{R}(S^{\prime}))\subseteq R^{\prime}$ . And so, by [6, Theorem
5], for an arbitrary $x\in V_{V}(V^{\prime})\backslash C_{0}$ there exists some $y\in V$ such that $V=C_{0}[x, y]$ .
If we set $S^{\prime\prime}=S^{\prime}[y]$ , it follows $ R^{\prime\prime}=V_{R}(V_{R}(S^{\prime\prime}))\supseteq S^{\prime\prime}[V_{R}(V_{R}(S^{\prime}))1=S^{\prime\prime}[R^{\prime}]\supseteq$

$H[x,y, \{e_{ij}’ s\}]\supseteq V$. Accordingly the rest of the proof will proceed just as in
the latter half of Case I. While, in case $V^{\prime}=V,$ $R^{\prime\prime}=R^{\prime}\cdot V_{R}(R^{\prime})=R^{\prime}\times cV_{R}$ }$R^{\prime}$ )
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is a simple ring containing $V‘=V$ and the center $C^{\prime\prime}$ of $R^{\prime\prime}$ coincides with $C^{\prime}$ .
Noting here that $R$ is $S^{\prime}- R$-irreducible and $[V_{R}(R^{\prime}):C^{\prime}]<\infty$ , we obtain $\infty>[S^{\prime}$ :
$S]_{l}\cdot[V_{R}(R^{\prime}):C^{\prime}]\geq[V:V_{R}(S^{\prime})]_{r}\cdot[V_{R}(R^{\prime}):C^{\prime}]=[V:C^{\prime}]=[V:C^{\prime\prime}]$ . Hence, $R^{\prime\prime}$ is
inner Galois and finite over $H=V_{R^{\prime\prime}}(V)$ . Accordingly, the rest of the proof
proceeds just as in the last part of Case I.

Thus, we have proved our first step assertion, and at the same time we
have seen that $H$ is a simple ring.

Now, let $\{x_{1}, \cdots, x_{m}\}$ be an arbitrary finite subset of $R$ . As $R=S[Q]$ ,
there exists a finite subset $\{q_{1}, \cdots, q_{t}\}$ of $Q$ such that $S[x_{1}, \cdots, x_{m}]\subseteq S[q_{1}, \cdots, q_{t}]$ .
We set here $S_{2}=S[r_{1}, q_{1}]$ and $R_{2}=V_{R}(L^{\gamma_{R}}(S_{2}))(\underline{\supset}R_{1}\supseteq V)$ . Then, the simple
ring $R_{2}$ being $S_{2}- R_{2}$-irreducible, $\infty>[S_{2} : S]_{l}\geq[V_{R_{-}}, (S):V_{R_{2}}(S_{2})]_{r}=[V:V_{R_{2}}(R_{2})]_{r}$

by [7, Lemma 1.5]. $R_{2}$ is therefore inner Galois and finite over $H$ and Hf-
$V_{R_{2}}(R_{2})$ . And so, by [6, Corollary 2], $R_{2}=H[r_{2}]$ with some $r_{2}$ . Noting here
that $V_{R}(S[r_{2}])=V_{R}(H[r_{2}])=V_{R}(R_{2})\subseteq V_{R}(R_{1})\subseteq C_{0}$ , one will easily see that $r_{2}$

possesses the property that $r_{1}$ enjoyed. Accordingly, we can repeat the same
argument for $S[r_{2}, q_{2}]$ instead for $S_{2}=S[r_{1}, q_{1}]$ to obtain such an element $r_{3}$

that $V_{R}(V_{R}(S[r_{2}, q_{2}]))=H[r_{3}]$ . Continuing the same procedures step by step,
we obtain eventually $r_{2},$ $\cdots,$ $r_{t+1}\in R$ such that $V_{R}(V_{R}(S[r_{k}, q_{k}]))=H[r_{k+1}](k$

$=1,$ $\cdots,$
$t$). As $q_{1},$ $\cdots,$ $q_{t}\in H[r_{t+1}]$ , there exists a finite subset $F$ of $H$ such that

$S[q_{1}, \cdots, q_{t}]\subseteq S[F, r_{t+1}]$ . Recalling here that the simple ring $H$ is outer Galois
and left algebraic over $S,$ $S[F]=S[h]$ with some $h\in H$ by Corollary 3. Hence,
$S[x_{1}, \cdots,x_{m}](\subseteq S[q_{1}, \cdots, q_{t}])$ is contained in $S[h, r_{t+1}]$ that is left finite over $S$ .

