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Let w=w(z) be an analytic function of z in a Riemann surface R whose
values fall on the w-sphere. Let z=2z2"*(w) be its inverse. Let e(w, w,) be
an arbitrary regular element of 27’ (w). We continue analytically e(w, w,),
using only regular element (without any algebraic element) along every ray:
arg(w-—w,) =0 (0<0<2r) toward infinity. Then, there arise two cases whe-
ther the continuation defines a singularity , in a finite distance or not, in the
former case, we call the ray a singular ray. For each singular ray: arg(w—
w,) =6, we exclude the segment between the singularity w, and w= oo from
the w-plane. The remaining domain £ is clearly a (single valued) regular
branch of z=2"'w). Let ©=p(d) the polar coordinate of the singularity w,
or oo according as the singular ray exists or not. Then ©(6) is clearly lower
semicontinuous and S,=E[f#:0(f) <n] is closed. We call the set E[6:0(0) <

oco] the singular set .S of 2. Then by S= f} S, Sis an F, set. Then the
famous Gross’s Star Theorem is as follows :

Theorem. Let R be a domain such that R=E[z:|z|<oo] in the =z-
plane and let f(z) be an analytic function of z€ R whose values fall on the
w-plane. Let Q2 be a star domain. Then S is a set of linear measure zero.

This theorem was extended by M. Tsuji® to the case: R is a domain in
the z-plane such that the boundary of R is a set of capacity zero and also
extended by Z. Y@j6bo® to the case: R is a Riemann surface with null-
boundary. The method used by them is essentially the same as used by W.
Gross. On the other hand, T. Yoshida® showed that the Gross’s theorem
holds for not only conformal mappings but also for quasiconformal mappings
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and M. Ohtsuka® extended the class of conformal mappings to a little wider
class than quasiconformal mappings in which the Gross’s theorem holds. Fur-
ther we proved that there exists a Riemann surface R € O,,® such that the
covering surface over the w-plane (mapped by an analytic function w=w(z):
Z€ R) has not Gross’s property (singular set of 2 is |w|=1) and also there
exists a domain D€ O,z” in the =z-plane such that 8D is a set of linear
measure zero on a straight and its covering surface (mapped by an analytic
function in D) has not Gross’s property. Above two examples show that the
validity of the Gross’s theorem depends on the size of the boundary (boundary
of R must be so small that R has null-boundary) but on the complexity of
the boundary. In the present paper we consider an inverse of Gross’s theo-
rem i.e. to consider “how to construct a covering surface for given singular
set 77, |

Let F;(¢=1,2, ) be a closed set on |w|=1. If dist(F, X F,)>0, we
call 3] F, a discrete F, set. We shall prove e

Theorem. Let S be an arbitrary discrete F, set of linear measure
zero on |w|=1. Then we can construct a covering surface R which is
conformally equivalent to a planer domain with null-boundary such that R
has a star domain Q2 whose singular set is S.

At present we cannot prove the above theorem under the condition that
the connectivity of R is one. We suppose that the above theorem is valid for
arbitrary F, but it is complicated too much to construct a covering surface
for any F,. Now by this theorem we know that Gross’s theorem cannot be
improved for Riemann surface of connectivity oo but it remains the prob-
lem: Is the singular set S of a star domain of a covering surface (which
is conformally equivalent to |z|< o) smaller than sets of measure zero?

I. Extension of L through D. Let L be a leaf identical to the whole
w-plane. Let D be a circular echelon

D: Re*<|w|<R, —~%<argw<~g—, 0<m, a>0.

Let U(w) be a C,-function” in D such that U(w)=2(a+logR—log|w|)/a in

4) M. OHTSUKA : Thérémes étoilées de Gross et leurs applications, Annales de L’institut
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5) Z. KURAMOCHI: On covering properties of abstract Riemann surfaces, Osaka Math.
Journ., 6 (1954).
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the part D’:Re““<]w|<Re_% of D and U(w)=1 in the part D":R>|w|=

Re 7of D. Let V(w) be a harmonic function in the complementary set of
D+ C:C=E[w:|w|<1] such that V(w)=0 on dC and V(w)=U(w) on 9D.
Then D(V(w)) depends on U(w) and D. Let U(w) be a C-function in the
complementary set of C such that U(w)=U(w) in D and U(w)=0 on aC.
Then by the Dirichlet principle

D(U(w)) 2z D(U(w))+ D(V(w)) .

