ON THE CONTINUITY AND THE MONOTONOUS-
NESS OF NORMS

By
Tetsuya SHIMOGAKI

8§ 1. Let R be a universally continuous semi-ordered linear space®
(i.e. conditionally complete vector lattice in Birkhoff’s sense) and ||-|| be
a norm on R satisfying the following conditions throughout this paper

(N. 1) |#[=ly| (x,yeR) implies ||z||=|lyll; |

(N. 2) 0=z.};c,x tmplies ||z||=sup ||x;||*.

A€ A

A norm 1I+|| on R is. called continuous, if
(1.1) ' inf ||z,||=0 for any «,452,0%.
1,200 ‘

The continuity of norms on R plays an important role in the theory
of semi-ordered linear spaces. In fact, it is well known [8, 9; § 31] that
every morm-continuous linear functional f on R is (order-) universally
continuous, i.e.

(1.2) inf |f(x,)|=0 for any «;:c,40,
ie A
and R becomes superuniversally continuous® as a space in this case.

It is clear that if a norm |[-|| on R is continuous, the another norm
|||l which is equivalent to ||-|| is also continuous. As for the conditions
under which norms ||:|| on R are continuous, there are the detailed in-
vestigations by T. Ando [3, 4].

A norm ||-|| on R is called monotone [8]

(1.3) ol |yl (&, yeR)  implies uxn;;e'-uyn,

and is called uniformly monotone [8, 9; § 307, if

1) Thls termmology is due to H. Nakano [9] We use mainly notation and terminology
of [9] here.

2) A norm satisfying (N. 1) and (N. 2) is called semi-conlinuous in [10] A norm on
- satlsfymg (N. 1) is called monotone in [7]. On the other hand, (N. 1) is assumed for
any norm of normed lattices in [6]. ‘

[ o]
3) . This means z;=2,=---=0 and N z.=0.
v=1

4) R is called superunwersa,lly continuous, if for any O<acz 1e 4=a there exists {2,157,
<{xi}1e 4 such that U zi,= U za.

v=1
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(1 4) for any 7,e>0 there exists 6>0 such that
x~y=0, ||2[|<r and |lyl|=e  imply ||lz+yl|=|l2l|+06.

When a norm ||-|| is of L, -type” (1=p< +o0), it is both continuous
and monotone (umformly monotone), and when ||-|| is of L.-type, it is
neither continuous nor monotone. This fact suggests that there may be
some correlation between the continuity and the monotonousness of norms
on R, in spite of the existence of a continuous norm which is not mono-
tone. ’

In §2 we shall study this relation and show consequently that if a’
norm ||-|| on R is continuous there exists a monotone norm ||-||, which
is equivalent to [|:]|| (Theorem 3).

In § 3 we shall show a sufficient condition for the continuity of the
associated norm of ||-|| and a necessary and sufficient condition under

=1l

which the second conjugate norm ||z|| (xeR) is.continuous on R. \

In the earlier paper [10] the author defined a property of a norm
called finitely momnotone® which is stronger than the continuity. In §4
we shall prove that a norm ||-|| on R is finitely monotone, if and only
if there exists an equivalent norm [|-||; which is at the same time a
lower semi-p-norm for some 1=p<-4o (i.e. x~y=0 implies |lx+y||}
=llz|P+1|ly|l?) (Theorem 6). Since a lower semi-p-norm is uniformly
monotone, we see that a norm ||-|| is finitely monotone if and only if
we may define an equivalent norm ||-||; which is uniformly monotone.
At last some notes on finitely monotone norms shall be made.

In the sequel we dehotev by B the norm associated space of R ’(i.‘e.
the totality of all norm-continuous linear functionals on R) and by B
the morm conjugate space of R (i.e. the totality of all universally con-

tinuous linear functionals on R which is norm-continuous too)”. The
completeness of ||-|| on R shall not be assumed, unless otherwise provided.

§2. Let ||-|| be an arbltrary norm on R satisfying (N.1) and (N. 2)
in the sequel.
Definition 1. An element acR is said to be a continuous element

5) A norm is called to be of Ly-type [1], if |lx+yl|?=|lz||?+||yl|? for any z,y€R with
2~y =0 in the case 1=<p<+oo, and |lx+y|l=max (liz]], llyll]) in the case p=+oco.
6) For the definition of the finitely monotone norm see § 4. It was discussed first in [2].

