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By an almost prime is meant a positive rational integer the number of
prime factors of which is bounded by a certain constant. Let us denote by
$\Omega(n)$ the total number of prime factors of a positive integer $n$ . In 1920 Viggo
Brun [2] elaborated an elementary method of the sieve of Eratosthenes to
prove that for all sufficiently large $x$ there exists at least one integer $n$ with
$\Omega(n)\leqq 11$ in the interval $x\leqq n\leqq x+x^{\frac{1}{2}}$ . Quite recently W. E. Mientka [4]
improved this result of Brun, showing that for all large $x$ there exists at least
one integer $n$ with $\Omega(n)\leqq 9$ in the interval $x\leqq n\leqq x+x^{\frac{1}{2}}$ . To establish this
Mientka makes use of the sieve method due to A. Selberg instead of Brun’s
method (cf. [3] and [4]). By refining the argument of Mientka [4] we can
further improve his result. Indeed, we shall prove in this paper the following

Theorem. Let $k\geqq 2$ be a fixed integer. Then, for all sufficiently large
$x$ , there exists at least one integer $n$ with $\Omega(n)\leqq 2k$ in the interval $x<n\leqq x$

$+x^{t/k}$ .
Thus, in particular, if $k=2$ then for all large $x$ the interval $x<n\leqq x+x^{\frac{1}{2}}$

always contains an integer $n$ such that $\Omega(n)\leqq 4$ . Of course, the restriction in
the theorem that $k$ be integral may be relaxed without essential changes in
the result.

Let us mention that the existence of a prime number $p$ in the interval
$x<p\leqq x+x^{\iota/k}$ for all large $x$ could not be deduced, as is well known, even
from the Riemann hypothesis if only $k=2$ .

Note. It is possible to generalize our theorem presented above so as to
concem with the distribution of almost primes in an arithmetic progression.
Thus, if $a$ and $b$ are integers such that $a\geqq 1,0\leqq b\leqq a-1,$ $(a, b)=1$ , then we
can prove the existence of an integer $n$ satisfying

$x<n\leqq x+x^{1/k},$ $n\equiv b(mod a)$ ,
$\Omega(n)\leqq 2k$ ,

provided that $x$ be sufficiently large, $k\geqq 2$ being a fixed integer. Here, in
particular, in the case of $k=2$ , the inequality $\Omega(n)\leqq 4$ may be replaced by
$\Omega(n)\leqq 3$ : this result is apparently stronger than the above theorem for the
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corresponding case. Proof is similar to that of our theorem but somewhat
more complicated arguments are needed.

1. Let $M>0$ and $N>1$ be integers and let $z\geqq 2$ and $w>0$ be any real
numbers such that $w^{2}\geqq z$ . We denote by $S$ the number of those integers $n$

in the interval $M<n\leqq M+N$ which are not divisible by any prime number
$p\leqq z$ . Then, by making use of the ‘lower’ sieve of A. Selberg (cf. [3] and
[6]) we can show that

$S\geqq(1-Q)N-R_{1}$ ,
where

$Q=p<z\sum_{-}\frac{1}{pZ_{p}}$ with
$Z_{p}=g(m)<p\sum_{1\leqq m\leqq w/\Gamma p}\frac{\mu^{2}(m)}{\phi(m)}$

and

$R_{1}=O(w^{2}\sum_{p\leqq z}\frac{1}{pZ_{p}^{z}})$

Here $q(1)=1$ and for $m>1g(m)$ denotes the greatest prime divisor of $m$ , and
the O-constant for $R_{1}$ is absolute. It will be shown later that $Z_{p}>c$ log$p$ for
all $p\leqq z$, where $c>0$ is a constant, so that we have $R_{1}=O(w^{2})$ .

Now we take
$z=(2N)^{\frac{1}{4}}$ , $w=(2N)^{\frac{1}{2}-\epsilon}$ ,

where $0<\epsilon<\frac{1}{4}$ . If we fix $\epsilon$ sufficiently small then there holds the following

Lemma 1. For all sufficiently large $N$ we have

$S>1.6054\frac{N}{\log N}$

Our proof of Lemma 1 runs essentially on the same lines as in [4]; we
shall give an outline of the proof of this lemma in \S 3.