As 6—0,i.e. D becomes narrow, D(U(w))—0 but D(V(w)) does not tend to
zero. Now we shall prove the following

Lemma. Let C and D and U(w) be as above. We can construct a
closed Riemann surface R,, covering surface of a finite number of sheets
L, L, L, over the w-plane of genus O satisfying the following condi-
tions :

g , Re*<|w|<R and

1). Every branch point lies on J: arg w=— 5

J :arg w= % , Re "< |w| <R, where Re™® > 1.

2). D connects L, L, -, L,., so that every L, =1,2, -+, n) contains
a part D; of D, L and L,,, do not contain
any part of D. ‘

3). There exists a Ci-function U(w)
in R, such that U(w)=Uw) in D, Uw)=
0 in L, Uw)=1 in L,,, and

D(0(w)) < 3D(Ulw) =22 .

a

Such operation (to construct R, through D)

will be called extension of L though D.
Proof. Let D, and I; and I} (i=1, 2,

Fig. 1. ..., n) be an echelon and a segment as follows :
D,: Re @ |w|<Re ", —«% <arg w < —g s
I,: Re ¢ < |w|<Re "7, arg w= — ‘g— >
I: Re "< |w|<Re 7, arg w= % 5

i’ D,=D', where 7=

[44
=1 2n )
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Then D,’s are conformally equivalent. Map D, by &=logw onto a
0
2 b
where §=9+7{. Then U(w)— U,(§)=2(a—logR +)/a, U,(&)=(i—1)/n on =
logR—a+({—1)7 and Us;(§)=i/n on p=IlogR—a+ir. We shall define a func-
tion U ,(§) corresponding to K, from U,(¢). Let K} be the symmetric image
of K, with respect to p=logR+il —a:

rectangle K, such that K,: logR—a+ (i —1)7<p<logR—a+1l, —g<c<

Ki: logR—-a+iT<7y<logR—-a+_(z'+1)7, —g<C<—g— .
Let I'y, and I'; be semicircles as follows :

Iy: |§—po| <7, nZarg(—py) =0, '

I'p: |§—p| <7, 2rzarg(—pr)=n,

Io

L

L
.1&
4

Fig. 2.

,,
Ke | ke
I
L
—

% and p;: $=(logR—a—+_-i7’)—12i. Now the

function U,(é) is defined only in K,. We continue it into K,+K}+I'y+1,
so that U,(&)= U, in K, Ug)=—2(a+ n—logR)/a+ —zni in K}, U,8)=2(r

where p,: é=(logR—a+1i1)+

—0)/a+ =

in (I'y+1I';), where 0=|6—p,| in I'y and OP=|e—p,| in I,

respectively. Then U,(¢) is a C,function and U, (&) = =1 on 0(K,+ K} +
I'y+1I';). Consider the Dirichlet integral of U,(¢). Then Dzr,+K;(I7¢($))=~2—
n

2 26 46 ~ ~ LA 0 ~ 2
D(Utwl) =% =)=, and Dr, (0)=Dr, (Oe) = [* [ {(-2-0ue))"+

1 ~ ) :
o (5 0te) Jododp = ()22 =2 where (—po)=pe” in Iy and
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(E—pr)=PC e in [y

Hence

D (i) =L, 2

K+ Kj+Ty+Ip na n

Map K,+K;+I'y+1I'; in the &plane to D,+D;+I'y+I'7 in the w-plane by
w=¢' and consider the function U,(w) such that U,(w)= U,(logw)= U,(¢) in
Do+ D+ 7 +T% and U,fw) == outside of D,+Dj+I'¥+I". This z-
plane is denoted by L, in which U,(w) is defined. Clearly

2,2 (1)
na n _
Structure of R,. Let S; and S; be slits as follows :

D, (U,(w)) =

Sy 1 |w|=Re™", ~——g—<argw<% in L.

S;: '|w| = Reo+@-vr % <argw < % in L,
1=1,2,--,n
S; 1 |w| = Re 7, ——% <argw < % in £,

Lz &
S:+-1 : lwl = Re 2, "‘§'<argw< % in ’[:'n+1;

where .L,,, is a leaf identical to the w-plane.