7) R denotes the totality of all umversally continuous linear functionals on R. When
11-11 is complete, R'=FR holds. But B SE in general.
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(with respect to [I-1D), if |a|=a,{,0 implies lim ||a,||=0.

It is easily verified that acR is a continuous element if and only if
mf |I[».]a|l=0 for any [p,]42.0® (cf. [9; Th. 30.8]). If a is a continu-

ous element and ala|=b, be R, then b is also a continuous element by the
definition. Hence we see that the totality of all continuous elements of
R constitutes a semi- -normal manifold® of R and we denote it by E.. A
norm ||-| on R is continuous if and only if R,=R. We call ||-|| to be
almost continuous, if R, is a complete semi-normal manifold of R. Being
stated above, R with a continuous norm is always semi-regular'®. But
this fact remains to be true by replacing the continuity by the almost
contlnulty, that is, ‘R with an almost contlnuous norm is semi-regular.

Let M be a linear manifold of R. A linear functional acR is called
complete on M if |a|(b)=0, beM implies b=0. It is shown [9; §20] that

for any 0:\:661—?“ there exists a normal manifold N on which @ is com-

plete. We denote by B, (acR) the semi-normal manifold consisting of

all elements x¢R such that |x|<aa for some real a (depending on x).
Now we have

Lemma 1. If 0<ac¢R 1s a continuous element with respect to ||-’||,

there exists a wuniversally continuwous linear functional aecB, which is
complete on B,. '

Proof. Since B, is a semi-normal manifold, B, is a normed semi-
ordered linear space with ||-|| by itself and the norm |[|:|| is continuous
on B, from the definition. = Being stated above, B, is semi-regular and

hence there exists the system of elements {@.}uc (Oét—iZEB:, 2ed) with

U [@;]%=1" and ||@,]|=1 (1e4). Since B, is superuniversally continuous,
A€A

we can find a subsequence {@,}.-1,s,.., 0f {G}uep with U [@,]%=1. Now,
v=1

—1

as B, is complete (with respect to the norm),

i”B

8) For peR, [p] denotes the projector by p. i.e. [p]:x:— (nlplnx) for x>0

9) A linear lattice mamfold McSR is called a semi- no'rmal mamfold, if aeM lal=|b]
implies be M. A seml-normal manifold M is called complete, if {M~}+={0}.

10) R is called semi- 'regular, if d(a)=0 for all @ € R implies a=0.

11) [a@]B~ is ‘a projector on B, such that B([@]Bex)= [@]b(x) holds for every beB, and
x € By [9; §22].
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and @, is complete on B, obviously. ‘ , . Q. E. D.
Lemma 2. Let 0=acR be a continuous element. For any €>0,
there exists a positive integer nm=mn(a, ) such that a= Zal, ;=20 and
|]a|[>e (z—l 2,--+,v) imply v=mn. '
Proof. There exists a complete linear functional O_gﬁeﬁ; on B, with
a(a)=1 by virtue of Lemma 1. If the conclusion of Lemma 2 is not
true we can find a sequence of elements of R* 12 a, s #=1,2,--+,k,;

v=1,2..-} with a= Z a,, 2=k, and ||a, ||=¢ for each 1=y and 1=<pu<kx,.
Since @ is linear, there ex1sts a,, with a(a,,,, )<1/2” for each 1< Put-
ting b,= U a,,,,=a we obtain 0=b,{7, and b,= ﬂ b,eB,. S1nce ¢71,(b-i)<1/2"-‘1

~and a>0 we have a(bo) 0 and a fortiori b,{3 1b0—0 because @ is complete

on B,.
On the other hand the fact that |[b)|=]]a, ,||=¢ for all 7,>1 is in-

consistent with the assumption, which establishes the proof. @ q. E.D.

- Definition 2. acR" is called a purely monotone element (With respect -
to [|-]]), if for any &>0 .there exists d=d(a, s) -0 ‘such that a=b=0 and
|Bl|=¢ imply [|a—b]|=[lal|—a. :

Now we obtain

Theorem 1. If acR* is a purely monotone element, a is a continu-
ous one.

Proof. 1If a=a,{2,0 and ||a,||=¢ (v=1, 2,-.-), we have for some. 5}0

le,—al|=llal]|—6  (v=1,2,--.),

since a€ R* is a purely monotone element..  This contradicts (N 2) in § 1.

