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By an almost prime is meant a positive rational integer the number of
prime factors of which is bounded by a certain constant. Let us denote by
Q2(n) the total number of prime factors of a positive integer ». In 1920 Viggo
Brun [2] elaborated an elementary method of the sieve of Eratosthenes to
prove that for all sufficiently large x there exists at least one integer n with

2(n)<11 in the interval r<n<x+a%  Quite recently W. E. Mientka [4]
improved this result of Brun, showing that for all large x there exists at least

one integer n with 2(n)<9 in the interval x<n< z+a%. To establish this
Mientka makes use of the sieve method due to A. Selberg instead of Brun’s
method (cf. [3] and [4]). By refining the argument of Mientka [4] we can
further improve his result. Indeed, we shall prove in this paper the following

Theorem. Let k=2 be a fixed integer. Then, for all sufficiently large
x, there exists at least one integer n with Q(n)<2k in the interval x<n=<x
+ x'%.

Thus, in particular, if 2=2 then for all large x the interval x<n§x+x%
always contains an integer n such that 2(n)<4. Of course, the restriction in
the theorem that % be integral may be relaxed without essential changes in
the result.

Let us mention that the existence of a prime number p in the interval
x<pZzx+x'* for all large x could not be deduced, as is well known, even
from the Riemann hypothesis if only 2=2.

Note. It is possible to generalize our theorem presented above so as to
concern with the distribution of almost primes in an arithmetic progression.
Thus, if a and b are integers such that a=1, 0<b=<a—1, (a, b)=1, then we
can prove the existence of an integer 7 satisfying

x<n=x+x'*, n=>b (mod a),
Q(n) < 2k,
provided that x be sufficiently large, 2=2 being a fixed integer. Here, in

particular, in the case of 2 =2, the inequality £2(n) <4 may be replaced by
Q(n) < 3: this result is apparently stronger than the above theorem for the
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corresponding case. Proof is similar to that of our theorem but somewhat
more complicated arguments are needed.

1. Let M>0 and N>1 be integers and let 2=2 and w >0 be any real
numbers such that w’>2. We denote by .S the number of those integers n
in the interval M<n<M+ N which are not divisible by any prime number

p==z. Then, by making use of the ‘lower’ sieve of A. Selberg (cf. [3] and
[6]) we can show that

where
_ : _ pi(m)
Q Ez Zp Wlth Zp N lémgo/o’i) ¢(m)
g(m)<p
and

1
R, =0 (w"’ " ) .
pPEz pr
Here g(1)=1 and for m>1 g(m) denotes the greatest prime divisor of m, and
the O-constant for R, is absolute. It will be shown later that Z,>clogp for
all p<=z, where ¢>0 is a constant, so that we have R, =0 (w?).
Now we take

1

2=(2N):, w=(@2N)}Z ",

[

where 0<e< % If we fix ¢ sufficiently small then there holds the following

Lemma 1. For all sufficiently large N we have

N
log N -~

Our proof of Lemma 1 runs essentially on the same lines as in [4]; we
shall give an outline of the proof of this lemma in § 3.

Throughout in the following the constants implied in the symbol O are
all absolute (apart from the possible dependence on the parameter &), and ¢
represents positive constants not necessarily the same in each occurrence.

S > 1.6054

2. In order to prove Lemma 1 we require some auxiliary results due to
N. G. de Bruijn [1] on the number ¥ (x,y) of integers n<x and free of
prime factors >y.

It is proved by de Bruijn [1] that we have

(1) ¥z, y) = Ozxe )

and more precisely
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(2) ¥z, y) = 2P () +O(1)
+ O (.fuze*c/ro;z;) + O ( xP (u)lloogg:;2 + u) )

where x>1, y=2, u=(logx)/logy, and the function £(«) is defined by the fol-
lowing conditions : ‘ .

Pu)=0 (u<0); Plu)=1 (0=u=x1);
uP'(u) = -~Pu—1) (u>1); O(u) continuous for = >0 .

Lemma 2. We have for t=t,=1

P(t) S O(t)e %,
so that

[Towansrw) wzD.

This is stated and employed without proof in [4] as a lemma of N. C.
Ankeny. By integrating by parts we deduce from (3) that for t=1
to(t) = _r O(u)du — Jt Olu—1)du= Jt Pluy du=0(t—1),

t—1

since 2 (u) decreases monotonously for #=0. Honce

0'(u) O(u—1)
Ou) ul(u) ~— 1 (z1)
and the result follows at once.
3. Following Mientka [4] let us put
| 1\7¢
— 1—— <
H, q1<1p ( q ) =2,

where in the product on the right-hand side ¢ runs through the prime num-
bers less than p, and

1

T,= — <z).

r m>§://7) m (P - z)

glm)<p
Then we have |H,—Z,|<7T, and
(1) T
> —_ | — P —
S= Nz:g-z (\1 P ) NPZE:z PHD(HP_TP) R!