Connect L with L, crosswise on S;(=S7), connect L, and .L,,, crosswise on
S;(=S8;..) (i=1,2,---,n). Then we have an n+ 2 sheeted covering surface over
the w-plane. Clearly R, is closed and of genus zero. We define a new C:-
function U(w) in R, as follows: Put U(w)=U,(w)=0 in L, U(w)= U,(w)
in £, ({=1,2,--+,n) and Uw)=1 in L,.,. Then since O(w)= Ujw)= Uw)
on S; (=S8;.)(=0,1,2, ---,n) through which £, and .L,,, are connected and

—~

since U,(w) is a Cy-function, U(w) is a C-function in R,, where L, means

L. Then the Dirichlet integral of U(w) is givenras. D U(w)) — n( ii ) +

n (17: ) Choose a number » such that% < %Ta‘- Then D(0(w))<3D(U(w))

60
(04

III. Extension of L through > D, (m=1,2, --,m,). Let
D,: Re*<|w|<R, 0, <argw<0,, 0, <0 -
In evefy D,, let U(w)=2(a—logR +logw)/a for Re "< ]w]<Re*3a and U (w)

, hence we have the lemma.
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=1 for Re—%glw]<R. We define L, ., L, 2 s Lo nemy+1 and connect them
on slits contained in D,, as mentioned in I) such that there exists a C,-func-
tion U, (w) in L+ Ly + Lo nimyer)s Om(@)=0 in L, U (@)=1 in Lo nimyss
and D(U,, (w)) =3D,, (U(w)). Then we have a covering surface Ry, of 1
+ (7 (1) +1)+(n(2)+1)--- + (1 (m,) + 1) number of sheets and of genus zero. Put

ﬁ(w)zUm(w) in £+ mz% "%)H,Cm,i Then since U,,(w)=0 in L, U(w) is

m=1

a Ci-function in Ry, and

D(O (w) = £ D(On(w) <33 Dy, (Ulw)) = = 3% 0,-0,)

Now the projection of every branchpoint of Ry, lies on argw=4,, and argw
=@, (m=1,2, ---, m,). We consider the star domain £ of Ry, with centre at
w=0 of L. Then 92 consists of segments |w|>Re *, argw=4,, and |w|>
Re™¢, argw=46,,(m=1,2, ---,m,) and 2 is composed of the following parts :

n(mn)

n(m)+1 ~
09 = .,C-l— Z ocm,n and Dm - Z ’Cm,n
n=1 n=1

1M

where

L: E[w:|w|<Re ]+ Z}E[w |w|>Re™*, 6, <argw<ﬁm+1]
+ E[w: ]wl>Re * On,<argw<6,] of L.
Ls: E[w:Re *m>|w|>Re™, 6, <argw<6,] of L,

........................

fm,,n: Elw:Re **"»> |w|>Re "+ rm  § <argw<6,] of L, .
(n=2,3, -+, n(m)

........................

........................

Lo imren ® E[w:]w]>Re'%, b, <argw<@,, where 7,, = a/2n(m)

and m=1,2,---,m, and n=1,2, ---, n(m)+ 1. .
The function U(w) in  is as follows: U (w)=0 in L, U (w)=2(a—logR

m, n(m) m,
+log|w|)/a in Z Z £mn and U(w)=1 in J° L rimy 1+

III. Extension of L through a closed set F of linear measure zero on

|w|=1. The complementary set of F=CF= f I,, where I, is an open in-
terval. Put F,=1"-- Z} L(I':|w|=1). Then F,=J,,+J .+ +Jpmo+Dir
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4 Prat o+ Prmecry, Where J,, is a closed interval and p,,; is an isolated point

of F,. Clearly F= oﬁ F, . Let I’(l) be the smallest number such that mes
l=1
F,—(l)<%z. For sfmplicify we denote Fy. by F,. Then F= ﬁ F, and
I=1

mes Fl < "1;‘ Put AZZJlll"l' Jl,z +_‘ R Jl,m(l) and BZ=PZ,_1 4. +Pl,m’(l)' Then

4%
F,=A,+B, and F,,,=A;,,+B,,,. Since every p,, is isolated in F, and is
contained in F, B,CB;.,. Hence by F,DF;,,

Bz+1"‘BlCAl and AZ+1CAZ . ( 2 )
And

z - ©o =]
Fl = Az+ Z (B@"‘Bq;_l), F= n Al+ Z (BZ_BZ—I)7 Where Bo = O .
7=1 I=1 l=1

Since mes F=0, F does not contain any closed interval and
oo m()

F=73 3 (@m+q)nm+1imB,, where g, and g}, are endpoints of J; .
I=o00

I=1 m=1
We define echelons D,,. D, Diym (Dyym = 13,,,,, +ﬁl,m) and a slit # ,. from
F, as follows: '