Therefore a is a continuous element by the definition. Q. E. D.
Theorem 2. For any norm ||-|| on R, there exists a norm ||-||, equi-
valent to ||-|| such that every continuous element a with respect to ||-||
18 purely monotone one with respect to ||-||;.
Proof. We define ||-||; by the formula:
lall,=llall+sup {3 121} @e )

le=21 Y., ¥4,==0

From the definition of ||-|l,, it is clear that ||-||, is a norm on R

12) R* denotes the set of all positive elements of R.
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satisfying (N. 1), (N. 2) and
' ||90H<Hx||1<2|lx1| for every xcR.

Let acR* be a continuous element with respect to ||-||. By virtue
of Lemma 2, for any ¢>0 theré exists an integer n,=na, ¢/2) such that

a:i a, a,cR* and ||a,||=¢/2 (v=1,2,---, n) imply n=mn,. Suppose 0=b
v=]1 oo .

=a and |[bl|=¢, then for any {b.};2,C R* with a—‘—b:,g b, and ||b,]|=][b.|

=>... we have

-

ﬂo+1” + i _”!_)Wvll_.

Hb Il _
Ha b“+2 2110 1 v=-no+2 »2»
Here we have on account of ||b,,.,||<&/2
Wbngssll - & - Ilbll _ ¢

2no+1- == 27Lo+2 = 27lo+1 2’no+2 ’

which implies

lo—p+ 53 121 < S+ 3 o
=llall,— 2,;12 ,
becausé of é}b,—i—b-l—v::hb,,ga. -Therefdre, we obtain
" lle—ll,=llall, — 5.
which shows that a« is a purely monotone élement. | Q. E. D.
Remark 1. The norm ||:||; constructed in the above theorem has

the following property: for any continuous element acR and >0 there
exists 6>0_such that acR*, ||b||,=¢ tmplies |la+b||,=]||a|,+d.
From Theorem 2 we obtain immediately

Corollary 1. If a norm ||-|| on. R is almost continuous, then there
exists @ norm ||-||, equivalent to ||-|| such that the set of all purely mono-
tone elements coincides with a complete semi-normal manifold R,'®.

If each aceR* is a purely monotone element with respect to a norm
{11, lI-|l is monotone. Therefore, we have ‘

Theorem 3. If a norm ||-|| on R is continuous, there exists a mono-
tone norm || H1 whwh 18 equivalent to || ||'*. '

13) Rc is the same for all equwalent norms.
14) Theorems 2 and 3 hold to be true for any norm H I on R satlsfymg (N. 1) only.
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Remark 2. On the other hand, as an easy example shows, there
exists a monotone norm ||-|| which has no continuous norm equivalent
to it.

8 3. In this section we shall give some notes on the continuity of
the norm on R. First we shall show a simple sufficient condition'® for

~!l

the continuity of the assoc1ated norm on E. We shall consider the

following condition (%) for norms |[|-|| on R:
| S (O]
(%) [l.]| =1, 2,.e R* (v=1,2,--+) implies lim ——”ilﬁ——zO.
Now we have .
Theorem 4. Suppose that a norm ||:|| on R satzsfy (). Then the
associate norm ||-|| on B (or the comjugate norm on R) 18 continuous.
Proof. If the associated norm ||| on R’ is not continiious, we can

find a positive number ¢>0 and a sequence of elements O§%,el~€“ (v=1,
2,---) such that ||Z,||=2¢ and Hi Z,]|<1 for n=1. Now we can find also
a seduence of elements {xu}<ygl>E1R+ such that Z,(x,)=¢ and j[z,||=1 for
each v=>1. ‘Putting yn:pCJlx,, we obtain for any n=1

©
I
fu
©
il
-

)l =30 B)y, =) B(w) =ne,

hence |
lim el —]jm —2=1 =>e>0
o N ey n
This contradicts the condition (x). S Q. E.D.

Since there exists a semi-ordered linear space R with -a continuous

norm which has, however, the second conjugate space R® ‘whose norm
is continuous no longer, we see that in Theorem 4 we can not exchange
() for the continuity of a norm of R without failing to hold the validity.

