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\S 1. Let $R$ be a universally continuous semi-ordered linear space1)

( $i.e$ . conditionally complete vector lattice in Birkhoff’s sense) and $||$ . I be
a norm on $R$ satisfying the following conditions throughout this paper:

(N. 1) $|x|\leqq|y|(x, y\in R)$ implies $||x||\leqq||y||$ ;
(N. 2) $0\leqq x_{\lambda}\uparrow_{\lambda\in\Lambda}x$ implies $||x||=\sup_{\lambda\in A}||x_{\lambda}||^{2)}$ .
A norm $||\cdot||$ on $R$ is, called continuous, if

(1.1) $\inf_{\nu=1,2}\ldots||x_{\nu}||=0$ for any $x_{\nu}\downarrow_{\nu=1}^{\infty}0^{3)}$ .
The continuity of norms on $R$ plays an important r\^ole in the theory

of semi-ordered linear spaces. In fact, it is well known [8, 9; \S 31] that
every norm-continuous hnear functional $f$ on $\dot{R}$ is (order-) universally
continuous, $i.e$ .
(1.2) $\inf_{\lambda\Lambda}|f(x_{\lambda})|=0$ for any $x_{\lambda}\downarrow_{\lambda\in A}0$ ,

and $R$ becomes superuniversally continuous4) as a space in this case.
It is clear that if a norm $||$ . I on $R$ is continuous, the another norm

$||\cdot||_{1}$ which is equivalent to $||\cdot||$ is also continuous. As for the conditions
under which norms $||\cdot||$ on $R$ are continuous, there are the detailed in-
vestigations by T. And\^o $[3, 4]$ .

A norm $||$ . I on $R$ is called monotone [8], if
(1.3) $|x|\leqq|y|(x, y\in R)$ implies $||x||\neq^{\sim}||y||$ ,

and is called uniformly monotone [8, 9; \S 30], if

1) This terminology is due to H. Nakano [9]. We use mainly notation and terminology
of [9] here.

2) A norm satisfying (N. 1) and (N. 2) is called semi-continuous in [10]. A norm on
$||\cdot||$ satisfying (N. 1) is called monotone in [7]. On the other hand, (N. 1) is assumed for
any norm of normed lattices in [6].

3) This means $x_{1}\geqq x_{2}\geqq\cdots\geqq 0$ and $\infty\bigcap_{\nu=1}x_{\nu}=0$ .
4) $R$ is called

$\sup_{\infty}$
eruniversally continuous, if for any $0\leqq x\lambda,$ $\lambda\in\Lambda\leqq a$ there exists $\{x_{\lambda_{\nu}}]_{\nu=1}^{\infty}$

$\leqq\{x_{\lambda}\}_{\lambda\in A}$ such that
$\bigcup_{\nu=1}xr_{\nu}=\bigcup_{A\lambda\in}x_{\lambda}$

.
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(1.4) for any $\gamma,$
$\epsilon>0$ there exists $\delta>0$ such’ that

$x\cap y=0,$ $||x||\leqq\gamma$ and $||y||\geqq\epsilon$ imply $||x+y||\geqq||x||+\delta$.
When a norm $||$ . I is of $L_{p^{-}}type^{5)}(1\leqq p<+\infty)$ , it is both continuous

and monotone (uniformly monotone), and when $||$ . I is of $L_{\infty}$-type, it is
neither continuous nor monotone. This fact suggests that there may be
some correlation between the continuity and the monotonousness of norms
on $R$ , in spite of the existence $of\backslash $ a continuous norm which is not mono-
tone. .

In $\{\}$ 2 we shall study this relation and show consequently that if a
norm $||$ . I on $R$ is continuous there exists a monotone norm $||\cdot||_{1}$ which
is equivalent to $||\cdot||$ (Theorem 8).

In \S 3 we shall show a sufficient condition for the continuity of the
associated norm of $||$ . I and a necessary and sufficient condition under
which the second conjugate norm $||\overline{\overline{x}}||(\overline{\overline{x}}\in R^{=))})$ is, continuous on $R^{II}=$.

In the earlier paper [10] the author defined a property of a norm
called finitely monotone6) which is stronger than the continuity. In \S 4
we shall prove that a norm $||$ . I on $R$ is finitely monotone, if and only
if there exists an $equIv.alent$ norm $||\cdot||_{1}$ which is at the same time a
lower semi-p-norm for some $ 1\leqq p<+\infty$ (I. a $x\cap y=0$ implies $||x+y||_{1}^{p}$

$\geqq||x||_{1}^{p}+||y||_{1}^{p})$ (Theorem 6). Since a lower semi-p-norm is uniformly
monotone, we see that a norm $||$ . I is finitely monotone if and only if
we may define an equivalent norm $||\cdot||_{1}$ which is uniformly monotone.
At last some notes on finitely monotone norms shall be made.

In the sequel we denote by $\tilde{R}^{1I}$ the norm associated space of $R(i.e$ .
the totality of \’all norm-continuous linear functionals on $R$) and by $\overline{R}||$

the norm conjugate space of $R(i.e$ . the totality of all universally con-
tinuous linear functionals on $R$ which is norm-continuous too)7). The
completeness of $||$ . I on $R$ shall not be assumed, unless otherwise provided.

\S 2. Let $||$ . I be an arbitrary norm on $R$ satisfying (N. 1) and (N. 2)
in the sequel.

Definition 1. An element $a\in R$ is said to be a continuous element

5) A norm is called to be of $L_{\dot{p}}$-type[1], if $||x+y||^{p}=||x||^{p}+||y||^{p}$ for any $x,$ $y\in R$ with
$x\cap y=0$ in the case $ 1\leqq p<+\infty$ , and $||x+y||=\max(|^{I}|x||, ||y||)$ in the case $ p=+\infty$ .