Theorem 5. If $R$ is Galois and left 2-algebmic over $S$ and [V: $C_{0}$] $<\infty$

then $H$ is simple and $R/S$ is locally finite.
Proof. If $S\subseteq C$ then $V=R$ , whence [V: $C$] $=[V:C_{0}]<\infty$ . And so, our

theorem for this case is contained in Theorem 4. And next, in case $D$ is
finite there is nothing to prove. Thus, in what follows, we shall restrict our
attention to the case where $S_{\frac{\subset\subset}{1}}C$ and $D$ is infinite. Let $Q$ be the set of all
$q\in R$ with the property that each intermediate ring $T$ of $R/S[q, \{e_{ij}’ s\}]$ is
$S[q]- T$-irredccible. We shall distinguish here two cases:

Case $I$ : $n=1$ . As each intermediate (division) ring $T$ of $R/S$ is $S$-T-
irreducible, there holds evidently $R=Q$ . Now, let $a$ be an arbitrary element
of $S\backslash C$. Then, $ar^{\prime}\neq r^{\prime}a$ for some $r^{\prime}\in R$ . And, it is evident that $H(\ni a)$ is not
contained in the center of $R^{\prime}=V_{R}(V_{R}(S[f]))$ . Our assertion is therefore
a direct consequence of Lemma 7.

Case $\Pi$ : $n>1$ . By the same reason as in the proof of Lemma 4, with-
out loss of generality, we may assume that $S$ contains an element $a=\sum_{1}^{n}d_{ij}e_{ij}$

with $d_{1n}=1$ and $d_{in}=0(i\geq 2)$ . Then, we have seen in Case II of the proof
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of Lemma 4 that $R=S[Q]$ . We set here $r^{\prime}=\sum_{2}^{n}e_{ii-1},$ $S^{\prime}=S[r^{\prime}]$ and $R^{\prime}=$

$V_{R}(V_{R}(S^{\prime}))$ . $r^{\prime}$ is contained inQby [6, Lemma8] and S’ $containse_{k1}=r^{\prime k-1}ar^{\prime n-1}$

$(k=1, \cdots, n)$ . And so, $V_{R}(S^{\prime})\subseteq V_{R}(\{e_{11}, e_{21}, \cdots, e_{n}1\})=D$ , whence $R^{\prime}\supseteq V_{R}(D)$

$\supseteq\{e_{ij}’ s\}$ . And, noting that $ar^{\prime}’\neq r^{\prime}a$ , it will be easy to see that $H$ is not
contained in the center of $R^{\prime}$ . Hence, again by Lemma 7, $H$ is simple and
$R/S$ is locally finite.

Corresponding to Corollary 4, Theorem 5 together with [7, Conclusion
2.2] and [7, Theorem 4.2] yields the next:

Corollary 5. Let $R$ be Galois and left 2-algebraic over $S,$ $[V:C_{0}]<\infty-$ ,
and $[R:H]_{l}\leq\aleph_{0}$ . And let $R_{1},$ $R_{2}$ be f-regular intermediate rings of $R/S$.

(i) If $\rho$ is an $S-(ring)$ isomorphism of $R_{1}$ onto $R_{2}$ then $\rho$ can be ex-
tended to an automorphism of $R$ .

(ii) $R/R_{1}$ is $\mathfrak{G}(R_{J})$-locally Galois.
(iii) There exists $a$ 1-1 dual correspondence between closed $(\backslash l^{\backslash }I’\vee\gamma^{\prime})$-regular

subgroups of $\mathfrak{G}$ and fregular intermediate rings of $R/S$, in the usual sense
of Galois theory.

3. In this section, we shall give an improvement of [7, Theorem 3.1].
The realization of our improvement is essentially due to the next lemma.

Lemma 8. Let $R$ be locally finite over a regular subring $S$, and $\mathfrak{G}R_{r}$

dense in $Hom_{S_{l}}(R, R)$ . If $R^{*}$ is a regular intermediate ring of $R/S$, then
for each finite subset $F$ of $R^{*}$ there exists a regular subring $S^{\prime}$ of $R$ such
that $R^{*}\supseteq S^{\prime}\supseteq-S[F]$ and $[S^{\prime} : S]_{l}<\infty$ .

