ON THE CONTINUITY AND THE MONOTONOUS-NESS OF NORMS

By

Tetsuya SHIMOGAKI

§ 1. Let R be a universally continuous semi-ordered linear space¹⁾ (i.e. conditionally complete vector lattice in Birkhoff's sense) and $|| \cdot ||$ be a norm on R satisfying the following conditions throughout this paper:

(N. 1) $|x| \leq |y|$ $(x, y \in R)$ implies $||x|| \leq ||y||$;

(N. 2) $0 \leq x_{\lambda} \uparrow_{\lambda \in A} x \text{ implies } ||x|| = \sup_{\lambda \in A} ||x_{\lambda}||^{2}$.

A norm $\|\cdot\|$ on R is called *continuous*, if

(1.1) $\inf_{\nu=1,2,...} ||x_{\nu}|| = 0 \quad \text{for any } x_{\nu} \downarrow_{\nu=1}^{\infty} 0^{3}.$

The continuity of norms on R plays an important rôle in the theory of semi-ordered linear spaces. In fact, it is well known [8, 9; § 31] that every norm-continuous linear functional f on R is (order-) universally continuous, i.e.

(1.2)
$$\inf_{\lambda \in A} |f(x_{\lambda})| = 0 \quad \text{for any } x_{\lambda} \downarrow_{\lambda \in A} 0,$$

and R becomes superuniversally continuous⁴⁾ as a space in this case.

It is clear that if a norm $||\cdot||$ on R is continuous, the another norm $||\cdot||_1$ which is equivalent to $||\cdot||$ is also continuous. As for the conditions under which norms $||\cdot||$ on R are continuous, there are the detailed investigations by T. Andô [3, 4].

A norm $\|\cdot\|$ on R is called monotone [8], if

(1.3) $|x| \leq |y| \quad (x, y \in R) \qquad implies \quad ||x|| \leq ||y||,$

and is called uniformly monotone $[8, 9; \S 30]$, if

1) This terminology is due to H. Nakano [9]. We use mainly notation and terminology of [9] here.

2) A norm satisfying (N. 1) and (N. 2) is called *semi-continuous* in [10]. A norm on $||\cdot||$ satisfying (N. 1) is called *monotone* in [7]. On the other hand, (N. 1) is assumed for any norm of normed lattices in [6].

3) This means $x_1 \ge x_2 \ge \cdots \ge 0$ and $\bigcap_{\nu=1}^{\infty} x_{\nu} = 0$.

4) R is called superuniversally continuous, if for any $0 \le x_{\lambda, \lambda \in A} \le a$ there exists $\{x_{\lambda_{\nu}}\}_{\nu=1}^{\infty} \le \{x_{\lambda}\}_{\lambda \in A}$ such that $\bigcup_{\nu=1}^{\infty} x_{\lambda_{\nu}} = \bigcup_{\lambda \in A} x_{\lambda}$.

(1.4) for any $\gamma, \varepsilon > 0$ there exists $\delta > 0$ such that

 $x \frown y = 0$, $||x|| \leq \gamma$ and $||y|| \geq \varepsilon$ imply $||x+y|| \geq ||x|| + \delta$.

When a norm $||\cdot||$ is of L_p -type⁵⁾ $(1 \le p < +\infty)$, it is both continuous and monotone (uniformly monotone), and when $||\cdot||$ is of L_{∞} -type, it is neither continuous nor monotone. This fact suggests that there may be some correlation between the continuity and the monotonousness of norms on R, in spite of the existence of a continuous norm which is not monotone.

In §2 we shall study this relation and show consequently that if a norm $||\cdot||$ on R is continuous there exists a monotone norm $||\cdot||_1$ which is equivalent to $||\cdot||$ (Theorem 3).

In §3 we shall show a sufficient condition for the continuity of the associated norm of $||\cdot||$ and a necessary and sufficient condition under which the second conjugate norm $||\bar{x}||$ ($\bar{x} \in \bar{R}''$) is continuous on \bar{R} .

In the earlier paper [10] the author defined a property of a norm called *finitely monotone*⁶⁾ which is stronger than the continuity. In §4 we shall prove that a norm $||\cdot||$ on R is finitely monotone, if and only if there exists an equivalent norm $||\cdot||_1$ which is at the same time a lower semi-*p*-norm for some $1 \leq p < +\infty$ (i.e. $x \sim y=0$ implies $||x+y||_1^p \geq ||x||_1^p + ||y||_1^p$) (Theorem 6). Since a lower semi-*p*-norm is uniformly monotone, we see that a norm $||\cdot||$ is finitely monotone if and only if we may define an equivalent norm $||\cdot||_1$ which is uniformly monotone. At last some notes on finitely monotone norms shall be made.

In the sequel we denote by $\widetilde{R}^{"}$ the norm associated space of R (i.e. the totality of all norm-continuous linear functionals on R) and by $\overline{R}^{"}$ the norm conjugate space of R (i.e. the totality of all universally continuous linear functionals on R which is norm-continuous too)⁷⁾. The completeness of $||\cdot||$ on R shall not be assumed, unless otherwise provided.

§ 2. Let $||\cdot||$ be an arbitrary norm on R satisfying (N. 1) and (N. 2) in the sequel.

Definition 1. An element $a \in R$ is said to be a continuous element

6) For the definition of the finitely monotone norm see §4. It was discussed first in [2].

7) \overline{R} denotes the totality of all universally continuous linear functionals on R. When $||\cdot||$ is complete, $\overline{R}^{"} = \overline{R}$ holds. But $\overline{R}^{"} \subseteq \overline{R}$ in general.