6) For the definition of the finitely monotone norm see \S 4. It was discussed first in [2].

7) $\overline{R}$ denotes the totality of all universally continuous linear functionals on $R$ . When
$||\cdot||$ is complete, $\overline{R}=\overline{R}||$ holds. But $\overline{R}^{||}\subseteqq\overline{R}$ in general.
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(with respect to $||\cdot||$ ), if $|a|\geqq a_{\nu}\downarrow_{\nu=1}^{\infty}0$ implies $\lim_{\nu\rightarrow\infty}||a_{\nu}||=0$ .
It is easily verified that $a\in R$ is a continuous element if and only if

Inf $||[p_{\nu}]a||=0$ for any $[p_{\nu}]\downarrow_{\nu=1}^{\infty}0^{8)}$ (cf. [9; Th. 30.8]). If $a$ is a continu-
$\nu=1,2,\ldots$

ous element and $\alpha|a|\geqq b,$ $b\in R$ , then $b$ is also a continuous element by the
definition. Hence we see that the totality of all continuous elements of
$R$ constitutes a semi-normal manifold9) of $R$ and we denote it by $R_{c}$ . A
norm $||\cdot\{|$ on $R$ is continuous if and only if $R_{c}=R$ . We call $||$ . I to be
almost continuous, if $R_{c}$ is a complete semi-normal manifold of $R$ . Being

stated above, $R$ with a continuous norm is always semi-regular $1$ ) But
this fact remains to be true by replacing the continuity by the almost
continuity, that is, $R$ with an almost continuous norm is semi-regular.

Let $M$ be a linear manifold of $R$ . A linear functional $\overline{a}\in\overline{R}^{I}$ is called
complete on Mif $|\overline{a}|(b)=0,$ $b\in M$ implies $b=0$ . It is shown [9; \S 20] that

for any $0\neq\overline{a}\in\overline{R}^{I^{1}}$ there exists a normal manifold $N$ on which $\overline{a}$ is com-
plete. We denote by $B_{a}(a\in R)$ the semi-normal manifold consisting of
all elements $x\in R$ such that $|x|\leqq\alpha a$ for some real $\alpha$ (depending on $x$).

Now we have

Lemma 1. If $0\leqq a\in R$ is a continuous element with respect to $||\cdot||$ ,

there exists a universally continuous linear functional $\overline{a}\in\overline{B}_{q}||$ which is
complete on $B_{a}$ .

Proof. Since $B_{a}$ is a semi-normal manifold, $B_{a}$ is a normed semi-
ordered linear space with $||$ . I by itself and the norm $||$ . I is continuous
on $B_{a}$ from the definition. Being stated above, $B_{a}$ is semi-regular and

hence there exists the system of elements $\{\overline{a}_{\lambda}\}_{(\lambda\in\Lambda)}(0\leqq\overline{a}_{\lambda}\in\overline{B}_{a}^{||}, \lambda\in\Lambda)$ with
$\bigcup_{\lambda\epsilon A}[\overline{a}_{\lambda}]^{B_{a}}=1^{11)}$ and $||\overline{a}_{\lambda}||=1(\lambda\in\Lambda)$ . Since $B_{a}$ is superuniversally continuous,

we can find a subsequence $\{\overline{a}_{\lambda_{\nu}}\}_{(\nu=1,2,\ldots)}$ of $\{\overline{a}_{\lambda}\}_{(\lambda\in A)}$ with $\bigcup_{\nu=1}^{\infty}[\overline{a}_{\lambda_{\nu}}]^{B_{c\iota}}=1$ . Now,

as $B_{a}||$ is complete (with respect to the norm),

$\overline{a}_{0}=\sum_{\nu=1}^{\infty}\frac{1}{2^{\nu}}\overline{a}_{\lambda_{\nu}}\in\overline{B}_{a}^{|I}$

8) For $p\in R,$ $[p]$ denotes the projector by $p$ . $i.e$ . $[p]x=\bigcup_{n=1}(n|p|\leftrightarrow x)\infty\wedge$ for $x\geqq 0$ .
9) A linear lattice manifold $M\subseteqq R$ is called a semi-normal manifold, if $a\in M,$ $|a|\geqq|b|$

implies $b\in M$. A semi-normal manifold $M$ is called complete, if $\{M^{\perp}\}^{\perp}=\{0\}$ .
10) $R$ is called semi-regular, if $\overline{a}(a)=0$ for all $\overline{a}\in\overline{R}$ implies $a=0$ .
11) $[\overline{a}]^{B_{\iota}}$ is a projector on $B_{a}$ such that $\overline{b}([\overline{a}]^{B_{c\iota}}x)=[\overline{a}]b(x)$ holds for every $\overline{b}\in\overline{B}_{a}$ and

$x\in B_{a}[9$ ; \S 22$]$ .
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and $\overline{a}_{0}$ is complete on $B_{a}$ obviously. , Q. E. D.

Lemma 2. Let $0\leqq a\in R$ be a continuous element. For any $\epsilon>0$ ,
there exists a positive integer $n=n(a, \epsilon)$ such that $a=\sum_{i=1}^{\nu}a_{i},$ $a_{i}\geqq 0$ and
$||a_{i}||\geqq\epsilon(i=1,2, \cdots, \nu)$ imply $\nu\leqq n$ .

