ON A THEOREM CONCERNING THE DISTRIBUTION OF ALMOST PRIMES

By

Saburô UCHIYAMA

By an almost prime is meant a positive rational integer the number of prime factors of which is bounded by a certain constant. Let us denote by $\Omega(n)$ the total number of prime factors of a positive integer n. In 1920 Viggo Brun [2] elaborated an elementary method of the sieve of Eratosthenes to prove that for all sufficiently large x there exists at least one integer n with $\Omega(n) \leqq 11$ in the interval $x \leqq n \leqq x+x^{\frac{1}{2}}$. Quite recently W. E. Mientka [4] improved this result of Brun, showing that for all large x there exists at least one integer n with $\Omega(n) \leqq 9$ in the interval $x \leqq n \leqq x+x^{\frac{1}{2}}$. To establish this Mientka makes use of the sieve method due to A. Selberg instead of Brun's method (cf. [3] and [4]). By refining the argument of Mientka [4] we can further improve his result. Indeed, we shall prove in this paper the following

Theorem. Let $k \geqq 2$ be a fixed integer. Then, for all sufficiently large x, there exists at least one integer n with $\Omega(n) \leqq 2 k$ in the interval $x<n \leqq x$ $+x^{1 / k}$.

Thus, in particular, if $k=2$ then for all large x the interval $x<n \leqq x+x^{\frac{1}{2}}$ always contains an integer n such that $\Omega(n) \leqq 4$. Of course, the restriction in the theorem that k be integral may be relaxed without essential changes in the result.

Let us mention that the existence of a prime number p in the interval $x<p \leqq x+x^{1 / k}$ for all large x could not be deduced, as is well known, even from the Riemann hypothesis if only $k=2$.

Note. It is possible to generalize our theorem presented above so as to concern with the distribution of almost primes in an arithmetic progression. Thus, if a and b are integers such that $a \geqq 1,0 \leqq b \leqq a-1,(a, b)=1$, then we can prove the existence of an integer n satisfying

$$
\begin{gathered}
x<n \leqq x+x^{1 / k}, n \equiv b(\bmod a) \\
\Omega(n) \leqq 2 k
\end{gathered}
$$

provided that x be sufficiently large, $k \geqq 2$ being a fixed integer. Here, in particular, in the case of $k=2$, the inequality $\Omega(n) \leqq 4$ may be replaced by $\Omega(n) \leqq 3$: this result is apparently stronger than the above theorem for the
corresponding case. Proof is similar to that of our theorem but somewhat more complicated arguments are needed.

1. Let $M>0$ and $N>1$ be integers and let $z \geqq 2$ and $w>0$ be any real numbers such that $w^{2} \geqq z$. We denote by S the number of those integers n in the interval $M<n \leqq M+N$ which are not divisible by any prime number $p \leqq z$. Then, by making use of the 'lower' sieve of A. Selberg (cf. [3] and [6]) we can show that

$$
S \geqq(1-Q) N-R_{1},
$$

where

$$
Q=\sum_{p \leqq z} \frac{1}{p Z_{p}} \text { with } Z_{p}=\sum_{\substack{1 \leq m \leqq w / / \bar{p} \\ g(m)<p}} \frac{\mu^{2}(m)}{\phi(m)}
$$

and

$$
R_{1}=O\left(w^{2} \sum_{p \leqq z} \frac{1}{p Z_{p}^{2}}\right)
$$

Here $g(1)=1$ and for $m>1 g(m)$ denotes the greatest prime divisor of m, and the O-constant for R_{1} is absolute. It will be shown later that $Z_{p}>c \log p$ for all $p \leqq z$, where $c>0$ is a constant, so that we have $R_{1}=O\left(w^{2}\right)$.

Now we take

$$
z=(2 N)^{\frac{1}{4}}, \quad w=(2 N)^{\frac{1}{2}-\varepsilon}
$$

where $0<\varepsilon<\frac{1}{4}$. If we fix ε sufficiently small then there holds the following
Lemma 1. For all sufficiently large N we have

$$
S>1.6054 \frac{N}{\log N}
$$

Our proof of Lemma 1 runs essentially on the same lines as in [4]; we shall give an outline of the proof of this lemma in $\S 3$.

Throughout in the following the constants implied in the symbol O are all absolute (apart from the possible dependence on the parameter ε), and c represents positive constants not necessarily the same in each occurrence.
2. In order to prove Lemma 1 we require some auxiliary results due to N. G. de Bruijn [1] on the number $\Psi(x, y)$ of integers $n \leqq x$ and free of prime factors $>y$.