⁵⁾ A norm is called to be of L_p -type [1], if $||x+y||^p = ||x||^p + ||y||^p$ for any $x, y \in \mathbb{R}$ with $x \frown y = 0$ in the case $1 \le p < +\infty$, and $||x+y|| = \max(||x||, ||y||)$ in the case $p = +\infty$.

(with respect to $||\cdot||$), if $|a| \ge a_{\nu} \downarrow_{\nu=1}^{\infty} 0$ implies $\lim ||a_{\nu}|| = 0$.

It is easily verified that $a \in R$ is a continuous element if and only if $\inf_{\substack{\nu=1,2,\dots\\\nu=1,2,\dots}} ||[p_{\nu}]a||=0$ for any $[p_{\nu}]\downarrow_{\nu=1}^{\infty}0^{\otimes}$ (cf. [9; Th. 30.8]). If a is a continuous element and $\alpha|a| \ge b$, $b \in R$, then b is also a continuous element by the definition. Hence we see that the totality of all continuous elements of R constitutes a semi-normal manifold⁹ of R and we denote it by R_c . A norm $||\cdot||$ on R is continuous if and only if $R_c = R$. We call $||\cdot||$ to be *almost continuous*, if R_c is a complete semi-normal manifold of R. Being stated above, R with a continuous norm is always *semi-regular*¹⁰. But this fact remains to be true by replacing the continuity by the almost continuity, that is, R with an almost continuous norm is semi-regular.

Let M be a linear manifold of R. A linear functional $\overline{a} \in \overline{R}^{"}$ is called *complete* on M if $|\overline{a}|(b)=0$, $b \in M$ implies b=0. It is shown [9; § 20] that for any $0 \neq \overline{a} \in \overline{R}^{"}$ there exists a normal manifold N on which \overline{a} is complete. We denote by B_a $(a \in R)$ the semi-normal manifold consisting of all elements $x \in R$ such that $|x| \leq \alpha a$ for some real α (depending on x).

Now we have

Lemma 1. If $0 \leq a \in R$ is a continuous element with respect to $|| \cdot ||$, there exists a universally continuous linear functional $\overline{a} \in \overline{B}_{a}^{"}$ which is complete on B_{a} .

Proof. Since B_a is a semi-normal manifold, B_a is a normed semiordered linear space with $||\cdot||$ by itself and the norm $||\cdot||$ is continuous on B_a from the definition. Being stated above, B_a is semi-regular and hence there exists the system of elements $\{\overline{a}_{\lambda}\}_{(\lambda \in A)}$ $(0 \leq \overline{a}_{\lambda} \in \overline{B}_{a}^{"}, \lambda \in A)$ with $\bigcup_{\lambda \in A} [\overline{a}_{\lambda}]^{B_a} = 1^{11}$ and $||\overline{a}_{\lambda}|| = 1$ ($\lambda \in A$). Since B_a is superuniversally continuous, we can find a subsequence $\{\overline{a}_{\lambda_{\nu}}\}_{(\nu=1,2,...)}$ of $\{\overline{a}_{\lambda}\}_{(\lambda \in A)}$ with $\bigcup_{\nu=1}^{\infty} [\overline{a}_{\lambda_{\nu}}]^{B_a} = 1$. Now, as $\overline{B}_a^{"}$ is complete (with respect to the norm),

$$\overline{a}_{0} = \sum_{\nu=1}^{\infty} \frac{1}{2^{\nu}} \overline{a}_{\lambda_{\nu}} \in \overline{B}_{a}^{"}$$

8) For $p \in R$, [p] denotes the projector by p. i.e. $[p]x = \bigcup_{n=1}^{\infty} (n|p| x)$ for $x \ge 0$.

9) A linear lattice manifold $M \subseteq R$ is called a *semi-normal manifold*, if $a \in M$, $|a| \ge |b|$ implies $b \in M$. A semi-normal manifold M is called complete, if $\{M^+\}^+ = \{0\}$.

10) R is called semi-regular, if $\bar{a}(a)=0$ for all $\bar{a}\in \overline{R}$ implies a=0.

11) $[\bar{a}]^{B_a}$ is a projector on B_a such that $\bar{b}([\bar{a}]^{B_a}x) = [\bar{a}]b(x)$ holds for every $\bar{b} \in \bar{B}_a$ and $x \in B_a$ [9; § 22].

and \overline{a}_0 is complete on B_a obviously.

• Q. E. D.

Lemma 2. Let $0 \leq a \in R$ be a continuous element. For any $\varepsilon > 0$, there exists a positive integer $n = n(a, \varepsilon)$ such that $a = \sum_{i=1}^{r} a_i, a_i \geq 0$ and $||a_i|| \geq \varepsilon$ $(i=1, 2, \dots, \nu)$ imply $\nu \leq n$.

Proof. There exists a complete linear functional $0 \leq \overline{a} \in \overline{B}_a$ on B_a with $\overline{a}(a)=1$ by virtue of Lemma 1. If the conclusion of Lemma 2 is not true, we can find a sequence of elements of $R^+: {}^{12^{\circ}} \{a_{\nu,\mu}; \mu=1, 2, \cdots, \kappa_{\nu}; \nu=1, 2, \cdots \}$ with $a = \sum_{\mu=1}^{\kappa_{\nu}} a_{\nu,\mu}, 2^{\nu} \leq \kappa_{\nu}$ and $||a_{\nu,\mu}|| \geq \varepsilon$ for each $1 \leq \nu$ and $1 \leq \mu \leq \kappa_{\nu}$. Since \overline{a} is linear, there exists $a_{\nu,\mu_{\nu}}$ with $\overline{a}(a_{\nu,\mu_{\nu}}) \leq 1/2^{\nu}$ for each $1 \leq \nu$. Putting $b_i = \bigcup_{\nu \geq i} a_{\nu,\mu_{\nu}} \leq a$ we obtain $0 \leq b_i \downarrow_{i=1}^{\infty}$ and $b_0 = \bigcap_{i=1}^{\infty} b_i \in B_a$. Since $\overline{a}(b_i) \leq 1/2^{i-1}$ and $\overline{a} \geq 0$, we have $\overline{a}(b_0) = 0$ and a fortiori $b_i \downarrow_{i=1}^{\infty} b_0 = 0$, because \overline{a} is complete on B_a .