Proof. There exists a complete linear functional $0\leqq\overline{a}\in B_{a}||$ on $B_{a}$ with
$\overline{\alpha}(a)=1$ by virtue of Lemma 1. If the conclusion of Lemma 2 is not
true, we can find a sequence of elements of $R^{+}:^{}$ { $a_{\nu,\mu}$ ; $\mu=1,2,$ $\cdots,$ $\kappa_{\nu}$ ;

$\nu=1,2,$ $\cdots$ } with $a=\sum_{\mu=1}^{\kappa_{\nu}}a_{v,\mu},$ $2‘‘\leqq\kappa_{\nu}$ and $||a_{\nu,\mu}||\geqq\epsilon$ for each $ 1\leqq\nu$ and $1\leqq\mu\leqq\kappa_{\nu}$ .
Since $\overline{a}$ is linear, there exists $a_{\nu,\mu_{\nu}}$ with $\overline{a}(a_{\nu,\mu_{\nu}})\leqq 1/2^{\nu}$ for each $ 1\leqq\nu$ . Put-
ting $b_{i}=\bigcup_{\nu\geqq i}a_{\nu,\mu_{\nu}}\leqq a$ we obtain $0\leqq b_{i}\downarrow_{i=1}^{\infty}$ and $b_{0}=\bigcap_{i=1}^{\infty}b_{i}\in B_{a}$ . Since $\overline{a}(b_{i})\leqq 1/2^{i- 1}$

and $\overline{a}\geqq 0$ , we have $\overline{a}(b_{0})=0$ and a fortiori $b_{i}\downarrow_{i=1}^{\infty}b_{0}=0$ , because $\overline{a}$ is complete
on B..

On the other hand, the fact that 1 $ b_{i}||\geqq||a_{i,\mu_{i}}||\geqq\epsilon$ for all $i\geqq 1$ is in-
consistent with the assumption, which establishes the proof. Q. E. D.

Definition 2. $a\in R^{+}$ is called a purely monotone element (with respect
to $||\cdot||$ ), if for any $\epsilon>0$ there exists $\delta=\delta(a, \epsilon)>\prime 0$ such that $a\geqq b\geqq 0$ and
$||b||\geqq\epsilon$ imply $||a-b||\leqq||a||-\delta\backslash \cdot$

Now we obtain
Theorem 1. If $a\in R^{+}$ is a purely monotone element, $a$ is a continu-

ous one.
Proof. If $a\geqq a_{\nu}\downarrow_{\nu=1}^{\infty}0$ and $||a_{\nu}||\geqq\epsilon(\nu=1,2, \cdots)$ , we have for some $\delta>0$

$||a_{1}-a_{\nu}||\leqq||a||-\delta$ $(\nu=1,2, \cdots)$ ,
since $a\in R^{+}$ is a purely monotone element. This contradicts (N. 2) in \S 1.
Therefore $a$ is a continuous element by the definition. Q. E. D.

Theorem 2. For any norm $||\cdot||$ on $R$ , there exists a norm $||\cdot||_{1}$ equi-
valent to $||\cdot||$ such that every continuous element $a$ with respect to $||\cdot||$

is purely monotone one with respect to $||\cdot||_{1}$ .
Proof. We define $||\cdot||_{1}$ by the formula:

$||x||_{1}=||x||+\sup\{\sum_{\nu=1}^{\infty}\frac{||y_{\nu}||}{2^{\nu}}\}$ $(x\in R)$ .

$|x|=\sum_{\nu=1}^{\infty}y_{\nu},$ $y_{\nu}\geqq 0$

From the definition of $||\cdot||_{1}$ , it is clear that $||\cdot||_{1}$ is a norm on $R$

12) $R^{+}$ denotes the set of all positive elements of $R$ .
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satisfying (N. 1), (N. 2) and
$||x||\leqq||x||_{1}\leqq 2||x||$ for every $x\in R$ .

Let $a\in R^{+}$ be a continuous element with respect to $||\cdot||$ . By virtue
of Lemma 2, for any $\epsilon>0$ there exists an integer $n_{0}=n_{0}(a, \epsilon/2)$ such that
$a=\sum_{\nu=1}^{n}a_{\nu},$ $a_{\nu}\in R^{+}$ and $||a_{\nu}||\geqq\epsilon/2(\nu=1,2, \cdots, n)$ imply $n\leqq n_{0}$ . Suppose $0\leqq b$

$\leqq a$ and $||b||\geqq\epsilon$ , then for any $\{b_{\nu}\}_{\nu=1}^{\infty}\subset R^{+}$ with $a-b=\sum_{\nu=1}^{\infty}b_{\nu}$ and $||b_{1}||\geqq||b_{2}||$

$\geqq\cdots$ we have

$||a-b||+\sum_{\nu=1}^{\infty}\frac{||b_{\nu}||}{2^{\nu}}=||a-b||+\sum_{\nu=1}^{n_{0}}\lrcorner\frac{||b_{\nu}||}{2^{\nu}}+\frac{||b_{n}}{2^{n}}b\frac{+1||}{\vdash 1}+\sum_{\nu=n_{0}+2}^{\infty}\frac{||b_{\nu}||}{2^{\nu}}0$

Here we have on account of $||b_{n_{0}+1}||<\epsilon/2$

$\frac{||b_{n}}{2^{n}}0\frac{+1||}{+1}\leqq\frac{\epsilon}{2^{n_{0}+2}}\leqq\frac{||b||}{2^{n_{0}+1}}-\frac{\epsilon}{2^{n_{0}+2}}0$

which implies

$||a-b||+\sum_{\nu=1}^{\infty}\frac{||b_{\nu}||}{2^{\nu}}\leqq||a-b||+\sum_{\nu=1}^{n_{0}}\lrcorner\frac{||b_{\nu}||}{2^{\nu}}+\frac{||b||}{2^{no+1}}+\sum_{\nu=n_{0}+2}^{\infty}\frac{|^{\prime}|b_{v}||}{2^{\nu}}-\frac{\epsilon}{2^{n_{0}+2}}$

$\leqq||a||_{1}-\frac{\epsilon}{2^{n_{0}+2}}$ ,

because of $\sum_{\nu=1}^{n_{0}}b_{\nu}+b+\sum_{\nu=n_{0}+2}^{\infty}b_{\nu}\leqq a$ . Therefore, we obtain

$||a-b||_{1}\leqq||a||_{1}-\frac{\epsilon}{2^{no+2}}$ ,

which shows that $a$ is a purely monotone element. Q. E. D.