Here we give a necessary and sufficient condition for the continuity

of the second conjugate norm ||X]|| (XGR?”) of a norm |'|-|| on R.

15) In [5] T Andd gave a necessary condltlon [5; 84 Lemma 4.2].

16) The conjugate space of R is denoted by R If R is semi-regular, R can be consider-
ed as a complete semi-normal manifold of R fa].



On the Continuity and the Monotonousness of Norms 231

Theorem 5. In order that the second conjugate morm on R of |-l

be continuous, it is mecessary and sufficient that the morm ||-|| on R
satisfies the following condition:
(%) sup |3 af|< 40, xR (v=1,2,---)

implies lim ||x,||=0.

V=00

‘ Proof. Necessity. Since RCR, ||x]|—||fx||”’— sup |2z(x)| for all
JElEs
xe R and R is monotone complete“” (91, supllZf“H< —I—lolo (xz,€ R) implies

X'O_fo cR. - Then Y, Zf eR Yt,, 1O and hence
lim ||z, || =1im || £ || =lim [| ¥,]|=0,

on account of the continuity of the second conjugate norm ||.X|| (XGR“).

Sufficiency. We shall first show that the norm ||-|| on R is continu-
ous in this case. Indeed, let R3[p,Ja{=,0. From the assumption {[p,]a},
is a Cauchy sequence of R, whence we have lim ||[p,]a||=0 by virtue of

the semi-continuity of ||-]].

Now if || X|| (X efB”) is not continuoﬁs we may find a sequence of
elements {X,}=, of K such that ||X,||[=1 and ||ZX||<7 (n,v=1,2,-++)
for some y=1. Since the norm ||-|| on R is contlnuous, R is semi-regular,

and hence R is a complete semi-normal manifold of R'. Thus there exists
a sequeuce of elements {x,}3, such that X, =f a0 ||x [|=1/2'® (v=1, 2,- ).

Hfo,IIEr-

Corollary 2. In order that a morm || ]| on R be monotone complete
and continuous, it is mecessary and sufficient that |-l 4s complete* and
satisfies the condition (#).

This contradicts (%), because of sup ||

§4. A norm ||- H on R is called finitely monotone [10] if it satisfies
- the following: .

17) fs (x GR) denotes an element of f?'|._ for which f.(%)=%(x) holds for each F€R .
18) R is called momnotone complete, if 0=a:l1c4 and sup ||ai||<-+oco implies ZU a:1€R.
. - A€ A- €A

19) When R is semi-regular. A norm satisfying (N. 1) and (N. 2) is reflexive, i.e.
|| =sup |z(2)] [11].

n#ll=1, aeR
20) If a norm |[|-|| on R is monotone complete, it is complete [10; §30]. The converse
of this is not true in general. Cf. Corollary 2 with Theorem 2.1 of [12] in modular spaces.



232 . - T. Shimogaki

(4.1) for any 0<e=<1 there exists a matural mumber N(c) such that
Nl =6, #,~2,;=0, i=F7 (¢,5=1,2,- - -,n) and |2 x,|| <1 imply n < N(e).

It is clear that every finitely monotone norm is continuous and any
norm ||-|| which is equivalent to a finitely monotone morm ||-|| is also
such a one. This topologically invariant property of a finitely monotone
norm is important and may be utilized. Here we shall characterize a
finitely monotone norm by showing the possibility of conversion of it into
the another norm of the more familar and simpler form.

A norm ||-]| on R is called a lower semi-p-norm (upper semi-p-norm)
if for any 2~y=0. z,ycR, |lz+yllP=|lz|P+|y||" (resp. [lz-+yl||?<|x|?
+1l¥]|?) holds, where p is a real number with 1<p<-+ o [1].
| Being well known [8], the lower semi-p-norm and the upper semi-
g-norm are of conjugate type*”’, where 1/p+1/g=1 and the former is uni-
formly monotone in the case p< + o, and hence finitely monotone

At first we shall prove an auxiliary lemma ‘

‘Lemma 3. Let ||-|| be a finitely monotone norm and p be a real
number such that 2?=N(1/2)+1°" holds. Suppose also that &/2=||x,|| <¢
(v=1,2,.--,m) dnd x,~x,=0 for v=kp. If 1 is a natural number such

that 0=m —12?<2? holds, there exist mutually o'rthogonal elements Yu
(¢=1,2,.--,1) such that e=llyll (#=1,2,---,1) and Zyysf_}x

Proof. If {x,}): ®. is arbitrary subsequence of {ac }, 1) it follows that
I|(1/e)e, || =1/2 (z__l 2 -, 27) and 27> N(1/2). ThlS implies ||1/52x,£||

whence we have HZ x,||=e. From this we see that we can ﬁnd {y,l},,=1

which satisfies the above condition.
Now we have

Theorem 6. A norm ||-|| on R is finitely monotone if and only if
there exists a lower semi-p-norm ||-||, equivalent to ||-||, where 1<p< + co.