On the other hand, the fact that $||b_i|| \ge ||a_{i,\mu_i}|| \ge \varepsilon$ for all $i \ge 1$ is inconsistent with the assumption, which establishes the proof. Q. E. D.

Definition 2. $a \in R^+$ is called a *purely monotone element* (with respect to $||\cdot||$), if for any $\varepsilon > 0$ there exists $\delta = \delta(a, \varepsilon) > 0$ such that $a \ge b \ge 0$ and $||b|| \ge \varepsilon$ imply $||a-b|| \le ||a|| - \delta$.

Now we obtain

Theorem 1. If $a \in R^+$ is a purely monotone element, a is a continuous one.

Proof. If $a \ge a_{\nu} \downarrow_{\nu=1}^{\infty} 0$ and $||a_{\nu}|| \ge \varepsilon$ ($\nu = 1, 2, \cdots$), we have for some $\delta > 0$ $||a_1 - a_{\nu}|| \le ||a|| - \delta$ ($\nu = 1, 2, \cdots$),

since $a \in R^+$ is a purely monotone element. This contradicts (N. 2) in § 1. Therefore a is a continuous element by the definition. Q. E. D.

Theorem 2. For any norm $||\cdot||$ on R, there exists a norm $||\cdot||_1$ equivalent to $||\cdot||$ such that every continuous element a with respect to $||\cdot||$ is purely monotone one with respect to $||\cdot||_1$.

Proof. We define $|| \cdot ||_1$ by the formula:

$$||x||_{1} = ||x|| + \sup \left\{ \sum_{\nu=1}^{\infty} \frac{||y_{\nu}||}{2^{\nu}} \right\} \quad (x \in R).$$
$$|x| = \sum_{\nu=1}^{\infty} y_{\nu}, \ y_{\nu} \ge 0$$

From the definition of $||\cdot||_1$, it is clear that $||\cdot||_1$ is a norm on R 12) R^+ denotes the set of all positive elements of R. satisfying (N. 1), (N. 2) and

 $||x|| \leq ||x||_1 \leq 2||x||$ for every $x \in R$.

Let $a \in R^+$ be a continuous element with respect to $||\cdot||$. By virtue of Lemma 2, for any $\varepsilon > 0$ there exists an integer $n_0 = n_0(a, \varepsilon/2)$ such that $a = \sum_{\nu=1}^n a_{\nu}, a_{\nu} \in R^+$ and $||a_{\nu}|| \ge \varepsilon/2$ ($\nu = 1, 2, \dots, n$) imply $n \le n_0$. Suppose $0 \le b$ $\le a$ and $||b|| \ge \varepsilon$, then for any $\{b_{\nu}\}_{\nu=1}^{\infty} \subset R^+$ with $a - b = \sum_{\nu=1}^{\infty} b_{\nu}$ and $||b_1|| \ge ||b_2||$ $\ge \cdots$ we have

$$||a-b|| + \sum_{\nu=1}^{\infty} \frac{||b_{\nu}||}{2^{\nu}} = ||a-b|| + \sum_{\nu=1}^{m_0} \frac{||b_{\nu}||}{2^{\nu}} + \frac{||b_{n_0+1}||}{2^{n_0+1}} + \sum_{\nu=n_0+2}^{\infty} \frac{||b_{\nu}||}{2^{\nu}}.$$

Here we have on account of $||b_{n_0+1}|| < \varepsilon/2$

$$\frac{||b_{n_{\mathfrak{o}}+1}||}{2^{n_{\mathfrak{o}}+1}} \leq \frac{\varepsilon}{2^{n_{\mathfrak{o}}+2}} \leq \frac{||b||}{2^{n_{\mathfrak{o}}+1}} - \frac{\varepsilon}{2^{n_{\mathfrak{o}}+2}}$$

which implies

$$\begin{aligned} ||a-b|| + \sum_{\nu=1}^{\infty} \frac{||b_{\nu}||}{2^{\nu}} \leq ||a-b|| + \sum_{\nu=1}^{n_0} \frac{||b_{\nu}||}{2^{\nu}} + \frac{||b||}{2^{n_0+1}} + \sum_{\nu=n_0+2}^{\infty} \frac{||b_{\nu}||}{2^{\nu}} - \frac{\varepsilon}{2^{n_0+2}} \\ \leq ||a||_1 - \frac{\varepsilon}{2^{n_0+2}}, \end{aligned}$$

because of $\sum_{\nu=1}^{n_0} b_{\nu} + b + \sum_{\nu=n_0+2}^{\infty} b_{\nu} \leq a$. Therefore, we obtain

$$||a-b||_1 \leq ||a||_1 - \frac{\varepsilon}{2^{n_0+2}}$$

which shows that a is a purely monotone element.

