ON THE SPECTRUM OF FUNCTION IN
‘THE WEYL SPACE |

By
Sumiyuki KOIZUMI
1. Introduction. Let f be a bounded measurable function defined on

the real line. By 4(f) we mean the set of real number 2 which satisfies the
following property. For any integrable function K(x) the condition

(1.1) Kef=| Kl—yfy)dy=0  (—oo<z<co)
implies '
(1.2) J:o K (y)dy = 0.

(c. f. A. Beurling [1]. - .

In the previous paper we introduced the analogous definitions. By A4 (f)
we mean the set of real number 2 which satisfies the following property. For
any integrable function K(x) the condition

(1.3) Kof=|" Klz—yfy)dy~0
implies
(1. 4) r K (y)dy = 0
where the notation K *f~0 means
1.5 Tm sup %r K« flx)*dx = 0.
I3 _cogz<oo —o

(c.f. S. Koizumi [4]. It is clear that
(1. 6) Ay (f) = A(S)

The purpose of this paper is to investigate properties of the above defined
set as for functions represented by the Fourier-Stieltjes transform and almost
periodic functions in the sense of Weyl.

2. General prbperty of A,(f).

Theorem 1. The set A (f) is closed.
This is a trivial result. ’



66 S. Koizumi

Theorem 2. Let f be a bounded measurable function and f~0. Then
we have Ay (f)=0.

Proof of Theorem 2. Using the same notation in our previous paper (S.
Koizumi [4]) we get

2.1 Ay () = Ay (£)
From the assumption f~0 we get

(2. 2) lim sup L |s(u+e,x)—s(u—e,x)|’du=0

l+00 —co<z<oo & —o0

where s(«) is the Fourier-Wiener transform of f(x). Therefore we get Ay, (f)
=@ and thus we get 4,(f)=0.

3. Fourier-Stieltjes transform.

Theorem 3. Let f be represented by the Fourier-Stieltjes transform.
That is '

(3.1) fla) ==

= 4/7_71' jiw e“*do (u)

where o(u) is a fzmctz'on of bounded wvariation on the real line. Then we
have -

(3.2) Tm sup zj 2dt=——Zla(2+0)—o(2 0)|2.

I»0 —oco<<z<lo

proof of Theorem 3. Let o,(u)+o,(u) be the Lebesgue decomposition of
o). The o,(u) is its continuous part and the o,(x) is its saltus part. Let
fi(x) be the Fourier-Stieltjes transform of o,(x) (i=1,2) respectively. Then
we have

™ apae = 7f’|ﬁ<t>|2dt+2%ﬁ (5[ rws@a)

+ sz | £.(2)de.

Firstly we shaly estimate the part of fi(¢). We have

; j‘ ]ﬁ(t Izdt . _Z_Z_jm dl'jwjoo edo, (u )Jc_oc'”e.-ivxdo,l ()
ei(u;—v)l_l
t(u—v)l

w
Here if we put a;(u.)=j |do,(v)], then the ¢¥(x) is a continuous, nondecreas-

1
= " doy(u j do. (o)

ei(u —-v)x
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ing and bounded function and we get

s g [ eres 5|7 dott | aortal[SRETHER)

_ Ll % sin(u—v)/2 \*
“ gl ot ot ]
O o [sinfu—v)lj2\*
+ o _wdol (u)jlu_vlmda1 (v)< —0)1)2 ) — I+ 1, say.

The number 6 will be determined in later. As for the I,: for any given
positive number 7 there exist a number N such that

lof(+ 00) = (£ N)| = 9/4V,,

where V,=¢/(00) = r’ |do(v)]. Then if we fixe the number N, there exist
a number ¢ such that
sup o (u+0)—o(u—0) <p/dV,.