Remark 1. The norm $||\cdot||_{1}$ constructed in the above theorem has
the $\cdot following$ property: for any continuous element $a\in R$ and $\epsilon>0$ there
exists $\delta>0$ . such that $a\in R^{\{},$ $||b||_{1}\geqq\epsilon$ implies $||a+b||_{1}\geqq||a||_{1}+\delta$ .

From Theor\‘em 2 we obtain immediately
Corollary 1. If a norm $||$ . I on $R$ is almost continuous, then there

exists a norm $||\cdot||_{1}$ equivalent to } $|$ . I such that the set of all purely mono-
tone elements coincides with a complete semi-normal manifold $R_{c}^{13)}$ .

If each $a\in R^{+}$ is a purely monotone element with respect to a norm
$||\cdot||,$ $||\cdot||$ is monotone. Therefore, we have

Theorem 3. If a norm $||\cdot||$ on $R$ is continuous, there exists a mono-
tone norm $||\cdot||_{1}$ which is equivalent to $||\cdot||^{14)}$ .

13) $R_{c}$ is the same for all equivalent norms.
14) Theoremv 2 and 3 hold to be true for any norm $||\cdot||$ on $R$ satisfying (N. 1) only.
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Remark 2. On the other hand, as an easy example shows, there
exists a monotone norm $||\cdot||$ which has no continuous norm equivalent
to it.

\S 3. In this section we shall give some notes on the continuity of
the norm on $R$ . First we shall show a simple sufficient condition15) for

the continuity of the associated norm on R. $\sim We$ shall consider the
following condition $(\star)$ for norms $||$ . I $0,nR$ :

$(*)$ $||x_{\nu}||\leqq 1,$ $x_{\nu}\in R^{+}$ $(\nu=1,2, \cdots)$ implies
$\varliminf_{n\rightarrow\infty}\frac{||\bigcup_{\nu=1}^{n}x_{\nu}||}{n}=0$ .

Now we have
Theorem 4. Suppose that a norm $||\cdot||$ on $R$ satisfy $(*)$ . Then the

associate norm $||$ . II on $\tilde{R}^{l}$ (or the conjugate norm on $\overline{R}$ )
$||$

is continuous.
Proof. If the associated norm $||$ . I on $\tilde{R}||$ is not continuous, we can

find a positive number $\epsilon>0$ and a sequence of elements $0\leqq\sim x_{\nu}\in\tilde{R}^{I1}(\nu=1$ ,

2, $\cdots$ ) such that $||\tilde{x}_{v}||\geqq 2\epsilon$ and $||\sum_{\nu=1}^{n}\tilde{x}_{\nu}||\leqq 1$ for $n\geqq 1$ . Now we can find also
a sequence of elements $\{x_{\nu}\}_{(\nu\geqq 1)}\subset R^{+}$ such that $\overline{x}_{\nu}(x_{\nu})\geqq\epsilon$ and $||x_{\nu}||\leqq 1$ for

each $\nu\geqq 1$ . Putting $y_{n}=\bigcup_{\nu=1}^{n}x_{\nu}$ , we obtain for any $n\geqq 1$

$||y_{n})|\geqq(\sum_{\nu=1}^{n}\hat{\dot{x}}_{\nu})y_{n}\geqq\sum_{\nu=1}^{n}\sim x_{\nu}(x_{\nu})\geqq n\epsilon$ ,

hence

$\varliminf_{n\rightarrow\infty}\frac{||y_{n}||}{n}=\varliminf_{n\rightarrow\infty}\frac{||\bigcup_{\nu=1}^{n}x_{\nu}||}{n}\geqq\epsilon>0$ .
This contradicts the condition $(*)$ . Q. E. D.

Since there exists a semi-ordered linear space $R$ with a continuous
norm which has, however, the second conjugate space $R^{16)}=||$ whose norm
is continuous no longer, we see that in Theorem 4 we can not exchange
$(*)$ for the continuity of a norm of $R$ without failing to hold the validity.

Here we give a necessary and sufficient condition for the continuity

of the second conjugate norm $||X||(X\in R^{=I|})$ of a norm $||$ . I on $R$ .
15) In [5] T. And\^o gave a necessary condition [5; \S 4 Lemma 4.2].