Remark 1. The norm $||\cdot||_1$ constructed in the above theorem has the following property: for any continuous element $a \in R$ and $\varepsilon > 0$ there exists $\delta > 0$ such that $a \in R^+$, $||b||_1 \ge \varepsilon$ implies $||a+b||_1 \ge ||a||_1 + \delta$.

From Theorem 2 we obtain immediately

Corollary 1. If a norm $||\cdot||$ on R is almost continuous, then there exists a norm $||\cdot||_1$ equivalent to $||\cdot||$ such that the set of all purely monotone elements coincides with a complete semi-normal manifold R_c^{13} .

If each $a \in R^+$ is a purely monotone element with respect to a norm $||\cdot||$, $||\cdot||$ is monotone. Therefore, we have

Theorem 3. If a norm $||\cdot||$ on R is continuous, there exists a monotone norm $||\cdot||_1$ which is equivalent to $||\cdot||^{14}$.

Q. E. D.

¹³⁾ R_c is the same for all equivalent norms.

¹⁴⁾ Theorems 2 and 3 hold to be true for any norm $||\cdot||$ on R satisfying (N. 1) only.

T. Shimogaki

Remark 2. On the other hand, as an easy example shows, there exists a monotone norm $||\cdot||$ which has no continuous norm equivalent to it.

§ 3. In this section we shall give some notes on the continuity of the norm on R. First we shall show a simple sufficient condition¹⁵⁾ for the continuity of the associated norm on \widetilde{R} . We shall consider the following condition (*) for norms $||\cdot||$ on R:

(*)
$$||x_{\nu}|| \leq 1, x_{\nu} \in R^+$$
 $(\nu=1, 2, \cdots)$ implies $\lim_{\overline{n\to\infty}} \frac{||\bigcup_{\nu=1} x_{\nu}||}{n} = 0.$

Now we have ...

Theorem 4. Suppose that a norm $||\cdot||$ on R satisfy (*). Then the associate norm $||\cdot||$ on \widetilde{R}' (or the conjugate norm on \overline{R}') is continuous.

Proof. If the associated norm $||\cdot||$ on $\widetilde{R}^{"}$ is not continuous, we can find a positive number $\varepsilon > 0$ and a sequence of elements $0 \leq \widetilde{x}_{\nu} \in \widetilde{R}^{"}$ ($\nu = 1$, $2, \cdots$) such that $||\widetilde{x}_{\nu}|| \geq 2\varepsilon$ and $||\sum_{\nu=1}^{n} \widetilde{x}_{\nu}|| \leq 1$ for $n \geq 1$. Now we can find also a sequence of elements $\{x_{\nu}\}_{(\nu \geq 1)} \subset R^{+}$ such that $\widetilde{x}_{\nu}(x_{\nu}) \geq \varepsilon$ and $||x_{\nu}|| \leq 1$ for each $\nu \geq 1$. Putting $y_{n} = \bigcup_{\nu=1}^{n} x_{\nu}$, we obtain for any $n \geq 1$

$$||y_n|| \ge (\sum_{
u=1}^n \widetilde{x}_
u) y_n \ge \sum_{
u=1}^n \widetilde{x}_
u(x_
u) \ge n\varepsilon,$$

hence

$$\lim_{n\to\infty}\frac{||y_n||}{n} = \lim_{n\to\infty}\frac{||\bigcup_{\nu=1}^n x_\nu||}{n} \ge \varepsilon > 0.$$

This contradicts the condition (*).

Q. E. D.

Since there exists a semi-ordered linear space R with a continuous norm which has, however, the second conjugate space $\overline{\overline{R}}^{"_{16}}$ whose norm is continuous no longer, we see that in Theorem 4 we can not exchange (*) for the continuity of a norm of R without failing to hold the validity.

Here we give a necessary and sufficient condition for the continuity of the second conjugate norm ||X|| $(X \in \overline{R}^{"})$ of a norm $|| \cdot ||$ on R.

15) In [5] T. Andô gave a necessary condition [5; §4 Lemma 4.2].

16) The conjugate space of $\overline{R}^{"}$ is denoted by $\overline{\overline{R}}^{"}$. If R is semi-regular, R can be considered as a complete semi-normal manifold of $\overline{R}^{"}$ [9].

230

Theorem 5. In order that the second conjugate norm on $\overline{R}^{"}$ of $||\cdot||$ be continuous, it is necessary and sufficient that the norm $||\cdot||$ on R satisfies the following condition:

$$(\ddagger) \qquad \qquad \sup_{n \ge 1} ||\sum_{\nu=1}^n x_{\nu}|| < +\infty, \qquad x_{\nu} \in R^+ \ (\nu = 1, 2, \cdots)$$

implies $\lim_{\nu\to\infty} ||x_{\nu}|| = 0.$

Proof. Necessity. Since $R \subseteq \overline{\bar{R}}^{"}$, $||x|| = ||f_x||^{17} = \sup_{\overline{x} \in \overline{\bar{R}}^{"}, ||\overline{x}|| \leq 1} |\overline{x}(x)|$ for all $x \in R$ and $\overline{\bar{R}}^{"}$ is monotone complete¹⁸⁾ [9], $\sup_{n \geq 1} ||\sum_{\nu=1}^{n} f_{x_{\nu}}|| < +\infty$ $(x_{\nu} \in R)$ implies $X_0 = \sum_{\nu=1}^{\infty} f_{x_{\nu}} \in \overline{\bar{R}}^{"}$. Then $Y_n = \sum_{\nu=n}^{\infty} f_{x_{\nu}} \in \overline{\bar{R}}^{"}$, $Y_n \downarrow_{n=1}^{\infty} 0$, and hence

$$\lim_{n\to\infty}||x_n||=\lim_{n\to\infty}||f_{x_n}||=\lim_{n\to\infty}||Y_n||=0,$$

on account of the continuity of the second conjugate norm ||X|| $(X \in \overline{R}^n)$.