Throughout in the following the constants implied in the symbol $O$ are
all absolute (apart from the possible dependence on the parameter e), and $c$

represents positive constants not necessarily the same in each occurrence.
2. In order to prove Lemma 1 we require some auxiliary results due to

N. G. de Bruijn [1] on the number $\Psi(x, y)$ of integers $n\leqq x$ and free of
prime factors $>y$ .

It is proved by de Bruijn [1] that we have
(1) $\Psi(x, y)=O(xe^{-cu})$

and more precisely



154 S. Uchiyama

(2) $\Psi(x, y)=x\rho(u)+O(1)$

$+()(xu^{2}e^{-c\sqrt{}\overline{\log y}})+O(^{\prime}\frac{x\rho(u)\log(2+u)}{\log y})$ ,

where $x>1,$ $y\geqq 2,$ $u=(\log x)/\log y$ , and the function $\rho(u)$ is defined by the fol-
lowing conditions:

$\rho(u)=0(u<0);\rho(u)=1$ $(0\leqq u\leqq 1)$ ;
(3)

$u\rho^{\prime}(u)=-\rho(u-1)(u>1);\rho(u)$ continuous for $u>0$ .

Lemma 2. We have for $t\geqq t_{0}\geqq 1$

$\rho(t)\leqq\rho(t_{0})e^{-(t}t_{0})$

so that

$\int_{t_{0}}^{\infty}\rho(u)du\leqq\rho(t_{0})$ $(t_{0}\geqq 1)$ .

This is stated and employed without proof in [4] as a lemma of N. C.
Ankeny. By integrating by parts we deduce from (3) that for $t\geqq 1$

$t\rho(t)=\int_{0}^{t}\rho(u)du-\int_{0}^{t}\rho(u-1)du=\int_{t-1}^{t}\rho(u)du\leqq\rho(t-1)$ ,

since $\rho(u)$ decreases monotonously for $u\geqq 0$ . Honce

$\frac{\rho^{\prime}(u)}{\rho(u)}=-\frac{\rho(u-1)}{u\rho(u)}\leqq-1$ $(u\geqq 1)$

and the result follows at once.
3. Following Mientka [4] let us put

$H_{p}-\prod_{q<p}(1-\frac{1}{q})^{-1}$ $(p\leqq z)$ ,

where in the product on the right-hand side $q$ runs through the prime num-
bers less than $p$ , and

$T_{1)}=m>w/\Gamma p\sum_{g(m)\leq p}\frac{1}{m}$
$(p\leqq z)$ .

Then we have $H_{p}-Z_{p}|\leqq T_{p}$ and

$S\geqq N\prod_{p\leq z}(1-\frac{1}{p})-N\sum_{\prime,1)\simeq z}\frac{T_{p}}{pH_{p}(H_{p}-T_{p})}-R_{1}$

(cf. [3] and [4]). Since it is well known that

$p\leqq z1I(\perp-\frac{1}{p})=\frac{e^{-c}}{\log z}+O(\frac{1}{\log^{2}z})$ ,
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$C$ being the Euler constant, it remains only to evaluate the middle term on
the right-hand side of the above inequality for $S$.

By partial summation we have

$T_{p}=\sum_{m>w/\sqrt{p}}\frac{\Psi(m,p)}{m^{2}}+O(N^{-3})\tau^{+\epsilon}$ .
We find easily that

$T_{p}=O(\frac{1}{\log^{2}N})$

for every $p\leqq\exp(\log N)^{B}2$ on taking account of (1). For exp $(\log N)^{B}<p\leqq z2$

we have

$T_{p}=\sum_{w/\sqrt{p}<m\leqq\exp(\log N)^{2}}\frac{\Psi(m,p)}{m^{2}}+O(\frac{1}{\log^{2}N})$ ,

where, by (2),

$\sum_{w/\sqrt{p}<m\leqq\exp(\log N)^{2}}\frac{\Psi(m,p)}{m^{2}}$

$=\sum_{w/\sqrt{p}<m\leqq\exp(1ogN)^{2}}\frac{1}{m}\rho(\frac{\log m}{\log p})(1+O(\frac{\log\log N}{\log p}))$