D, Re 7' < lw| <R, ﬂl!m<argw<0§,m,
D, Re 7' < |w)| <Re 7, 0, ,<argw<0 .
D, .. : Re ¥ < |lw| <R, 0, <argw<#0;,, m=1,2, .-, m(l)

Lim Re 2 ' < |wl<Re_'~’_l, argw = arg P, .€ (B;—B;_)),

Fig. 3.
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where 6, ,, = min argw and 6}, = max argw. Then
weJ,,m wedy,m

m(2) ' m(Z+1) m(2) m(Z+1)
ZDlmD Z Dl+lm’ Z Dlmn Z Dl+1m O

m (1) m’(Z+1) m(Z) m’(2).

and Z l)l,mD Z tl+1,m, Z Dl,mn Z tl,m=0°

m=1

IV. Extnsion of 1st step of L through F. Let .L be a leaf. Let U,(w)
m(1) o

m(1)
= 2(a—logR + log|w|)/a in > D, and U,(w)=1 in };‘ D, .. We extend

m (1) T m) n(,m) +1
L though >} D, ,(see II) to R\=L+ > > L ... such that there exists a
m=1

m=1 n=1
m(1)

C.-function U, (w) in R{ such that U, (w)=0 in L, U, (w)=1 in Z_] Ly nimy+1
66, , m(D 1
and D(U,(w))<3D (U, (w)) = —+, where 6,= 3 (00— 0:.n) < -

Next we connect a leaf L], with L crosswise on ¢, ( m=1,2, --,m'(1)).

m’(1)

Put R (F, 1)=R]+ z £, and put Ulw, F,1)=0 in % L, and Ulw, F, 1)

=U,(w) in R Then since U,(w)=0 in £, Ulw, F, 1) is also a C,function
in R (F,1) and D(U(w, F, 1))—D(Ul(w)). Put
ER(F7 1) =N (F> 1)"‘ mz(j) ’Cl,m,n(m)+l -

Then oR(F,1) is composed of 72(1) number of compact relative boundary
components B(F,1) such that each component lies on the slits on which
L1, m,nmy+1 1 connected. Such operation is called the extension of first step
of L through F.

Extension of 2nd step of L through F. We extend every L, . .o+ (M
=1, 2, --,m(1)) through 2" D, (22 means the sum over D, contained in
D, ,) by defining L,,,, (n=1,2,---,7(2, m)+1) and connect L}, on ¢, (m

m(2) n(2,m)+1

m(2)
=1,2,---,m'(2)) crosswise to obtain R'(F,2)=R"(F,1)+ 2 L.+ 2

m=1 m =1 n=1

m(2)
Lymn Put R(F,2)=R"(F,2)— > L, nem+- Then there exists a C,-func-

tion U(F, w, 2) in R(F, 2) such that U(F, w,2)=0 in R'(F, 1), UF, w,2)=1
on B(F, 2)=0dR(F, 2) and

D(U(F, w, 2)=3D (Us(w) = 2=,
2
where U, (w)=2 (—-—logR+log[w|)/— in Z D, and U,(w)=1 in Z=:1 D

m(2) 1

and 0,= Z—x (02,m’—02,m)= —4—2 .
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Suppose R(F, /) is defined, we define (/+1)-th step and R(F,I+1) as fol-
lows : we extend L, .cmy+: (m=1,2, -, m(l) through 3" D,,,, (2’ means
over D,,,, contained in D,,) by defining L;,,,, (#=1,2, ---, n({+1, m),

m’(I+1) m’(I+1) m (D)

n (I+1,m)+1)) and connecting >; L., on 2, #... (C 2 D,,). Put

m=1 m=1
m(Z+1) n(Z+1,m)+1 m (I+1)
CREFEI+)=R(FH+ 2 X  Lismnt+ 22 Ly and
m=1 n=1 m=1

. m(Z+1
RF, I+1) = R (F,I+1)— 8 Lyurmmctrimes -

There exists a C,-function U(F, w, I[+1) in R(F,[+1) such that U(F, w, [
+1)=0 in R'(F, ), UF,w,l+1)=1 on B(F,[+1) and

m(I+1)
D(U(F, w, 1+ 1) < 2052 0,5,=" 3 (0hrsm—brvrm) S

froni > ’ 4l+1
21‘(’1

Such extension in called the extension of [+ 1-th step of L through F. Put
Re= hm R(F, ). Then Ry has the following properties :