Sufficiency. We shall first show that the norm $||\cdot||$ on R is continuous in this case. Indeed, let $R \ni [p_{\nu}]a \downarrow_{\nu=1}^{\infty} 0$. From the assumption $\{[p_{\nu}]a\}_{\nu=1}^{\infty}$ is a Cauchy sequence of R, whence we have $\lim_{\nu \to \infty} ||[p_{\nu}]a|| = 0$ by virtue of the semi-continuity of $||\cdot||$.

Now if $||X|| (X \in \overline{R}^n)$ is not continuous, we may find a sequence of elements $\{X_{\nu}\}_{\nu=1}^{\infty}$ of \overline{R}^n such that $||X_{\nu}|| \ge 1$ and $||\sum_{\nu=1}^{n} X_{\nu}|| \le \gamma$ $(n, \nu=1, 2, \cdots)$ for some $\gamma \ge 1$. Since the norm $||\cdot||$ on R is continuous, R is semi-regular, and hence R is a complete semi-normal manifold of \overline{R}^n . Thus there exists a sequence of elements $\{x_{\nu}\}_{\nu=1}^{\infty}$ such that $X_{\nu} \ge f_{x_{\nu}}$, $||x_{\nu}|| \ge 1/2^{19}$ $(\nu=1, 2, \cdots)$. This contradicts (\sharp), because of $\sup_{n\ge 1} ||\sum_{\nu=1}^{n} x_{\nu}|| = \sup_{n\ge 1} ||\sum_{\nu=1}^{n} f_{x_{\nu}}|| \le \gamma$.

Corollary 2. In order that a norm $||\cdot||$ on R be monotone complete and continuous, it is necessary and sufficient that $||\cdot||$ is complete²⁰ and satisfies the condition (\ddagger).

§ 4. A norm $||\cdot||$ on R is called *finitely monotone* [10], if it satisfies the following:

17) $f_x \ (x \in R)$ denotes an element of $\overline{\overline{R}}^{"}$ for which $f_x(\overline{x}) = \overline{x}(x)$ holds for each $\overline{x} \in \overline{R}^{"}$.

18) R is called monotone complete, if $0 \leq a_{\lambda} \uparrow_{\lambda \in \Lambda}$ and $\sup_{\lambda \in \Lambda} ||a_{\lambda}|| < +\infty$ implies $\bigcup_{\lambda \in \Lambda} a_{\lambda} \in R$.

19) When R is semi-regular. A norm satisfying (N. 1) and (N. 2) is reflexive, i.e. $||x|| = \sup |\overline{x}(x)|$ [11].

 $\|x\| \le 1, \overline{x} \in \overline{R}^{"}$ 20) If a norm $||\cdot||$ on R is monotone complete, it is complete [10; § 30]. The converse of this is not true in general. Cf. Corollary 2 with Theorem 2.1 of [12] in modular spaces.

T. Shimogaki

(4.1) for any $0 < \varepsilon \le 1$ there exists a natural number $N(\varepsilon)$ such that $||x_i|| \ge \varepsilon, x_i \frown x_j = 0, i \ne j (i, j = 1, 2, \cdots, n)$ and $||\sum_{i=1}^n x_i|| \le 1$ imply $n \le N(\varepsilon)$.

It is clear that every finitely monotone norm is continuous and any norm $||\cdot||$ which is equivalent to a finitely monotone norm $||\cdot||$ is also such a one. This topologically invariant property of a finitely monotone norm is important and may be utilized. Here we shall characterize a finitely monotone norm by showing the possibility of conversion of it into the another norm of the more familar and simpler form.

A norm $||\cdot||$ on R is called a *lower semi-p-norm* (upper semi-p-norm) if for any $x \frown y = 0$. $x, y \in R$, $||x+y||^p \ge ||x||^p + ||y||^p$ (resp. $||x+y||^p \le ||x||^p + ||y||^p$) holds, where p is a real number with $1 \le p \le +\infty$ [1].

Being well known [8], the lower semi-*p*-norm and the upper semiq-norm are of conjugate type²¹⁾, where 1/p+1/q=1 and the former is uniformly monotone in the case $p < +\infty$, and hence finitely monotone.

At first we shall prove an auxiliary lemma:

Lemma 3. Let $||\cdot||$ be a finitely monotone norm and p be a real number such that $2^p = N(1/2) + 1^{22}$ holds. Suppose also that $\varepsilon/2 \leq ||x_\nu|| < \varepsilon$ $(\nu = 1, 2, \dots, m)$ and $x_\nu \frown x_\mu = 0$ for $\nu \neq \mu$. If l is a natural number such that $0 \leq m - l2^p < 2^p$ holds, there exist mutually orthogonal elements y_μ $(\mu = 1, 2, \dots, l)$ such that $\varepsilon \leq ||y_\mu|| \ (\mu = 1, 2, \dots, l)$ and $\sum_{\mu=1}^{l} y_\mu \leq \sum_{\nu=1}^{n} x_\nu$.

Proof. If $\{x_{\nu_i}\}_{i=1}^{2^p}$ is arbitrary subsequence of $\{x_{\nu}\}_{\nu=1}^n$, it follows that $||(1/\varepsilon)x_{\nu_i}|| \ge 1/2$ $(i=1,2,\cdots,2^p)$ and $2^p > N(1/2)$. This implies $||1/\varepsilon \sum_{i=1}^{2^p} x_{\nu_i}|| \ge 1$, whence we have $||\sum_{i=1}^{2^p} x_{\nu_i}|| \ge \varepsilon$. From this we see that we can find $\{y_{\mu}\}_{\mu=1}^{\ell}$ which satisfies the above condition.