$+O(\frac{1}{\log^{2}N})$ ,

and this is equal to

$(\int_{w/\sqrt{p}}\infty\frac{1}{x}\rho(\frac{\log x}{\log p})dx+O(N^{-3}\tau^{+}))(1+O(\frac{\log\log N}{\log p}))+O(\frac{1}{\log^{2}N})$

Hence

$T_{p}=\log p\int_{\log(w/\sqrt{p})/\log p}\infty\rho(u)du(1+O(\frac{\log\log N}{\log p}))+O(\frac{1}{\log^{2}N})$

for exp $(\log N)^{2}\tau<p\leqq z$ .
Put

$I_{p}=\int_{p1O_{e}^{\sigma}(w/|3/1O^{\sigma p}}\infty,\rho(u)du$
$(p\leqq z)$ .

Then it follows immediately from the above results that

$\sum_{p\leqq z}\frac{T_{p}}{pH_{p}^{(}H_{p}-T_{p})}$

$=e^{-C}$
$\sum_{2,\exp(1ogN)^{?}<p\leqq z}\frac{l}{p\log p}\frac{I_{p}}{e^{C}-I_{p}}+O(\frac{\log\log N)^{2}}{(\log N)^{4/3}})$
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For $p$ in the interval $(2N)^{\frac{1}{\nu\}1}}<p\leqq(2N)\div(\nu\geqq 4)$ we have, by Lemma 2,

$I_{p}\leqq\rho(\frac{\log(w/\sqrt{p})}{\log p})\leqq\rho(t_{\nu})$ ,

where we have put

$t_{\nu}=(\frac{1}{2}-\epsilon)\nu-\frac{1}{2}$

Therefore

$\exp(logN)\tau<p\leq z\sum_{2}\frac{l}{p\log p}\frac{I_{p}}{e^{C}-I_{p}}$

$\leqq 4\leqq\nu<r(1o_{-\neg}^{\gamma}N)^{l}\sum_{1(}\sum_{(2N)^{\frac{1}{\nu+1}}<p\leqq(2N)}\frac{l}{p\log p}\div)\frac{\rho(t_{\nu})}{e^{C}-\rho(t_{\nu})}$

$=\frac{1}{\log N}\sum_{\nu=4}^{\infty}(\nu+1)\log\frac{\nu+1}{\nu}\frac{\rho(t_{\nu})}{e^{c}-\rho(t_{\nu})}+O(\frac{1}{(\log N)^{4/3}})$

Here we used the relation

$\sum_{p\leq x}\frac{1}{p}=\log\log x+c_{1}+O(\frac{1}{\log x})$ ,

$c_{1}$ being a constant. Hence

$\sum_{p\leq z}\frac{T_{p}}{pH_{p}(H_{p}-T_{p})}$

$\leqq\frac{e^{-C}}{\log N}\sum_{\nu=4}^{\infty}(\nu+1)\log\frac{\nu+1}{\nu}\frac{\rho(t_{\nu})}{e^{C}-\rho(t_{\nu})}+O(\frac{(\log\log N)^{2}}{(\log N)^{4/3}})$

Now, by the definition of $\rho(u)$ , we have

$\rho(u)=1-\log u$ $(1\leqq u\leqq 2)$ .

If we take $\epsilon=10^{-4}$ , then we find that

$\rho(t_{4})=\rho(1.4996)<0.5949$ ,

$\rho(t_{5})=\rho(1.9995)<0.3072$ ,

so that

5 log $\frac{5}{4}\frac{\rho(t_{4})}{e^{r}’-\rho(t_{4})}<0.5597$ ,

and
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$\sum_{\nu- 5}^{\infty}(\nu+1)\log\frac{\nu+1}{\nu}\frac{\rho(t_{\nu})}{e^{C}-\rho(t_{\nu})}$