~NsushN
Hence we get

L= (" dore) (" dotw)

271.' —oo u—3

_1 j‘” (0 (s + ) — o (s — 8))dar ()

— oo

1 N

_—.Z—(j:ﬁjy) (0¥ (s +8)— o (4 5))do* () + 21ﬂ (o¥u+0)
_1

— o u—0)do*(u) < o 2V [{o¥(— N)—oif(—o0)} + {of(o0)

— a¥(N)}+ - J sup {oF e+ 0)— ot (u—0d)} doi(u)

N —-N=usN
(l/er)(v/2+77/2 + (1/2x) (n/4) = 57/8x.
As for I,: the condition |u—wv|=d imply

(g

(as Z—>00).

Therefore we get ‘ ,

fim sup »‘H’ £ (&)t <5/8x.

00 —co<x<lo

and the number 7 is an arbitrarily small. Thus we get
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(3. 3) fim  sup ij“’\ FlOdE =0

Ir00 —oco<ax<o z

Secondly we shall estimate the part of f.(¢). The o.(x) has enumerable
number of jump point (2,) (=1,2---). Here if we put

a,=o(A,+0)—a(2,—0)
and

Then we have

@/—71' —co '\/ T
Therefore we get
1 (=+? 1 (2t N ~
_‘J |fo(0) e = lim j 5 a,et tz a, dt
l x 271'l -N

&im=2,00. 1

- 27!' Z ]an]2+— Z a,ad,e d(lm ) =J1+!]2, say.

277.' mEn (Zm——zn>l
As for J,: From | JJ a,d,| < 2 |ax| 2 la.| = Vi, we get

&¥m=101.__ 1

< e . L <. =
lim sop_ |l= 2 lenllen im0 5y =0

Therefore we get

B4 Tm sw [ IA@rE =5 T al

300 —ooLxLoo

The estimations (3. 3) and (3. 4) read

(3.5) fim  sup —Hl A (t)mdt‘

lr00 -—oco<<x<o0

stm sw (3] 1A0ra) (3[R0 1) 0.

I 200 -—--ocoLx<L o0

Thus we obtain the (3. 2).
The following results is well known: if f(x) can be represented by the

Fourier-Stieltjes transform (3. 1), then we have

(3. 6) A(f)= {2|c(A+e)—a(i—e) >0 for any >0}

(c. f. H. Pollard [5]).. Now we shall prove the following theorem.
Theorem 4. If f(x) can be represented by the formula (3.1), then we
get - | |
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3.7 Ax(f) = {2]6(2+0)—0(2—0) > 0}

where the notation { } means the closure of the set { }.

Proof of Theorem 4. The proof can be done by decomposing into three
parts.
(i) Firstly we shall prove

(3. 8) A*(f) 2 {2|e(2+0)—0a(21—0) > b}.
We have

(x)= K * f(z) j K(z—y)dy| _edsw

L
szj do ( u)j K(z—y) vy o)kl o),

where the k(x) is the Fourier transform of K(x) and a bounded continuous

function on the real line. Repeating the same arguments as the proof of
Theorem 3 we get

6.9 Tm sw (" lg)rdi= £ 2@ |02+ 0)—o(1—0)

I»00 —ocolx< ™ x
Hence if g(x)=K=*f~0, we obtain
1 4
oo 2 [R@)]*|e(2+0)—a(2—0)*=0
T
and we can conclude that the condition ¢(1+0)-—¢(2—0)> 0 implies £(2) = 0.
Thus we get the formular (i). :
(ii) Secondly we shall prove
(3.10) 45 (f) 2 {21 0(2+0)—a(2—0) > 0)}

This is immediate by the fact A, (f) to be closed and the formula (i).
(iii) Lastly we shall prove

@.11) A4 () = {2[6(1+0) = (1—0) > 0}

If there is an A€ Ay (f)—{A[c(A+0)— 0 (1—0) > 0}, there exist an nighbour-
hood of A, (2-—38, 2,+J) where the o(«) is continuous. Let k;, (u) be an ordi-
nary triangular function on this interval. Let K, (x) be its Fourier transform.
Let us put '

0.(@) = | K, (z=9)f)dy.