Now we have

Theorem 6. A norm $||\cdot||$ on R is finitely monotone if and only if there exists a lower semi-p-norm $||\cdot||_1$ equivalent to $||\cdot||$, where $1 \leq p < +\infty$.

Proof. Since a lower semi-p-norm is finitely monotone and the finite monotonousness is topological invariant, it suffices to prove the necessity of the theorem.

Let $||\cdot||$ be finitely monotone and p be a real number satisfying $2^p = N(1/2) + 1$. We put now

232

²¹⁾ That is, if $||\cdot||$ is a lower semi-p-norm (upper semi-q-norm), the conjugate norm is an upper semi-q-norm (resp. lower semi-p-norm).

²²⁾ N(1/2) is a natural number which appears in (4.1) for $\varepsilon = 1/2$ with respect to the finitely monotone norm $||\cdot||$.

On the Continuity and the Monotonousness of Norms

$$||x||_{1} = \sup \left(\sum_{i=1}^{n} ||x_{i}||^{p}\right)^{1/p^{23}} \quad (x \in R).$$
$$x = \bigoplus_{i=1}^{n} x_{i}, \ n = 1, 2, \cdots$$

From this definition it is clear that $||x+y||_1^p \ge ||x||_1^p + ||y||_1^p$ holds for each $x, y \in R$ with $x \frown y = 0$. Furthermore it is also evident that $||x|| \le ||x||_1$ and $||\alpha x||_1 = |\alpha| ||x||_1$ 'hold for each α real and $x \in R$. The sub-additivity of $||\cdot||_1$ follows from Minkowski's inequality and $||\cdot||_1$ satisfies (N. 1) and (N. 2), because $||\cdot||$ does. Therefore, it is sufficient to prove that we can find $\kappa > 0$ for which $||x||_1 \le \kappa ||x||$ holds for each $x \in R$. Let $\{x_{\nu}\}_{\nu=1}^n$ be a mutually orthogonal sequence of positive elements of R such that $||\sum_{\nu=1}^n x_{\nu}||=1$ and k_i be the number of x_{ν} with $1/2^i < ||x_{\nu}|| \le 1/2^{i-1}$ $(i=1, 2, \cdots)$. Then

$$n=k_1+k_2+\cdots+k_m$$
, $k_m\neq 0$

holds for some $m \ge 1$. If $n = k_1$, $(\sum_{\nu=1}^n ||x_\nu||^p)^{1/p} \le (N(1/2))^{1/p} \le 2$ holds. Thus we shall assume $n \ne k_1$ in the argument below.

Now we can find an integer $0 \leq l_m$ such that

$$0\!\leq\!k_m\!-\!l_m2^p\!<\!2^p$$

holds. This implies

$$\sum_{x_{\nu} \in A_{\mathcal{M}}} ||x_{\nu}||^{p} \leq k_{m} \frac{1}{2^{(m-1)p}} \leq \frac{l_{m}+1}{2^{p(m-2)}},$$

where $A_j = \{x_{\nu} : x_{\nu} \in \{x_i\}_{i=1}^n, 1/2^j < ||x_{\nu}|| \leq 1/2^{j-1}\}$ for every $1 \leq j \leq m$. We note here that there exists a sequence of mutually orthogonal elements $\{y_{\mu}\}_{\mu=1}^{l_m}$ such that $\sum_{\mu=1}^{l_m} y_{\mu} \leq \sum_{x_{\nu} \in A_m} x_{\nu}$ and $||y_{\mu}|| \geq 1/2^{m-1}$ $(\mu = 1, 2, \dots, l_m)$ hold, if $l_m \neq 0$, in virtue of Lemma 3.

Next we choose an integer $0 \leq l_{m-1}$ for which

$$0 \leq k_{m-1} + l_m - l_{m-1} 2^p < 2^p$$

holds. Now this yields

$$\sum_{{}_{\boldsymbol{\nu}} \in A_m \cup A_{m-1}} ||x_{\boldsymbol{\nu}}||^p \leq \frac{l_m + 1}{2^{p(m-2)}} + \sum_{x_{\boldsymbol{\nu}} \in A_{m-1}} ||x_{\boldsymbol{\nu}}||^p \leq \frac{l_{m-1}}{2^{p(m-3)}} + \frac{1}{2^{p(m-2)}} + \frac{1}{2^{p(m-3)}},$$

and there exists also a mutually orthogonal sequence $\{z_{\mu}\}_{\mu=1}^{l_{m-1}}$ such that

$$\sum_{\mu=1}^{m-1} z_{\mu} {\leq} \sum_{x_{
u} \in A_m \cup A_{m-1}} x_{
u} \quad ext{and} \quad ||z_{\mu}|| {\geq} rac{1}{2^{m-2}}$$

hold for all $1 \leq \mu \leq l_{m-1}$. Let l_{m-2} be similarly defined as before and pro-23) $x = \bigoplus_{i=1}^{n} x_i$ means that $x = \sum_{i=1}^{n} x_i$ and $x_i \frown x_j = 0$ for $i \neq j$.