Proof. Let $R^{*}=\sum D^{*}e_{ij}^{*}$ and $V^{*}=V_{R}(R^{*})=\sum U^{*}g_{pq}^{*}$ , where $e_{ij}^{*}’ s,$ $g_{pq}^{*}’ s$

are matrix units of $R^{*},$ $V^{*}$ respectively and $D^{*}=V_{R^{*}}(\{e_{ij}^{*}’ s,\}),$ $U^{*}=V_{V^{\aleph}}(\{g_{pq}^{*}’ s\})$

are division rings. Then, $R^{**}=R^{*}[\{g_{pl}^{\star}’ s\}]=\sum R^{*}g_{pq}^{\star}=\sum D^{*}(e_{ij}^{*}g_{pq}^{*})$ , where
$(e_{ij}^{*}g_{pq}^{*})s$ form evidently a system of matrix units and $V_{R^{l*}}(\{(e_{ij}^{*}g_{pq}^{*})s\})=D^{*}$ .
And so, for an arbitrary finite subset $E$ of $R^{**},$ $S_{E}=S[\{e_{ij})ks\}, \{g_{pq}^{*}’ s\}, E]$ is
an $intermediate^{\backslash }$ simple ring of $R^{**}/S$ left finite over $\cdot S$. As $R$ is $S_{1\Gamma}R-$

completely reducible by Lemma 2, we shall denote by $n(E)$ the length of its
composition series, which is evidently bounded with the capacity of $R$ and so
finite. Now, we set $n(E_{0})={\rm Min} n(E)$ , where $E$ ranges over all the finite subsets
of $R^{**}$ . Then, $R=N_{1}^{*}\neq\cdots\oplus N_{n(E_{0})}^{*}$ with $S_{E_{0}}- R$-irreducible $ N_{i^{\backslash }}^{*}’ s.\cdot$ Here, we
assume that $E$ is an arbitray finite subset of $R^{**}$ containing $E_{\cap}$ and $R$

$=N_{1}\oplus\cdots\oplus N_{n(E)}$ is a direct decomposition of $R$ into $S_{1\Gamma}R$-irreducible sub-
modules. Since each $N_{i}$ is yet $S_{E_{0}}- R$-admissible, we have $n(E)\leq n(E_{0})$ , whence
it follows $n(E)=n(E_{\sigma})$ . Hence, we see that each $N_{i}$ is $S_{F_{0}\sim}- R$-irreducible as well.
And so, if $R=M_{1}\oplus\cdots\oplus M_{t}$ is the direct decomposition of the $S_{E_{0}}- R$-module
$R$ into homogeneous components $ilf_{j}’ s$ , each $ill_{j}$ is $S_{L^{r}}R$-admissible. Noting
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here that $E$ is an arbitrary finite subset of $R^{**}$ containing $E_{0}$ , we see that $M_{j}$

is $R^{**}- R$-admissible. And then, as $V_{R}(R^{**})=U^{*}$ is a division ring, $t$ is to be
1, that is, $R$ is homogeneously completely reducible as an $S_{E_{0}}- R$-module. Further,
by the same reason, $n(E)=n(E_{0})$ implies that $R$ is homogeneovsly completely
reducible as an $S_{l_{\wedge}^{i^{\prime}}}R$-module. Accordingly, we see that $V_{R}(S_{E})$ is simpe. Evi-
dently, $S_{E}^{\prime}=V_{s_{E}}(\{g_{pq}^{*}’ s\})$ is a simple subring of $R^{*}=V_{R^{K*}}(\{g_{pq}^{*}’ s\})$ containing $S$

and left finite over $S$. Recalling here that $S_{F}=\lrcorner\sum S_{E}^{\prime}g_{pq}^{*}$ , it will be easy to see
that $V_{R}(S_{\Gamma_{\lrcorner}}^{f})=\Sigma V_{R}(S_{F_{-}})g_{pq}^{*}$ , which proves that $S_{E}^{f}$ is a regular subring of $R$ .
Now, to be easily verified, $S_{E_{0}\cup F}^{\prime}$ can be adopted as our $S^{\prime}$ for any finite subset
$F$ of $R^{*}$ .