16) The conjugate spaoe of $\overline{R}||$ is denoted by $\overline{R}-$

)

If $R$ is semi-regular, $R$ can be consider-

ed as a complete semi-normal manifold of $R-|$
)

$[9]$ .
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Theorem 5. In order that the second conjugate norm on $\overline{R}^{||}$ of $||\cdot||$

be continuous, it is necessary and sufficient that the norm $||\cdot||$ on $R$

satisfies the following condition:

(fi) $\sup_{n\geqq 1}||\sum_{\nu=1}^{n}x_{\nu}||<+\infty$ , $x_{\nu}\in R^{+}(\nu=1,2, \cdots)$

implies $\lim_{\nu\rightarrow\infty}||x_{\nu}||=0$ .
Proof. Necessity. Since $R\subseteqq R^{II}=,$ $||x||=||f_{x}||^{17)}=$ $sup|\overline{x}(x)|$ for all

$x\in R$ and $R^{=1\}}$ is monotone complete18) [9], $\sup_{n\geqq}||\sum_{\nu=1}^{n}f_{x_{\nu}}||<\dotplus\overline{x}\in\overline{R}^{I1}||x||\leqq\iota\infty(x_{\nu}\in R)$ implies

$X_{0}=\sum_{\nu=1}^{\infty}f_{x_{\nu}}\in R^{11}=$ . Then $Y_{n}=\sum_{\nu=n}^{\infty}f_{x_{\nu}}\in R^{|1}=,$ $Y_{n}\downarrow_{n=1}^{\infty}0$ , and hence

$\lim_{n\rightarrow\infty}||x_{n}||=\lim_{n\rightarrow\infty}||f_{x_{n}}||=\lim_{n-\infty}||Y_{n}||=0$ ,

on account of the continuity of the second conjugate norm $||X||(X\in\overline{R}^{1t})$ .
Sufficiency. We shall first show that the norm $||$ . I on $R$ is continu-

ous in this case. Indeed, let $R\ni[p_{\nu}]a\downarrow_{\nu=1}^{\infty}0$ . From the assumption $\{[p_{\nu}]a\}_{\nu=1}^{\infty}$

is a Cauchy sequence of $R$ , whence we have $\lim_{\nu\rightarrow\infty}||[p_{\nu}]a||=0$ by virtue of

the semi-continuity of $||\cdot||$ .
Now $if^{-}||X||(X\in R^{||})=$ is not continuous, we may find a sequence of

elements $\{X_{\nu}\}_{\nu=1}^{\infty}$ of $R=$
) $|$

such that $||X_{\nu}||\geqq 1$ and $||\sum_{\nu=1}^{n}X_{\nu}||\leqq\gamma(n, \nu=1,2, \cdots)$

for some $\gamma\geqq 1$ . Since the norm $||$ . I on $R$ is continuous, $R$ is semi-regular,

and hence $R$ is a complete semi-normal manifold of $R^{I|}=$ . Thus there exists
a sequeuce of elements $\{x_{\nu}\}_{\nu=1}^{\infty}$ such that $X_{\nu}\geqq f_{x_{\nu}},$ $||x_{\nu}||\geqq 1/2^{19)}(\nu=1,2, \cdots)$ .
This contradicts $(F)$ , because of

$\sup_{n\geqq}$ I $\sum_{\nu=1}x_{\nu}||=\sup_{n\geqq 1}||\sum_{\nu=1}^{n}f_{x_{\nu}}||\leqq\gamma$.
Corollary 2. In order that a norm $||$ . I on $R$ be monotone eomplete

and continuous, it is necessary and sufficient that $||$ . } is complete2(1) and

satisfies the condition (fl).

\S 4. A norm 1 . $||$ on $R$ is called finitely monotone [10], if it satisfies
the following:

$\overline{17)f_{x}(x\in R)}$denotes an element of $R^{\mathfrak{l}1}=$ for which $f_{x}(\overline{x})=\overline{x}(x)$ holds for each $\overline{x}\in\overline{R}||$

18) $R$ is called monotone complete, if $0\leqq a_{\lambda}\uparrow\lambda\epsilon A$ and $\sup_{\lambda\in A}||a_{\lambda}||<+\infty$
implies $\lambda\epsilon\Lambda Ua\lambda\in R$ .

19) When $R$ is semi-regular. A norm satisfying (N. 1) and (N. 2) is reflexive, $i.e$ .
$||x||=\sup_{||x||\leqq 1}|(\overline{\frac{x}{\alpha}}\epsilon\frac{x)}{P}||[11]$

.

20) If a norm $||\cdot||$ on $R$ is monotone complete, it is complete [10; \S 30]. The converse
of this is not true in general. Cf. Corollary 2 with Theorem 2.1 of [121 in modular spaces.
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(4.1) for any $0<\epsilon\leqq 1$ there exists a natural number $N(\epsilon)$ such that
$||x_{i}||\geqq\epsilon,$ $x_{i}\cap x_{j}=0,$ $i\neq j(i,j=1,2, \cdots,n)$ and $||\sum_{i=1}^{n}x_{i}||\leqq 1$ imply $n\leqq N(\epsilon)$ .

It is clear that every finitely monotone norm is continuous and any
norm $||$ . I which is equivalent to a finitely monotone norm $||$ . I is also
such $a$ one. This topologically invariant property of a finitely monotone
norm is important and may be utilized. Here we shall characterize a
finitely monotone norm by showing the possibility of conversion of it into
the another norm of the more familar and simpler form.

A norm $||$ . I \’on $R$ is called a lower semi-p-norm (uPper semi-p-norm)
if for any $x\cap y=0$ . $x,$ $y\in R$ , $||x+y||^{p}\geqq||x||p+||y||^{p}$ (resp. $||x+y||^{p}\leqq||x||^{p}$

$+||y||^{p})$ holds, where $p$ is a real number with $ 1\leqq p\leqq+\infty$ [1].
Being well known [8], the lower semi-p-norm and the upper semi-

q-norm are of conjugate $type^{21)}$ , where $1/p+1/q=1$ and the former is uni-
formly monotone in the case $ p<+\infty$ , and hence finitely monotone.