T. Shimogaki

ceeding this process we obtain finally an integer l_2 such that $0{\le}k_2{+}l_3{-}l_22^p{<}2^p$

and

$$\sum_{x_{\nu} \in A_m \cup A_{m-1} \cup \cdots \cup A_2} ||x_{\nu}||^p \leq l_2 + \frac{1}{2^{p(m-2)}} + \frac{1}{2^{p(m-3)}} + \cdots + 1$$

holds. Now, in virtue of Lemma 3 there exists also a mutually orthogonal sequence $\{\omega_{\mu}\}_{\mu=1}^{l_2}$ such that $\sum_{\mu=1}^{l_2} \omega_{\mu} \leq \sum_{x_{\nu} \in A_m \cup A_{m-1} \cup \cdots \cup A_2} x_{\nu}$ and $||\omega_{\mu}|| \geq 1/2$. Therefore we obtain

$$\sum_{
u=1}^{n} ||x_{
u}||^{p} = \sum_{x_{
u} \in A_{m} \cup A_{m-1} \cup \cdots \cup A_{2}} ||x_{
u}||^{p} + \sum_{x_{
u} \in A_{1}} ||x_{
u}||^{p} \ {} \leq l_{2} + k_{1} + rac{1}{2^{p(m-2)}} + rac{1}{2^{p(m-3)}} + \cdots + 1 \ {} \leq N \Big(rac{1}{2}\Big) + 2,$$

whence $(\sum_{\nu=1}^{n} ||x_{\nu}||^{p})^{1/p} \leq (N(1/2)+2)^{1/p} \leq 3$. This shows $||x||_{1} = \sup_{\substack{n \\ x=\bigoplus \\ i=1}^{n}} (\sum_{\substack{i=1 \\ n=1,2,\cdots}}^{n} ||x_{i}||^{p})^{1/p}$

 ≤ 3 for each $x \in R$ with $||x|| \leq 1$ and establishes the theorem. Q. E. D. Since a uniformly monotone norm $|| \cdot ||$ is finitely monotone [10], it follows from above

Corollary 3. If a norm $||\cdot||$ on R is uniformly monotone, we can define a lower semi-p-norm $||\cdot||_1$ which is equivalent to $||\cdot||$ for some p with $1 \leq p < +\infty$.

A norm $||\cdot||$ on R is called *finitely flat* [10], if (4.2) for any $\gamma > 0$ there exists $\varepsilon > 0$ such that $||x_i|| \leq \varepsilon$, $x_i \frown x_j = 0$, $i \neq j$ $(i, j = 1, 2, \cdots, n)$ and $n \leq \gamma/\varepsilon$ imply $||\sum_{i=1}^n x_i|| \leq 1$.

It is known that the finitely monotonousness and the finite flatness are of conjugate type [10; Th. 1.4, 1.5]. Thus each upper semi-*p*-norm $||\cdot||$ (1 < *p*) is finitely flat.

Since the norm satisfying (N. 1), (N. 2) is reflexive $[11]^{24}$, we obtain in virtue of Theorem 6

Theorem 7. Let a norm $||\cdot||$ on R be finitely flat and R be semiregular. Then we can define an upper semi-p-norm $||\cdot||_1$ which is equivalent to $||\cdot||$, where 1 .

Furthermore we have

24) See the footnote 19) for the definition of *reflexivity*.

234

Theorem 8. If a norm $||\cdot||$ on R is both finitely monotone and finitely flat, we can define an upper semi-p and lower semi-q-norm $||\cdot||_1$ which is equivalent to $||\cdot||$, where 1 .

Proof. Since the norm $||\cdot||$ is finitely monotone, there exists a lower semi-q-norm $||\cdot||_0$ equivalent to $||\cdot||$ for some $1 \leq q < +\infty$ in virtue of Theorem 6. Then the conjugate norm $||\overline{x}||_0$ ($\overline{x} \in \overline{R}^{"}$) of $||\cdot||_0$ is an upper semi-q'-norm (1/q'+1/q=1) and it is also finitely monotone, because $||\cdot||$ is finitely flat too. Now we define

$$||\overline{x}||_1 = \sup_{\overline{x} = \bigoplus_{j=1}^{n} \overline{x}_i, n=1,2,\dots} (\sum_{\nu=1}^{n} ||x_i||_0^{p'})^{\overline{p'}} \quad (\overline{x} \in \overline{R}^{"}),$$

where p' is a real number such that $2^{p'} = N(1/2) + 1^{25}$. It is clear that $q' \leq p'$ and $||\bar{x}||_1$ is a lower semi-p'-norm and is equivalent to $||\bar{x}||_0$ ($\bar{x} \in \overline{R}''$), as is shown in Theorem 6.

On the other hand, from Minkowski's inequality it follows that $||\bar{x}||_1$ $(\bar{x} \in \bar{R}^{"})$ remains still to be an upper semi-q'-norm. Thus, the conjugate norm ||X|| $(X \in \bar{R}^{"})$ of $||\bar{x}||_1$ $(\bar{x} \in \bar{R}^{"})$ is the upper semi-p and lower semi-qnorm, where 1/p+1/p'=1 and 1 .

Since $R \subset \overline{R}^{"}$ and the norm $||x|| \ (x \in R)$ is reflexive, we have obtained an upper semi-*p*- and lower semi-*q*-norm $||\cdot||_1$ which is equivalent to $||\cdot||$. Q. E. D.

At last we shall make a note on finitely monotone norms.

Lemma 4. If a norm $||\cdot||$ is finitely monotone, it satisfies the following:

(4.3) for any $1 > \varepsilon > 0$ there exists a natural number $n(\varepsilon)$ such that $\varepsilon \leq ||x_i||, x_i \in \mathbb{R}^+$ $(i=1, 2, \dots, n)$ and $||\sum_{i=1}^n x_i|| \leq 1$ implies $n \leq n(\varepsilon)$.