It is proved by de Bruijn [1] that we have

$$
\begin{equation*}
\Psi(x, y)=O\left(x e^{-c u}\right) \tag{1}
\end{equation*}
$$

and more precisely

$$
\begin{align*}
& \Psi(x, y)=x^{\rho}(u)+O(1) \tag{2}\\
& \quad+O\left(x u^{2} e^{-c \sqrt{\log y})}+O\left(\frac{x^{\rho}(u) \log (2+u)}{\log y}\right)\right.
\end{align*}
$$

where $x>1, y \geqq 2, u=(\log x) / \log y$, and the function $\rho(u)$ is defined by the following conditions:

$$
\begin{align*}
\rho(u) & =0(u<0) ; \rho(u)=1 \quad(0 \leqq u \leqq 1) \\
u \rho^{\prime}(u) & =\cdots \rho(u-1)(u>1) ; \rho(u) \text { continuous for } u>0 . \tag{3}
\end{align*}
$$

Lemma 2. We have for $t \geqq t_{0} \geqq 1$

$$
\rho(t) \leqq \rho\left(t_{0}\right) e^{-\left(t-t_{0}\right)},
$$

so that

$$
\int_{t_{0}}^{\infty} \rho(u) d u \leqq \rho\left(t_{0}\right) \quad\left(t_{0} \geqq 1\right)
$$

This is stated and employed without proof in [4] as a lemma of N. C. Ankeny. By integrating by parts we deduce from (3) that for $t \geqq 1$

$$
t \rho(t)=\int_{0}^{t} \rho(u) d u-\int_{0}^{t} \rho(u-1) d u=\int_{t-1}^{t} \rho(u) d u \leqq \rho(t-1)
$$

since $\rho(u)$ decreases monotonously for $u \geqq 0$. Honce

$$
\frac{\rho^{\prime}(u)}{\rho(u)}=-\frac{\rho(u-1)}{u \rho(u)} \leqq-1 \quad(u \geqq 1)
$$

and the result follows at once.
3. Following Mientka [4] let us put

$$
H_{p}-\prod_{q<p}\left(1-\frac{1}{q}\right)^{-1} \quad(p \leqq z)
$$

where in the product on the right-hand side q runs through the prime numbers less than p, and

$$
T_{p}=\sum_{\substack{m>w / \bar{p} \\ g(m) \leqq p}} \frac{1}{m} \quad(p \leqq z)
$$

Then we have $\left|H_{p}-Z_{p}\right| \leqq T_{p}$ and

$$
S \geqq N \prod_{p \leqq z}\left(1-\frac{1}{p}\right)-N \sum_{p \leqq z} \frac{T_{p}}{p H_{p}\left(H_{p}-T_{p}\right)}-R_{1}
$$

(cf. [3] and [4]). Since it is well known that

$$
\mathrm{II}_{p \leqq z}\left(1-\frac{1}{p}\right)=\frac{e^{-C}}{\log z}+O\left(\frac{1}{\log ^{2} z}\right)
$$

C being the Euler constant, it remains only to evaluate the middle term on the right-hand side of the above inequality for S.

By partial summation we have

$$
T_{p}=\sum_{m>w / \sqrt{p}} \frac{\Psi(m, p)}{m^{2}}+O\left(N^{-\frac{3}{8}+\varepsilon}\right)
$$

We find easily that

$$
T_{p}=O\left(\frac{1}{\log ^{2} N}\right)
$$

for every $p \leqq \exp (\log N)^{\frac{2}{3}}$, on taking account of (1). For $\exp (\log N)^{\frac{2}{3}}<p \leqq z$ we have

$$
T_{p}=\sum_{w / \sqrt{p}<m \leqq \exp (\log N)^{2}} \frac{\Psi(m, p)}{m^{2}}+O\left(\frac{1}{\log ^{2} N}\right)
$$

where, by (2),

$$
\begin{aligned}
& \sum_{w / \sqrt{p}<m \leqq \exp (\log N)^{2}} \frac{\Psi(m, p)}{m^{2}} \\
& =\sum_{w / \sqrt{\bar{p}}<m \leqq \exp (\log N)^{2}} \frac{1}{m} \rho\left(\frac{\log m}{\log p}\right)\left(1+O\left(\frac{\log \log N}{\log p}\right)\right) \\
& \quad+O\left(\frac{1}{\log ^{2} N}\right)
\end{aligned}
$$

and this is equal to

$$
\left(\int_{w / \sqrt{p}}^{\infty} \frac{1}{x} \rho\left(\frac{\log x}{\log p}\right) d x+O\left(N^{-\frac{3}{8}+\&}\right)\right)\left(1+O\left(\frac{\log \log N}{\log p}\right)\right)+O\left(\frac{1}{\log ^{2} N}\right)
$$