Lemma 9. Let $R$ be locally finite over a regular subring $S,$ $\mathfrak{G}R_{r}$

dense in $Hom_{S_{i}}(R, R)$ , and let $V_{R}(V_{R}(S^{\prime}))$ be simple for each regular inter-
mediate ring $S^{\prime}$ of $R/S$ with $[S^{\prime} : S]_{l}<\infty$ . If $R^{\prime}$ is a regular intermediate
ring of $R/S$ such that $[H[R^{\prime}]:H]_{l}<\infty$ , then $H[R$ ‘

$]$ is outer Galois and
locally finite over $R^{\prime}$ and $\mathfrak{G}(H[R^{\prime}]/R^{\prime})\equiv \mathfrak{G}(H/H\cap R^{\prime})$ by the restriction map.

Proof. There exists a simple intermediate ring $S^{\prime}$ of $R^{\prime}/S$ such that
$H[R^{\prime}]=H[S^{\prime}]$ and $[S^{\prime} : S]_{l}<\infty$ . As $H=V_{R}(V_{R}(S^{\prime}))\supseteq H[S^{\prime}]\supseteq S^{\prime}$ and $H^{\prime}$ is
outer Galois and locally finite over $S^{\prime}$ by Theorem 2, $H[S^{\prime}]$ is simple by
[7, Theorem 1.1]. And, noting that $H\mathfrak{G}(S^{\prime})=H$, Theorem 2 proves that
$\mathfrak{G}(S^{\prime})|H[S^{\prime}]$ is a Galois group of $H[S^{\prime}]/S^{\prime}$ , whence $\mathfrak{G}(S^{\prime})|H[S^{\prime}]$ is dense in
$\mathfrak{G}(H[S^{\prime}]/S^{\prime})$ by Corollary 4. It follows therefore $H\mathfrak{G}(H[S^{\prime}]/S^{\prime})=H$. Now,
the required isomorphism will be given by the restriction map $p;\mathfrak{G}(H[R^{\prime}]/R^{\prime})$

$\ni\sigma\rightarrow\sigma|H\in \mathfrak{G}(H/H\cap R^{\prime})$ . Here, one should remark that $\mathfrak{G}(H[R^{\prime}]/R^{\prime})$ is compact
([7, \S 1]) and $\mathfrak{G}(H[R^{\prime}]/R^{\prime})|H$ is dense in $\mathfrak{G}(H/H\cap R^{\prime})$ (Corollary 4).

Now, by the validity of Lemmas 8, 9, we can prove the following improve-
ment of [7, Theorem 3.1].

Theorem 6. Let $R$ be locally finite over a regular subring $S,$ $\mathfrak{G}R_{r}$ dense
in $Hom_{S_{l}}(R, R)$ , and let $V_{R}(V_{R}(S^{\prime}))$ be simple for each regular intermediate
ring $S^{\prime}$ of $R/S$ with $[S^{\prime} : S]_{l}<\infty$ . If $R^{\prime}$ is a regular intermediate ring of
$R/S$, and $H^{\prime}$ an intermediate ring of $H/S$ such that $H/S$ is Galois, then
$H[R^{\prime}]$ is outer Galois and locally finite over $R^{\prime}$ , and $\mathfrak{G}(H^{\prime}[R^{\prime}]/R^{\prime})\equiv$

$\mathfrak{G}(H/H^{\prime}\cap R^{\prime})$ by the restriction map.
Proof. As $\mathfrak{G}(H^{\prime}/S)=\mathfrak{G}(H/S)|H^{\prime}$ by [7, Corollary 3.9] and Corollary 4,

it will suffice to prove our theorem for the case where $H^{\prime}=H$. Let $R^{\prime}=$

$\sum D^{\prime}e_{ij}^{\prime}$ , where $D^{\prime}=V_{R^{\prime}}(\{e_{ij}^{\prime}’ s\})$ is a division ring. Then, Lemma 8 enables
us to set $H[R^{\prime}]=\bigcup_{\nu}R_{\nu}$ , where $R.=H[S_{\nu}]$ and S. runs over all the regular
subrings of $R$ such that $R^{\prime}\supseteq S_{\nu}\supseteq S[\{e_{ij}^{\prime}’ s\}]$ and $[S. : S]_{l}<\infty$ . As [R. : $H$] $<\infty$

by [7, Lemma 3.2 (iii)], $R_{\nu}$ is simple by Lemma 9, whence so is $H[R^{\prime}]=\bigcup_{\nu}R_{\nu}$