1 ). Ry is a Riemann surface of planer character of connectivity < oo
and has null-boundary. |
2). Let 25 be a star domain of Ry with centre at w=0 of L. Then

m(1) m (1)
Q5 contains the part of L outside of Z K, .+ 2 K., where
m=1

K,,m: Re“"'<|wl&00 01m<argw<01 ms m=17 2,,772(1)
Ki,: Re‘<|w|<oco, argw =86, =argt,,, m=12,---,m'(1)

3). Let 2 be as above. Then the singular set of 2z is F.
1). Clearly every R(F,[) is of planer character and B(F, ) consists of 7(/)
number of components. Hence R, is of planer character and its connectivity
< . Now R(F,I)({=1,2,---, ) is an exhaustion of R, let w,(w) be a
harmonic function in R(F, )—C such that w,(w)=0 on 0C and w,(w)=1 on
B(F,l), where C= E[w:|w|<1] of L. Then by the Dirichlet principle

D(w,w)<DUF,w,)=—2 —_ 8 Whence lim w,(w)=0 and R,
I=00

a 28 q
4" X 5o SU+1

has null-boundary.
2). is clear from the structure of R(F, 1).

3). If p is an accumulating point of lim B,, p€ A, for any / and p€ ﬁ A,
: I=oc Cl=1
by F,=A,+ (B, ~—B, J)DOF. Now mes F=0 and F does not: contain any arc.

o mll)

Whence if pe ﬂ A, pe Z 2 (@ym+qinm). Corresponding fact occcurs for

=1 m=1
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oo m(l)
singular raies. In fact for pe Z > (Qintaqr m)+hm B,, there exists a ray:

1 m=1

LS
Py

r(p) such that 7(p) s Re * < |w| < oo, argw=argp. Suppose € 3 2 (drm+ dhn
— 3 3 (gsm+qhm)—lim B,. Then since there exist only a ﬁmte number of
z m z

points {g,..} and {q}.} for given [/, there exists a sequence q;, ., 9: ., " —>P>

l,<l,---, Hence there exists a sequence of raies 7,,,: Re zlz<lwl<oo argw
—=argq,, tending to the ray r(p). Thus to every p€ F a singular ray corre-
sponds and the singular set .S of £ is F.

V. Extension of L through a discrete F, set of measure zero.
o - . 0
Let F,= 3 F,, 6,=dist(F,, 25 F;)>0 and F¢=E|:p: dist(F, p) §—2’~]
=1 F+2
Then F,D> Fyand ¥,N F,=0 for i+#j. Every F; is expressed by

oo

Fy= N A+ Y (Biy—By,), where B,,=0, and (3)
I=1 z

Ai,l == Ji,l,l—’_ J¢’1’2’+ cee 4 Ji,l,m('i,l) and Bi,l =P73,l,1 +Pi,l,2+ A +Plg,l’m'(i’z), Where
Ji2m is a closed interval and p, ;.. is an isolated point of F;. Since mes F,

=0, there exists a number /(7). such that mes Ai,,<i and A,,+B,, CF,

for I>1({). On the other hand, by (3) we suppose W?thout loss of generality
that :
Ay +B,,cF,, i=1,2,-. (4)
Also we can suppose ' .
- mes A,,<1/2,, [=1,2,. (5)
We define D,,,,(m=1,2,---,m(,1) and ¢,,,(m=1,2, --,m'(i, 1) from F,,
—A,,+ él(Bi,,_—Bi,j_l) (F.=0 Ay +lim B, for every i). Let

R¢=ef’¢ and a;=a’, where B >a>2. _ - (6)
D;;.: Re 2l 1<|‘w|<Ri, mmﬁ <argw< max@ ,l=1,2,--- and m=1,
Iz, m 0€J5,2,m
2, ,m(i,1)
_% ' o
foim: R 7 <|w|<Re *, argw=argpoim [=1,2, - and m=1,2,
—,m' (i, 1) .

By (6) we have

L+ Z+1 ‘3

log(Ryne * [Ry) = B —p— 'a—z_ > B (‘2—-—1)—>00 as i—oo . (7)
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At first we extend L through F, by {D, .} + {¢,.,.} and we obtain R,
Then
1°). By (2) of IIl 25 (star domain of Rz with centre at w=0 of L con-

tains the part of L outsider of K, : Rle_%glwlgoo, argw=0¢ F,. :
2°). There exists a sequence of bordered Riemann surface {R(F,,{)} ({=1,2,---),
where R (F,, ) > R (F,) as I — oo and R (F,, /) has compact relative boundary

m(1,1) m”’ (1,1 m(1,2)

B(F,,1.). This R(F,,[) is extended through ( > D,,,,+ Z Lyyym) + (Z D, ;.