$\leqq 6\log\frac{6}{5}\frac{\rho(t_{5})}{e^{C}-\rho(t_{5})}\frac{1}{1-e^{-0.4999}}<0.5807$ ,

on appealing to Lenima 2. We thus have proved that

$\sum_{p\leqq z}\frac{T_{p}}{pH_{p}(H_{p}-T_{p})}<1.1404e^{-C}\frac{1}{\log N}+O(\frac{(\log\log N)^{2}}{(\log N)^{4/3}})$

and this completes the proof of Lemma 1 since

$(4-1.1404)e^{-C}>1.6055$ .
4. Let $q$ be any prime number in the interval $z<q\leqq z^{2}$ , where, as

before, $z=(2N)^{Z}1$ We next estimate the number $S(q)$ of those integers $n$ in
$M<n\leqq M+N$ which are multiples of $q$ and are not divisible by any prime
number $p\leqq z$ . We have by the ‘upper’ sieve of A. Selberg (cf. [5])

$S(q)\leqq\frac{N}{qZ}+R_{2}$ ,

where

$Z=\sum_{1^{\prime}-m\leqq z}\frac{\mu^{2}(m)}{\phi(m)}$

and

$R_{2}=O(\frac{z^{2}}{Z^{2}})$

It is easily verified that

$Z\geqq\sum_{1\leqq m\leqq z}\frac{1}{m}=\log z+O(1)$ ,

and therefore

(4) $S(q)\leqq\frac{4N}{q\log N}+O(\frac{N}{q\log^{2}N})$

Lemma 3. Let $U$ denote the number of those integers $n$ in $ M<n\leqq$

$M+N$ which are divisible by no primes $p\leqq z$ , by at most two primes $q$

with $z<q\leqq z^{2}$ , and by no integers of the form $q^{2},$ $q$ being a prime in $z<$

$q\leqq z^{2}$ . Then, for all sufficiently large $N$, we have

$U>0.6811\frac{N}{\log N}$
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Let $N$ be a sufficiently large positive number. The number of those in-
tegers $n$ in $M<n\leqq M+N$ which are not divisible by any prime $p\leqq z$ and are
divisible by some $q^{2}$ , where $q$ is a prime in $z<q\leqq z^{2}$ , does not exceed

$z<q_{-}^{\prime}z^{2}\sum_{\simeq}([\frac{M+N}{q^{2}}]-[\frac{M}{q^{2}}])-O(N^{3}z)$ . .

Now, the number of those integers $n$ with $M<n\leqq M+N$ which are not
divisible by any prime $p\leqq z$ and are divisible by at least three (distinct) primes
$q$ in $z<q\leqq z^{2}$ is, by (4), not greater than

$\frac{1}{3}\sum_{z<q\leqq z^{2}}S(q)\leqq\frac{4\log 2}{3}\frac{N}{\log N}+O(\frac{N}{\log^{2}N})$

It thus follows from Lemma 1 that

$U>(1.6054-\frac{4\log 2}{3})\frac{N}{\log N}+O(\frac{N}{\log^{2}N})$ ,

which proves our lemma since $(4/3)\log 2<0.9242$ .
5. We can now conclude the proof of our theorem. Let $x$ be a suf-

ficiently large positive real number and put

$M=[x]$ , $N=[x^{1/k}]$ .

Then, by Lemma 3, there exists at least one integer $n$ in the interval $M<n$
$\leqq M+N,$ $i$ . $e$ . in the interval

$x<n\leqq x+x^{\iota/k}$ ,

such that it is not divisible by any prime $p\leqq(2N)^{\mathbb{Z}}1$ and is divisible by at

most two primes $q$ in $(2N)^{1}\not\supset<q\leqq(2N)^{1}1$ but not divisible by the squares of
these $q$ , where

$(2N)^{3}>(2(x^{\iota/k}-1))^{k}>x+x^{1/k}$

since $k\geqq 2$ . Therefore, according as $n$ has no, one or two prime factors $q$

in $(2N)^{1}z<q\leqq(2N)^{\frac{1}{2}}$ it has at most $2k-1,2k-1$ or $2k-2$ additional prime
factors. Hence the total number of prime factors of $n$ is at most $2k,$ $i$ . $e$ .
$\Omega(n)\leqq 2k$ . This completes the proof of the theorem.
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