Hence

$$
T_{p}=\log p \int_{\log (w / \sqrt{p}) / \log p}^{\infty} \rho(u) d u\left(1+O\left(\frac{\log \log N}{\log p}\right)\right)+O\left(\frac{1}{\log ^{2} N}\right)
$$

for $\exp (\log N)^{\frac{2}{3}}<p \leqq z$.
Put

$$
I_{p}=\int_{\log (w / \sqrt{p}) / / \log p}^{\infty} \rho(u) d u \quad(p \leqq z)
$$

Then it follows immediately from the above results that

$$
\begin{aligned}
& \sum_{p \leqq z} \frac{T_{p}}{\left.p H_{p}^{\prime} H_{p}-T_{p}\right)} \\
& \quad=e^{-C} \sum_{\exp (\log N)^{\frac{2}{3}<p \leqq z}} \frac{1}{p \log p} \frac{I_{p}}{e^{C}-I_{p}}+O\left(\frac{\log \log N)^{2}}{(\log N)^{4 / 3}}\right) .
\end{aligned}
$$

For p in the interval $(2 N)^{\frac{1}{\nu+1}}<p \leqq(2 N)^{\frac{1}{\nu}}(\nu \geqq 4)$ we have, by Lemma 2,

$$
I_{p} \leqq \rho\left(\frac{\log (w / \sqrt{p})}{\log p}\right) \leqq \rho\left(t_{\nu}\right)
$$

where we have put

$$
t_{\nu}=\left(\frac{1}{2}-\varepsilon\right) \nu-\frac{1}{2} .
$$

Therefore

$$
\begin{aligned}
& \quad \sum_{\exp (\log N)^{\frac{2}{3}}<p \leqq z} \frac{1}{p \log p} \frac{I_{p}}{e^{C}-I_{p}} \\
& \quad \leqq \sum_{4 \leqq \nu<c(10 g N)^{\frac{1}{3}}}\left(\sum_{(2 N)^{\frac{1}{\nu+1}<p \leqq(2 N)^{\frac{1}{\nu}}}}^{p \log p}\right) \frac{\rho\left(t_{\nu}\right)}{e^{C}-\rho\left(t_{\nu}\right)} \\
& \quad=\frac{1}{\log N} \sum_{\nu=4}^{\infty}(\nu+1) \log \frac{\nu+1}{\nu} \frac{\rho\left(t_{\nu}\right)}{e^{G}-\rho\left(t_{\nu}\right)}+O\left(\frac{1}{(\log N)^{4 / 3}}\right) .
\end{aligned}
$$

Here we used the relation

$$
\sum_{p \leqslant x} \frac{1}{p}=\log \log x+c_{1}+O\left(\frac{1}{\log x}\right)
$$

c_{1} being a constant. Hence

$$
\begin{aligned}
& \sum_{p \leqq z} \frac{T_{p}}{p H_{p}\left(H_{p}-T_{p}\right)} \\
& \quad \leqq \frac{e^{-C}}{\log N} \sum_{\nu=4}^{\infty}(\nu+1) \log \frac{\nu+1}{\nu} \frac{\rho\left(t_{\nu}\right)}{e^{C}-\rho\left(t_{\nu}\right)}+O\left(\frac{(\log \log N)^{2}}{(\log N)^{4 / 3}}\right) .
\end{aligned}
$$

Now, by the definition of $\rho_{(u)}$, we have

$$
\rho(u)=1-\log u \quad(1 \leqq u \leqq 2)
$$

If we take $\varepsilon=10^{-4}$, then we find that

$$
\begin{aligned}
& \rho\left(t_{4}\right)=\rho(1.4996)<0.5949 \\
& \rho\left(t_{5}\right)=\rho(1.9995)<0.3072
\end{aligned}
$$

so that

$$
5 \log \frac{5}{4} \frac{\rho\left(t_{4}\right)}{e^{\prime}-\rho\left(t_{4}\right)}<0.5597
$$

and

$$
\begin{aligned}
& \sum_{\nu=5}^{\infty}(\nu+1) \log \frac{\nu+1}{\nu} \frac{\rho\left(t_{\nu}\right)}{e^{C}-\rho\left(t_{\nu}\right)} \\
& \quad \leqq 6 \log \frac{6}{5} \frac{\rho\left(t_{5}\right)}{e^{C}-\rho\left(t_{5}\right)} \frac{1}{1-e^{-0.4999}}<0.5807,
\end{aligned}
$$

on appealing to Lemma 2. We thus have proved that

$$
\sum_{p \leqq z} \frac{T_{p}}{p H_{p}\left(H_{p}-T_{p}\right)}<1.1404 e^{-C} \frac{1}{\log N}+O\left(\frac{(\log \log N)^{2}}{(\log N)^{4 / 3}}\right)
$$