At first we shall prove an auxiliary lemma:
Lemma 3. Let $||\cdot||$ be a finitely monotone norm and $p$ be a real

number such that $2^{p}=N(1/2)+1^{22)}$ holds. Suppose also that $\epsilon/2\leqq||x_{\nu}||<\epsilon$

$(\nu=1,2, \cdots, m)$ clnd $x_{\nu}\cap x_{\mu}=0$ for $\nu\neq\mu$ . If $l$ is a natural number such
that $0\leqq m-l2^{p}<2^{p}$ holds, there exist mutually orthogonal elements $y_{\mu}$

$(\mu=1,2, \cdots, l)$ such that $\epsilon\leqq||y_{\mu}||(\mu=1,2, \cdots, l)$ and $\sum_{\mu=1}^{l}y_{\mu}\leqq\sum_{\nu=1}^{n}x_{\nu}$ .
Proof. If $\{x_{\nu_{i}}\}_{i=1}^{2^{p}}$ is arbitrary subsequence of $\{x_{\nu}\}_{\nu=1}^{n}$ , it follows that

$||(1/\epsilon)x_{\nu_{i}}||\geqq 1/2(i=1,2,\cdots, 2^{p})$ and $2^{p}>N(1/2)$ . This implies $||1/\epsilon\sum_{i=1}^{2^{p}}x_{\nu j}||\geqq 1$ ,

whence we have $||\sum_{i=1}.x_{\nu_{\dot{b}}}||\geqq\epsilon 2^{p}$ From this we see that we can find $\{y_{\mu}\}_{\mu=1}^{l}$

which satisfies the above condition.
Now we have
Theorem 6. A norm $||\cdot||$ on $R$ is finitely monotone if and only if

there exists a lower semi-p-norm $||\cdot||_{1}$ equivalent to $||\cdot||$ , where $ 1\leqq p<+\infty$ .
Proof. Since a lower semi-p-norm is finitely monotone and the finite

monotonousness is topological invariant, it suffices to prove the necessity
of the theorem.

Let $||\cdot||$ be finitely monotone and $P$ be a real number satisfying $2^{p}$

$=N\langle 1/2$) $+1$ . We put now
21) That is, if $||\cdot||$ is a lower semi-p-norm (upper semi-q-norm), the conjugate norm is

an upper semi-q-norm (resp. lower semi-p-norm).
22) $N(1/2)$ is a natural number which appears in (4.1) for $\epsilon=1/2$ with respect to the

finitely monotone norm $||\cdot||$ .
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$||x||_{1}=\sup(\sum_{i=1}^{n}||x_{i}||^{p})^{1/p28)}$ $(x\in R)$ .
$x=\bigoplus_{i=1}^{n}x_{i},$ $n=1,2,$ $\cdots$

From this definition it is clear that $||x+y||_{1}^{p}\geqq||x||_{1}^{p}+||y||_{1}^{p}$ holds for each
$x,$ $y\in R$ with $x\cap y=0$ . Furthermore it is also evident that $||x||\leqq||x||_{1}$ and
$||\alpha x||_{1}=|\alpha|||x||_{1}$ ’hold for each $\alpha$ real and $x\in R$ . The sub-additivity of $||\cdot||_{1}$

follows from Minkowski’s inequality and $||\cdot||_{1}$ satisfies (N. 1) and (N. 2),
because $||\cdot||$ does. Therefore, it is sufficient to prove that we can find
$\kappa>0$ for which $||x||_{1}\leqq\kappa||x||$ holds for each $x\in R$ . Let $\{x_{\nu}\}_{\nu=1}^{n}$ be a mutually

orthogonal sequence of positive elements of $R$ such that $||\sum_{\nu=1}^{n}x_{\nu}||=1$ and
$k_{i}$ be the number of $x_{\nu}$ with $1/2^{i}<||x_{\nu}||\leqq 1/2^{i- 1}(i=1,2, \cdots)$ . Then

$n=k_{1}+k_{2}+\cdots+k_{m}$ , $k_{m}\neq 0$

holds for some $m\geqq 1$ . If $n=k_{1},$ $(\sum_{\nu=1}^{n}||x_{\nu}||^{p})^{1/p}\leqq(N(1/2))^{1/p}\leqq 2$ holds. Thus
we shall assume $n\neq k_{1}$ in the argument below.

Now we can find an integer $0\leqq l_{m}$ such that
$0\leqq k_{m}-l_{m}2^{p}<2^{p}$

holds. This implies
$x_{\nu}\in A_{A}\sum,||x_{\nu}||^{p}\leqq k_{m}\frac{1}{2^{(m- 1)p}}\leqq\frac{l_{m}+1}{2^{p(m-2)}}$ ,

where $A_{j}=\{x_{\nu} : x_{\nu}\in\{x_{i}\}_{i=1}^{n},1/2^{j}<||x_{\nu}||\leqq 1/2^{j- 1}\}$ for every $1\leqq j\leqq m$ . We note
here that there exists a sequence of mutually orthogonal elements $\{y_{\mu}\}_{\mu=1}^{\iota_{m}}$

such that $\sum_{\mu=1}^{l_{m}}y_{\mu}\leqq_{x_{\nu}}\sum_{\epsilon A_{m}}x_{\nu}$ and $||y_{\mu}||\geqq 1/2^{m- 1}(\mu=1,2, \cdots,l_{m})$ hold, if $l_{m}\neq 0$

(

in
virtue of Lemma 8.