Then we get
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im sup % j:*’;gzowdt:z1k1,,<z>12|-o(z+o>-—a<z—o>\2=0-

30 —w<lzloo
On the other hand we have %, (x)#0 at u = A, by the definition of k; (). .
Therefore we get 4 & A, (f). This reads a contradiction. Thus we get the
formula (iii).
Theorem 5. Let f(x) be represented by the formula (3.1). Let us as-
sume that K(x) belong to the class L, and its Fourier transform vanish on
the set of Ay (f). Then we get

(3.12) K« f~0.
Proof of Theorem 5. This is a corollary to the formula (3.9.)

4. The almost periodic function in the sense of Weyl. For al-
most perioic function there always exist

(4. 1) a(l) = 1;{12—21? j‘fo(t)e"“’dt.

Then we have
Theorem 6. Let f(x) be an almost periodic function in the sense of
Weyl. Let us put

(4. 2) A,(f) = {2]|a(2) # 0}.
Then we have
(4. 3) A () = Ay (S)-

Proof of Theorem 6. (i) Proof of A,(f)S Aw,(f). We have by the
Wiener formula

lim Elgj {s(t+e)—s(u—e)} du = \2rald).

Therefore for any positive number & we get

la()| <him sup (1 JZHls(u+e,x)——s‘(u—s,x)Izdu)%.

§ 0 —ooLx<Loo ?6- 2—3
Thus we attain A,(f) S Aw,(f). Since Ap,(f ) is a closed set we conclude
TS Ay (F)- |
(ii) Proof of Aw,(f)Z 4,(f). We shall prove that if 2& A,(f) then 1 & Ay,

(f) too. From 2 & A,(f) there exists an neighbourhood of 2, (1—4,2+ 0) which
doen not contain any .element of 4,(f). On the other hand since f is an al-
most periodic, there exist an trigonometric polynomial
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(4. 4) puld)= Daens  aed(f)n=1,2-N)
such that
o 1 (7
(4. 5) m sup ——j | it + 2)—pu £+ 2) Pdt—0 (N—>c0.)
T»00 —oco<x<00 2T -

Therefore by the one-sided Wiener formula we get

lim sup —1—ji ]{s(u+e,x)—s(u——e,x)}%{SN(u+e,x)

£20 —oco<z<oo 26

—sy(u—e,x)} |*du—0(N—o0)

where we mean by sy(«) the Fourier-Wiener transform of py(x). Since sy(u
doen contain only elements of 4,(f) as an spectre we get

N _
Slut+e, x)—sylu—e, x) = 3, ae®J2r X, (u)

where X,(#) is an characteristic function of an interval [41,—e¢, 4,+¢]. Thus
we can conclude

sylu+e, x)—sylu—e, x)=0 on (A—4, A+0).

Therefore we get
1 (a+e
lim sup ———j |s(u+e, x)—s(u—e, x|°du=0
§ 20 —oo<z<0o0 277.' A—d

Hence we have 2 € Ay, (f). Thus we have completed the Proof of Theorem 6.

Theorem 7. Let f(x) be a bounded almost periodic function in the
sense of Weyl. Let K(x) be an integrable function and its Fourier trans-
Jorm vanish on the set of Ay(f). Then we have

(4. 6) K= f~0.
Proof of Theorem 7. By the hypotheses we get

Y;K(y)pﬂ (x—vy)dy = :V:_,] anJTmK(y) e @Dy = 0.
Thus we get
=" Koifie—yay = " K@) {(Ffe—v)-pale—v} dy

and

%j:lﬂlg(x)lzdxéU:K( )dy

u+l
sup L[| lg)—paty) Py
—ooL Yy < oo
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Therefore we get by (4.5)
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lim sup LJ?Hzlg(x)l"dx=0.

I —ocoLu<oo l u
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