Proof. At first suppose that ε_1 be a real number with $1/2 < \varepsilon_1 < 1$, α be such that $1/2 < \alpha < \varepsilon_1$ and $[p_i] = [(x_i - \alpha x)^+]$, where $x = \sum_{i=1}^n x_i, x_i \ge 0$ and $||x_i|| \ge \varepsilon_1$ $(i=1,2,\cdots,n)$. Now we have $[p_i] \ne 0$ for each i with $1 \le i \le n$, because, in the contrary case, we have $x_i \le \alpha x$ for some i $(1 \le i \le n)$, and hence $||x_i|| \le \alpha ||x|| \le \alpha < \varepsilon_1$, which is a contradiction. We have also that $[p_i][p_j]=0$ for $i \ne j$ holds. Because, $[p_i][p_j] \ne 0$ implies

$$[p_i][p_j](x_i+x_j) \ge \alpha [p_i][p_j]x + \alpha [p_i][p_j]x \ge [p_i][p_j]x$$

which is inconsistent with the fact that $x = \sum_{i=1}^{n} x_i$ and $x_i \ge 0$ $(i=1, 2, \dots, n)$.

²⁵⁾ Since $||\bar{x}||_0$ ($\bar{x} \in \overline{R}^{"}$) is finitely monotone, there exists an natural number which satisfies (4.1) for $\varepsilon = 1/2$. We denote it by N(1/2) here.

Now putting $y_i = [p_i]x_i$ $(1 \le i \le n)$, we obtain $y_i \frown y_j = 0$ $(i \ne j)$, $||y_i|| = ||[p_i]x_i|| \ge ||x_i|| - ||\alpha x|| \ge \varepsilon_1 - \alpha$ and $||\sum_{i=1}^n y_i|| \le ||\sum_{i=1}^n x_i|| \le 1$. As $||\cdot||$ is finitely monotone, there exists a natural number $N(\varepsilon_1 - \alpha)$ appeared in (4.1), for which $n \le N(\varepsilon_1 - \alpha)^{26}$ holds.

For any $0 < \varepsilon < 1$ we choose a natural number m such that $0 < \varepsilon_1^m < \varepsilon$. Putting $n(\varepsilon) = (N(\varepsilon_1 - \alpha))^m$, we can verify evidently that $n(\varepsilon)$ satisfies the condition (4.3). Q. E. D.

Similarly we have

Lemma 5. If a norm $||\cdot||$ is finitely flat, it satisfies the following: (4.4) for any $\gamma > 0$ there exists $\varepsilon > 0$ such that $||a_i|| \le \varepsilon$, $x_i \in R^+$ $(i=1, 2, \dots, n)$ and $n \le \gamma/\varepsilon$ imply $||\bigcup_{i=1}^n x_i|| \le 1$.

As the proof is quite similar, we omit it.

From these lemmas we obtain a following theorem which enables us to conclude that "finitely monotone" and "finitely flat" are of dual type (cf. [10; Th. 1.4, 1.5]), that is,

Theorem 9. If a norm $||\cdot||$ on R is finitely monotone (finitely flat), then the associated norm $||\tilde{x}|| (\tilde{x} \in \tilde{R}^{"})$ is finitely flat (resp. finitely monotone)²⁷⁾.

The proof is obtained by showing that (4.3) and (4.4) are of dual type in the quite same manner as Theorems 1.4 and 1.5 in [10].

References

- [1] I. AMEMIYA: On semi-p-modulars, Functional Analysis, Vol. 2, No. 4 (1951), pp. 101 -111 (in Japanese).
- [2] I. AMEMIYA: A generalization of the theorem of Orlicz and Birnbaum, Jour. Fac. Sci. Hokkaido Univ. 12, No. 2 (1956), pp. 60-64.
- [3] T. ANDÔ: On the continuity of norms, Proc. Japan Acad. 33, No. 8 (1957), pp. 429-434.
- [4] T. ANDÔ: On the continuity of the norms by a modular. Monograph Series of Inst. App. Electricity. Hokkaidô Univ. No. 7 (1959), pp. 31-44.
- [5] T. ANDÔ: Convexity and evenness in modulared semi-ordered linear spaces, Jour. Fac. Sci. Hokkaido Univ. 14, No. 2 (1959), pp. 59-95.
- [6] M. M. DAY: Normed linear spaces. Erg. Math. 21, Berlin, 1958.
- [7] L.V. KANTROVIČ, B.Z. VULICH and A.G. PINSKER: Functional analysis in partially ordered spaces, Moscow-Leningrad, 1950 (in Russian).
- [8] H. NAKANO: Stetige lineare Funktionale auf dem teilweise-geordneten Modul, Jour. Fac. Sci. Imp. Univ. Tokyo, 4 (1942), pp. 201-382.

26) $N(\varepsilon_1-\alpha)$ depends only on $\varepsilon_1-\alpha$.

27) This theorem was suggested to the author by Dr. T. Andô.

[9] H. NAKANO: Modulared semi-ordered linear spaces, Tokyo, 1950.

-

- [10] T. SHIMOGAKI: On the norms by uniformly finite modulars, Proc. Japan Acad. 33, No. 6 (1957), pp. 304-309.
- [11] T. MORI, I. AMEMIYA and H. NAKANO: On the reflexivity of semi-continuous norms, Proc. Japan Acad. 31, No. 10 (1955), pp. 684-685.
- [12] S. YAMAMURO: Monotone completeness of normed semi-ordered linear spaces, Pacific J. of Math., Vol. 7, No. 4, (1957), pp. 1715-1725.

Department of Mathematics, Hokkaido University

(Received May 22, 1962)