Next we choose an integer $0\leqq l_{m-1}$ for which
$0\leqq k_{m-1}+l_{m}-l_{m- 1}2^{p}<2^{p}$

holds. Now this yields

$\sum_{x_{\nu}\epsilon A_{m}\cup A_{m-1}}||x_{\nu}||^{p}\leqq\frac{l_{m}+1}{2^{pm- 2)}(}+\sum_{x_{\nu}\in Am-}|\rfloor x_{\nu}||^{p}\leqq\frac{l_{m-1}}{2^{p(m- 3)}}+\frac{1}{2^{pm- 2)}(}+\frac{1}{2^{p(m-3)}}$ ,

and there exists also a mutually orthogonal sequence $\{z_{\mu}\}_{\mu=1}^{\iota_{m-1}}$ such that

$\sum_{\mu=1}^{l_{\prime},,-1}z_{\mu}\leqq\sum_{x_{\nu}\in A_{m}\cup A_{m-1}}x_{\nu}$ and $||z_{\mu}||\geqq\frac{1}{2^{m- 2}}$

hold for all $1\leqq\mu\leqq l_{m- 1}$ . Let $l_{m-?}$ be similarly defined as before and pro-

23) $x=\bigoplus_{i=1}^{n}x_{i}$ means that $x=\sum_{t=1}^{n}x_{i}$ and $x_{i\cap}x_{j}=0$ for $i\neq j$.
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ceeding this process we obtain finally an integer $l_{2}$ such that
$0\leqq k_{2}+l_{3}-l_{2}2^{p}<2^{p}$

and
$\sum_{x_{V}\in A_{m}\cup A_{m-1}\cup\cdots\cup A_{2}}||x_{\nu}||^{p}\leqq l_{2}\vdash\frac{1}{2^{p(m-2)}}+\frac{1}{2^{\iota^{(}m-3)}}+\cdots+1$

holds. Now, in virtue of Lemma 3 there exists also a mutually orthogo-

nal sequence $\{\omega_{\mu}\}_{\mu=1}^{l_{2}}$ such that $\sum_{\mu=1}^{l_{2}}\omega_{\mu}\leqq\sum x_{\nu}x_{\nu}\in A_{m}\cup A_{m-1}U\cdots\cup A_{2}$ and $||\omega_{\mu}||\geqq 1/2$ . There-
fore we obtain

$\sum_{\nu=1}^{n}||x_{\nu}||^{p}=\sum_{mx_{\nu}\epsilon A\cup Am-1\cup\cdots\cup A_{2}}||x_{\nu}||^{p}+\sum_{x_{\nu}\in A_{1}}||x_{\nu}||^{p}$

$\leqq l_{2}+k_{1}+\frac{1}{2^{p(m-2)}}+\frac{1}{2^{p(m- 8)}}+\cdots+1$

$\leqq N(\frac{1}{2})+2$ ,

whence $(\sum_{\nu=1}^{n}||x_{\nu}||^{p})^{1/p}\leqq(N(1/2)+2)^{1/p}\leqq 3$ . This shows
$||x||_{1}=\sup_{x=\bigoplus_{i=1}^{n}x_{i}}( \sum_{l=1,n=1,2}^{n},..|.|x_{l}||^{p})^{1/p}$

$\leqq 3$ for each $x\in R$ with $||x||\leqq 1$ and establishes the theorem. Q. E. D.
Since a uniformly monotone norm $||$ . I is finitely monotone [10], it

follows from above
Corollary 3. If a norm $||$ . I on $R$ is uniformly monotone, we can

define a lower semi-p-norm $||\cdot||_{1}$ which is equivalent to $||\cdot||$ for some $p$

with $ 1\leqq p<+\infty$ .
A norm $||\cdot||$ on $R$ is called finitely flat [10], if

(4.2) for any $\gamma>0$ there exists $\epsilon>0$ such that $||x_{i}||\leqq\epsilon,$ $x_{i}\cap x_{j}=0,$ $i\neq j$

$(i, j=1,2, \cdots, n)$ and $ n\leqq\gamma/\epsilon$ imply $||\sum_{i=1}^{n}x_{i}||\leqq 1$ .
It is known that the finitely monotonousness and the finite flatness

are of conjugate type [10; Th. 1.4, 1.5]. Thus each upper semi-p-norm
$||\cdot||(1<p)$ is finitely flat.

Since the norm satisfying (N. 1), (N. 2) is reflexive $[$ 11 $]^{}$ , we obtain
in virtue of Theorem 6

Theorem 7. Let a norm $||$ . I on $R$ be finitely flat and $R$ be semi-
regular. Then we can define an upper $semi^{\backslash }- p- norm||\cdot||_{1}$ which is equi-
valent to $||\cdot||$ , where $ 1<p\leqq+\infty$ .

Furthermore we have

24) See the footnote 19) for the definition of reflexivity.
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Theorem 8. If a norm $||$ . I on $R$ is both finitely monotone and finitely
flat, we can define an upper semi-p and lower semi-q-norm $||\cdot||_{1}$ which
is equivalent to $||\cdot||$ , where $ 1<p\leqq q<+\infty$ .

Proof. Since the norm $||\cdot||$ is finitely monotone, there exists a lower
semi-q-norm $||\cdot||_{0}$ equivalent to $||\cdot||$ for some $ 1\leqq q<+\infty$ in virtue of

Theorem 6. Then the conjugate norm $||\overline{x}||_{0}(\overline{x}\in\overline{R}^{11})$ of $||\cdot||_{0}$ is an upper
$semi- q^{\prime}- norm(1/q^{\prime}+1/q=1)$ and it is also finitely monotone” beqause $||\cdot||$

is finitely flat too. Now we define

$||\overline{x}||_{1}=\sup_{nx=\bigoplus_{i=1}^{n}\overline{x}_{i},=1,2},\ldots( \sum_{\nu=1,-}^{n}||x_{i}||_{0}^{p^{\prime}})^{p^{-}\prime}1$