m=1
m’(1,2) m1,0) ' m (1,0

+ 23 tiam)t ot (20 Digm+ 23 tiim) We call R(F\ ), a surface of I-th

m -1 m=1 m=1

step through F..
3°). There exists a C,-function U(F;, w,l) in R(F,,[) such that U(F,, w,I)

=0 in L, UF,, w,l)=1 on B(F,,l) and D(U(F,, w,[)) = s mes (4, )<2—?—
By (1) 27 contains the part of .L over mZz: 1D2 L,m+ mZ@: 1)ifz 1,m, because A, ,+ B, ,

m=1 m=1
m (2,7)

c F,C complementary set of F,., We extend [ through Z D+ 22

m=1 m=1
tyim: 1=1,2,---. Then 2, is extended through F, and we have Rz .7,
®, Suppose we have extended L through F;

+F,+ .-+ F,; and denote it by SR;
Then the star domain 2 . of Elh o W1th

2 centre at w=0 of L contains the part of
L not lylng on (K +K,+ ---+ K,) where

‘E(/:,,,/) K¢ R¢e 2 < w <00 argw =@ € j: Hence
g

JP(F

Rle T 2, 5 m(E+1,1) m(E+1,1)
hr~c D~ Zl D;iiym+ 23 ti1am is contained
m= m=1
Fig. 4. in 2, . Whence the extension of 2,

Fy 2 F;g

through F,,, can be performed. This is the extension of .L through F,.,.
Thus we can define the extension of .Qi through F,,, to obtain ERW . Also

there exists a C,-function U(F,,,, w,l) 1nZ§R F,.., l) such that U(FHI, w, 5)=0
in L, UF,,,,w,l)=1 on B(F,,,,[) and
6

D(U(F,,,, w, 1)) = —; .
2ay.,
Put Ry —hm §R¢ . Then Ry,

F,

(7)

has the followmg propertzes
1°). Ry is the surface of planer character and R, has null-boundary.
2°). The singular set S of the star domain Qof ?RF with centre at w=0
on L is F, ‘
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Proof of 1°). We must define an exhaustion R, (n=1,2, --:) of Ry with
compact relative boundary dR,. Let C be the circle |w|<1 in L. We ex-
tend L through F, till n-th step, £ through F, till (7-1)-th step--- and through
F, till first step. Then we have the surface composed of L+ (R(F;, n)—L)
+R(F,,n—1)—L) + -+ (R(F,, 1)—L). This surface has compact relative
boundary consisting of B(F,,n)+ B(F,,n—1)+---+ B(F,,1). We extract the
part I, : R, e+ <|w|<oo (in which .L will be extended through F,.,, F, .,
.-} from L of this surface. The remaining surface R, has relative boundary

jﬁ B(F, n+1—j)+al, Let G, be a ring in £ such that R,< |w|<

R, ..e =+ and let V,(w) be a C-function in R, such that V,(w) is harmonic
in G,, V,(w)=0in R,—G,, V,(w)=1 on 8G, lying on |w|=R,,,e *»+*. Then

by (6) D(V,(w))=2x/log R"*I‘g_“"“ < 5” . Let U,(w)=V,(w) in G,
ﬂ"(7 - 1)
and U, (w)=U(F, w,n) (=U(F,, w,n—1)=---, = U(F,, w,1)=V,(w)=0) in L

—G,, U, (w)=U(F,, w,n) in R(F,n)—L, U( )=U(F,, w,n—1) in R(F,,n
—1)—L--, U,(w)=U(F,, w,1) in R(F,,1)—L and U,(w)=V(w) in G,.
Then U,(w) is a C-function in R, such that O, (w)=0 on §C and U, (w)
=1 on dR,. Then by the Dirichlet principle and by (6) and (7)

D(w,(w)) < D(U, (w)) < g; D(U(F,, w, n+1—i))+ D(V,(w)) <

n 6 2z 6n 2n
; i, +ﬁ"(g—1)§ on+i +a"(—‘§~—1> ,

where w,(w) is a harmonic function in R,—C such that o,(w)=1 on R,
and w,(w)=0 on dC. It is evident that lim w,(w)=0 and {R,} is an exhaus-

tion of R;. Hence Rz has null-boundary. Next since every R, is a surface
of planer character, Ry is of planer character.

2°). It can be proved that the singular set S of 2 satisfies S= 2] F;=F,
as III. Hence R; is the Riemann surface required and the Theorem is
proved. |
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