and this completes the proof of Lemma 1 since

$$
(4-1.1404) e^{-C}>1.6055
$$

4. Let q be any prime number in the interval $z<q \leqq z^{2}$, where, as before, $z=(2 N)^{\frac{1}{4}}$. We next estimate the number $S(q)$ of those integers n in $M<n \leqq M+N$ which are multiples of q and are not divisible by any prime number $p \leqq z$. We have by the 'upper' sieve of A. Selberg (cf. [5])

$$
S(q) \leqq \frac{N}{q Z}+R_{2}
$$

where

$$
Z=\sum_{1 \leqq m \leqq z} \frac{\mu^{2}(m)}{\phi(m)}
$$

and

$$
R_{2}=O\left(\frac{z^{2}}{Z^{2}}\right)
$$

It is easily verified that

$$
Z \geqq \sum_{1 \leqq m \leqq z} \frac{1}{m}=\log z+O(1)
$$

and therefore

$$
\begin{equation*}
S(q) \leqq \frac{4 N}{q \log N}+O\left(\frac{N}{q \log ^{2} N}\right) \tag{4}
\end{equation*}
$$

Lemma 3. Let U denote the number of those integers n in $M<n \leqq$ $M+N$ which are divisible by no primes $p \leqq z$, by at most two primes q with $z<q \leqq z^{2}$, and by no integers of the form q^{2}, q being a prime in $z<$ $q \leqq z^{2}$. Then, for all sufficiently large N, we have

$$
U>0.6811 \frac{N}{\log N} .
$$

Let N be a sufficiently large positive number. The number of those integers n in $M<n \leqq M+N$ which are not divisible by any prime $p \leqq z$ and are divisible by some q^{2}, where q is a prime in $z<q \leqq z^{2}$, does not exceed

$$
\sum_{z<q \leqq z^{2}}\left(\left[\frac{M+N}{q^{2}}\right]-\left[\frac{M}{q^{2}}\right]\right)-O\left(N^{\frac{3}{4}}\right) .
$$

Now, the number of those integers n with $M<n \leqq M+N$ which are not divisible by any prime $p \leqq z$ and are divisible by at least three (distinct) primes q in $z<q \leqq z^{2}$ is, by (4), not greater than

$$
\frac{1}{3} \sum_{z<q \leqq z^{2}} S(q) \leqq \frac{4 \log 2}{3} \frac{N}{\log N}+O\left(\frac{N}{\log ^{2} N}\right)
$$

It thus follows from Lemma 1 that

$$
U>\left(1.6054-\frac{4 \log 2}{3}\right) \frac{N}{\log N}+O\left(\frac{N}{\log ^{2} N}\right)
$$

which proves our lemma since $(4 / 3) \log 2<0.9242$.
5. We can now conclude the proof of our theorem. Let x be a sufficiently large positive real number and put

$$
M=[x], \quad N=\left[x^{1 / k}\right]
$$

Then, by Lemma 3, there exists at least one integer n in the interval $M<n$ $\leqq M+N$, i. e. in the interval

$$
x<n \leqq x+x^{1 / k}
$$

such that it is not divisible by any prime $p \leqq(2 N)^{\frac{2}{4}}$ and is divisible by at most two primes q in $(2 N)^{\frac{1}{4}}<q \leqq(2 N)^{\frac{1}{2}}$ but not divisible by the squares of these q, where

$$
(2 N)^{k}>\left(2\left(x^{1 / k}-1\right)\right)^{k}>x+x^{1 / k}
$$

since $k \geqq 2$. Therefore, according as n has no, one or two prime factors q in $(2 N)^{\frac{1}{4}}<q \leqq(2 N)^{\frac{1}{2}}$ it has at most $2 k-1,2 k-1$ or $2 k-2$ additional prime factors. Hence the total number of prime factors of n is at most $2 k$, i.e. $\Omega(n) \leqq 2 k$. This completes the proof of the theorem.

References

[1] N. G. de BRUIJN: On the number of positive integers $\leqq x$ and free of prime factors $>y$, Indagationes Math., vol. 13 (1951), pp. 50-60.
[2] Viggo Brun: Le crible d'Eratosthène et le théorème de Goldbach, Norske Videnskapselskapets Skrifter, I. Kristiania, 1920, No. 3.
[3] W. E. Mientika: Notes on the lower bound of the Selberg sieve method, to appear.
[4] W. E. Mientka: An application of the Selberg sieve method, Journ. Indian Math. Soc. (N. S.), vol. 25 (1961), pp. 129-138.
[5] S. Uchiyama: A note on the sieve method of A. Selberg, J. Fac. Sci., Hokkaidô Univ., Ser. I, vol. 16 (1962), pp. 189-192.
[6] S. Uchiyama: A further note on the sieve method of A. Selberg, J. Fac. Sci., Hokkaidô Univ., Ser. I, vol. 17 (1963), pp. 79-83.

Department of Mathematics,
Hokkaidô University
(Received July 19, 1963)