$(\overline{x}\in\overline{R}^{11})$ ,

where $p^{\prime}$ is a real number such that $2^{p^{\prime}}=N(1/2)+1^{2\S)}$ . It is clear that
$q^{\prime}\leqq p^{\prime}$ and $||\overline{x}||_{1}$ is a lower $semi- P^{\prime}- norm$ and is equivalent to $||\overline{x}||_{0}(\overline{x}\in\overline{R}^{I_{\mathfrak{l}}})$ ,

as is shown in Theorem 6.
On the other hand, from Minkowski’s inequality it follows that $||\overline{x}||_{1}$

$(\overline{x}\in\overline{R}^{11})$ remains still to be an upper $semi- q^{\prime}- norm$ . Thus, the conjugate

norm $||X||(X^{=}\in R^{1t})$ of $||\overline{x}||_{1}(\overline{x}\in\overline{R}^{||})$ is the upper semi-p and lower semi-q-
norm, where $1/p+1/p^{\prime}=1$ and $ 1<p\leqq q<+\infty$ .

Since $R\subset R^{||}$ and the norm $||x||(x\in R)$ is reflexive, we have obtained
an upper semi-p- and !ower semi-q-norm $||\cdot||_{1}$ which is equivalent

$to.|\{\cdot||QE.D$ .
At last we shall make a note on finitely monotone norms.
Lemma 4. If a norm $||$ . I is finitely monotone, it satisfies the $fol’-$

lowing:

(4.3) for any $1>\epsilon>0$ there exists a natural number $n(\epsilon)$ such that $\epsilon$

$\leqq||x_{i}||,$ $x_{i}\in R^{+}(i=1,2, \cdots, n)$ and $||\sum_{i=1}^{n}x_{i}||\leqq 1$ implies $n\leqq n(\epsilon)$ .
Proof. At first suppose that $\epsilon_{1}$ be a real number with $1/2<\epsilon_{1}<1$ , $\alpha$

be such that $1/2<\alpha<\epsilon_{1}$ and $[p_{i}]=[(x_{i}-\alpha x)^{+}]$ , where $x=\sum_{i=1}^{n}x_{i},$ $x_{i}\geqq 0$ and
$||x_{i}||\geqq\epsilon_{1}(i=1,2, \cdots, n)$ . Now we have $[p_{i}]\neq 0$ for each $i$ with $1\leqq i\leqq n$ ,
because, in the contrary case, we have $x_{i}\leqq\alpha x$ for some $i(1\leqq i\leqq n)$ , and
hence $||x_{i}||\leqq\alpha||x||\leqq\alpha<\epsilon_{1}$ , which is a contradiction. We have also that
$[p_{i}][p_{j}]=0$ for $i\neq j$ holds. Because, $[p_{i}][p_{j}]\neq 0$ implies

$[p_{i}][p_{j}](x_{i}+x_{j})\geqq\alpha[p_{i}][p_{j}]x+\alpha[p_{i}][p_{j}]x\neq>[p_{i}][p_{j}]x$

which is inconsistent with the fact that $ x=\geq^{n}\urcorner x_{i}i=1\lrcorner$ and $x_{i}\geqq 0(i=1,2, \cdots, n)$ .
25) Since $||\overline{x}||_{0}$ (di $\in\overline{R}^{||}$) is finitely monotone, there exists an natural number which satisfies

(4.1) for $\epsilon=1/2$ . We denote it by $N(1/2)$ here.
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Now putting $y_{i}=[p_{i}]x_{i}(1\leqq i\leqq n)$ , we obtain $y_{i}\leftrightarrow y_{j}=0(i\neq j),$ $||y_{i}||=||[p_{i}]x_{\dot{r}}||$

$\geqq||x_{i}||-||(1-[p_{i}])x_{i}||\geqq||x_{i}||-||\alpha x||\geqq\epsilon_{1}-\alpha$ and $||\sum_{i=1}^{n}y_{i}||\leqq||\sum_{i=1}^{n}x_{i}||\leqq 1$ . As $||\cdot||$

is finitely monotone, there exists a natural number $N(\epsilon_{1}-\alpha)$ appeared in
(4.1), for which $n\leqq N(\epsilon_{1}-\alpha)^{26)}$ holds.

For any $0<\epsilon<1$ we choose a natural number $m$ such that $ 0<\epsilon_{1}^{m}<\epsilon$ .
Putting $n(\epsilon)=(N(\epsilon_{1}-\alpha))^{m}$ , we can verify evidently that $n(\epsilon)$ satisfies the
condition (4.3). Q. E. D.

$S{\rm Im}\dot{i}larly$ we have
Lemrna 5. If a norm $||$ . I is finitely flat, it satisfies the following:

(4.4) for any $\gamma>0$ there exists $\epsilon>0$ such that $||a_{i}||\leqq\epsilon,$ $x_{t}\in R^{+}(i=1,2$ ,

n) and $ n\leqq\gamma/\epsilon$ imply $||\bigcup_{i=1}^{n}x_{t}||\leqq 1$ .
As the proof is quite similar, we omit it.
From these lemmas we obtain a following theorem which enables us

to conclude that ” finitely monotone” and ” finitely flat” are of dual type
(cf. [10; Th. 1.4, 1.5]), that is,

Theorem 9. If a norm $||$ . I on $R$ is finitely monotone (finitely flat),

then the associated norm $||^{\wedge}iX||(\hat{x}\in\tilde{R}^{II})$ is finitely flat (resp. finitely mono-
tone)27).

The proof is obtained by showing that (4.3) and (4.4) are of dual
type in the quite same manner as Theorems 1.4 and 1.5 in [10].
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