(cf. [3] and [4]). Since it is well known that

o 1 e ¢ 1
1)1:1 (l_;—) ~ logz ()(10822) ’
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C being the Euler constant, it remains only to evaluate the middle term on
the right-hand side of the above inequality for .S.
By partial summation we have

T,= » Z0p ot
m>w/vVp m
We find easily that
1
=0 ( log’N )

for every p=<exp(log N)%, on taking account of (1). For exp(logN)%<p§z
we have

V(m, p) ( 1 )
T,= ———+0 ,
v w//5<mgze:xp(1ogzv)2 m? lngN
where, by (2),
U(m,p)
w//'1_7<m§29xp(10g2\’)2 m2
1 logm) ( (loglogN))
= — 0| |11+ O |—F——
w//1_)<m§29x0(10g1\7)2 m ( logp logp

1
+O(log2N)’

and this is equal to

( mip(l"g’c)dﬁow‘%*‘)) (1+o(——1°g1°gN)) + o( L)

x logp log p log*’N

w/vVDp

Hence
. * loglog N 1
T,=logp J O(u)du <1+O<7logp )) + O(logzN)
Log(w/v /102 p

for exp(logN)% <p==z.

Put

I, — r Pl du  (p=<=z).

log(ew/vp)/logp

Then it follows immediately from the above results that

Ty

zgz PHp(Hp—Tp)
_ 1 I loglogN)")
_ -C » ~0glogiv)

SRR s s v B

exp(logN)§<p§z
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For p in the interval (ZN)'“% <p§(2N)Tl(ug4) we have, by Lemma 2,

log(w/vp)
ngp( logp )éf’(tp),

where we have put

Therefore

1 I,
Zz plogp €—1,

exp(logN)3<pse

1 Pz,
= Z ( . 2 Lj>10gp> e£—0(t,)

1
e lepzem ”

1
4Zv<e(logi?

_ 1 hod v+1 o(t) 1 )
T logN E (D+ 1)10g e"——P(t) O ( (logN)‘/"" /
Here we used the relation
N 1 loglog x+¢,+ O ( 1 )
pEX p it : ‘logx/ ’
¢, being a constant. Hence
T,
pZ<:z PHp(Hp—T'p)
et = v+1  P(z) (loglogN )2)
< \0glogIvV |
= TognN 2 (v Dleg Fo) T © ( logN)* | *

Now, by the definition of ©(x), we have
Ou)=1—log u 1Z2uxs2).
If we take ¢=10"* then we find that
0(z) = £(1.4996) < 0.5949 ,
o(2,) = £(1.9995) < 0.3072 ,
so that

S _ Pl
5 log 4 d—p() < 0.5597,

and
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= v+1 o)
”;5 (v+1)log v F—p(L)
< 6log O &) L 05807,

5 e£—p(t) 1—e "%
on appealing to Lemma 2. We thus have proved that

T, o 1 ( (loglogN ) )
Z o, =T, <04 Nt O logh)

and this completes the proof of Lemma 1 since

(4—1.1404)e ¢ > 1.6055 .

4. Let g be any prime number in the interval =2<g==z? where, as

before, 2=(2N )’1‘. We next estimate the number S(g) of those integers 7z in
M<n<M+ N which are multiples of ¢ and are not divisible by any prime
number p<z. We have by the ‘upper’ sieve of A. Selberg (cf. [5])

N
=< — .
S(g) = oz +R,,
where
(m)
PR
1;:%:%2 ¢(m)
and
z?
R=0(%]
It is easily verified that
1
> _— =
Zzlémézm logz+0O(1),
and therefore
4N N
<
(4) Slg) = glogN (qlogZN)

Lemma 3. Let U denote the number of those integers n in M<n=<
M+ N which are divisible by no primes p=<z, by at most two primes q
with 2<q=<z2’, and by no integers of the form q°, q being a prime in z<
q=z*. Then, for all sufficiently large N, we have

N
U> 0.6811—1(;gN .
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Let N be a sufficiently large positive number. The number of those in-
tegers n in M<n<M+ N which are not divisible by any prime p<z and are
divisible by some ¢°, where ¢ is a prime in 2<¢=2z? does not exceed

M+ N :I [ M :D 3
— |- — O(N?) ..
z<éz2 ([ (12 q2 ( )
Now, the number of those integers n with M<n<M+ N which are not

divisible by any prime p <=z and are divisible by at least three (distinct) primes
g in 2<g<2’ is, by (4), not greater than

4log2 N N
zzS(Q) 3 logN + (logzN ) |

IA

1
3 2<q

I

It thus follows from Lemma 1 that
4log2 N N
) Toer * © (g )

U> (1.6054—

which proves our lemma since (4/3)log?2<<0.9242.

5. We can now conclude the proof of our theorem. Let x be a suf-
ficiently large positive real number and put

M=[x], N = [zx/*].

Then, by Lemma 3, there exists at least one integer » in the interval M<n
<M+ N, i.e. in the interval

r<n<x+x*,

such that it is not divisible by any prime p<(2N)f and is divisible by at
most two primes g in (2N )% <g=(2N )% but not divisible by the squares of
these ¢, where '

CN)E>(2(x2 —1))f > x+xV*

since £=2. Therefore, according as n has no, one or two prime factors ¢
in (2N)% <g= (2N J# it has at most 22—1, 2k—1 or 2k—2 additional prime
factors. Hence the total number of prime factors of n is at most 2%, i.e.
2(n)<2k. This completes the proof of the theorem.
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