12 7’. Nagahara and H. Tominaga

by [7, Lemma 1.1]. Evidently, $R_{\nu}^{\prime}=R^{\prime}\cap R_{\nu}$ is a simple ring. Moreover, $V_{R}(S_{\nu})$

$\supseteq V_{R}(R_{\nu}^{\prime})\supseteq V_{R}(R_{\nu})=V_{R}(S_{\nu})$ shows that $R_{\nu}^{\prime}$ is a regular subring of $R$ . And,
one will easily verify that $R.=H[R_{\nu}^{\prime}],$ $R^{\prime}=\bigcup_{\nu}R_{\nu}^{\prime}$ and $R_{\nu}^{\prime}\cap H=R^{\prime}\cap H$. Now,
in virtue of Lemma 9, $R_{\nu}$ is outer Galois and locally finite over $R_{\nu}^{\prime}$ and $\mathfrak{G}(R_{\nu}/R_{\nu}^{\prime})$

$\cong \mathfrak{G}(H/H\cap R_{\nu}^{\prime})=\mathfrak{G}(H/R^{\prime}\cap H)$ by the restriction map. Hence, for each $\tau\in$

$\mathfrak{G}(H/R^{\prime}\cap H)$ there exists a uniquely determined extension $\tau_{\nu}\in \mathfrak{G}_{\wedge}(R_{\nu}/R_{\nu}^{\prime})$ , of $\tau$ . Ac-
cordingly, one will easily see that if $R_{p}\subseteq R_{\nu}$ then $\mathfrak{G}(R_{\nu}/R_{v}^{\prime})|R_{\mu}=\mathfrak{G}(R_{\nu}/R_{\nu}^{f})|H[R_{\mu}^{\prime}]$

$=\mathfrak{G}(R_{\mu}/R_{u}^{\prime})$ . By the light of this fact, we can define an $R^{\prime}-(ring)$ automorphism
$\hat{\tau}$ of $H[R^{\prime}]$ by $\hat{\tau}|R_{\nu}=\tau_{\nu}$ . We set here $\hat{\mathfrak{T}}=\{\hat{\tau};\tau\in \mathfrak{G}(H/R^{\prime}\cap H)\}$ . Evidently,
$\hat{\mathfrak{T}}$ forms a group and $\hat{\mathfrak{T}}|R_{\nu}=\mathfrak{G}(R_{\nu}/R_{\nu}^{\prime})$ . And so, there holds $J(\hat{\mathfrak{T}}, H[R^{\prime}])=$

$\bigcup_{\nu}J(\hat{\mathfrak{T}}|R_{\nu}, R_{\nu})=\bigcup_{u}R_{\nu}^{\prime}=R^{\prime}$ , which means that $H[R^{\prime}]/R^{\prime}$ is outer Galois. Further,
to be easily seen $\hat{\mathfrak{T}}$ is locally finite (cf. [10, $(a^{*})]$ ). And then, the method used
in the proof of $[10, (a^{*})]$ enables us to see that $H[R^{\prime}]/R^{\prime}$ is locally finite. It
follows therefore that $\hat{\mathfrak{T}}$ is dense in $\mathfrak{G}(H[R^{\prime}]/R^{\prime})$ (Corollary 4), whence it will be
easy to see that $H\mathfrak{G}(H[R^{\prime}]/R^{\prime})=H$. Consequently, there holds $\mathfrak{G}(H[R^{\prime}]/R^{\prime})|H$

$=\mathfrak{G}(H/R^{\prime}\cap H)$ . Now, the rest of the proof will be easy (cf. the proof of
Lemma 9).

Combining Theorem 6 with [5, Corollary 1.4], one will readily obtain
Corollary 6. Let $R$ and $S$ satisfy the assumptions cited in Theorem 6.

If $R^{\prime}$ is a regular intermediate nng of $R/S$, then $H^{*}=H^{*}[R^{\prime}]\cap H$ for each
intermediate ring $H^{*}$ of $H/R^{\prime}\cap H$ and $R^{*}=(R^{*}\cap H)[R^{\prime}]$ for each inter-
mediate ring $R^{*}$ of $H[R^{\prime}]/R^{\prime}$ .
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