Proof. Since a lower semi-p-norm is finitely monotone and the finite
monotonousness is topological invariant, it suffices to prove the necessity
of the theorem. :

Let ||-|| be ﬁmtely monotone and p be a real number satisfying 2°
—N(1/2)—|-1 -We put now -

21) That is, if [|-]] is a lower semi-p-norm (upper semi-g-norm), the conjugate norm is'
an upper semi-g-norm (resp. lower semi-p-norm). ‘

22) N(1/2) is a natural number which appears in (4.1) for e=1/2 with respect to the
finitely monotone norm ||-||.
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lelli=sup X [|=|[?)/7*>  (weR).
x':éxi, n=1,2,--.

From this definition it is clear that |lz-+y|[P=[l»||?+||y||? holds for each
x,ye R with x~y=0." Furthermore it is also evident that [|x||=||x||, and
|lexl|,=|e| ||#]], 'hold for each « real and zeR. The sub-additivity of |l Iy
follows from Minkowski’s inequality and [|-||, satisfies (N. 1) and (N. 2),
because ||-||] does. Therefore, it is sufficient to prove that we can find
x>0 for which ||z||,<x|lz|| holds for each zeR. Let {a.}', be a mutually

orthogonal sequence of positive elements of R such that HZx ||=1 and
k, be the number of x, with 1/2'<||x,||<1/2°"" (¢=1,2,---). Then
n=ki+ky+ - +ky, k, =0

holds for some m=1. If n=k,, (Z ||, ||P)“p<(N(1/2))”p<2 holds Thus
we shall assume n=FFk, in the argument below. '
Now we can find an integer 0!, such that

0<k,—1,2? <20
holds. This implies

' l 1
>3 lel”‘k 1 +

2, € A 2(m Lp — 2p(m 27

where A,={x,: v,e{x}7,, 1/21<|[x |=<1/27-!} for every 1=j<m. We note

here that there exists a sequence of mutually orthogonal elements {y,}:~

such that Zy,,.é Z @, and ||ly,||=1/2""! (#=1,2,---,1,) hold, if 1,0, in
. !

p=1
virtue of Lemma 3

Next we choose an integer 0=<!,_, for Wh1ch
0=k, +1,—1, 27 <2?
holds. Now this yields

e <t 4 14 1

2, € AU Am—1 - 2p(m 2) “2p(m 3 2p(m—2) 2p(m-3)
B 1

and there exists also a mutually orthogonal sequence {z,}.2;' such thaj:

Sez 3w and liz,

T 2,€4mUAm-1 4 om-2

hold for all 1§y;_lm_1. Let ,,_, be similarly defined as before and pro-

n n . R .
23) x= @ x; means that x=3>)x; and x;~x;=0 for 7.
=1 g==1
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ceeding this process we obtaln finally an integer [, such that

0<k2+l '—l 2p<2]7
and

NellP Skt it ot

2,€ AmUAm_1U---UA opim -2 Qpm~3>

holds. Now, in virtue of Lemma 3 there exists also a mutually orthogo-
nal sequence {w,}’2, such that 2 w, = > & and |lw,|[=1/2. There-

xy € AmU Am—1U »
fore we obtain

> lf[P= > P+ =3, 1l
=1 z, € Am\U Am—1U + Az
<l2+k +2p(m 2) +2p(m 3 + +1
<N( )+2,
whence (3] |[2,]|7)/?=<(N(1/2)+2)/» <83. This shows ||z||,=sup ( 3] [|x||1’)"1’
v=1 . . n =1
= P x;, n=1,2,.
=1
=3 for each we¢R with ||z||=<1 and establishes the theorem. Q. E. D
Since a uniformly monotone norm |-|| is ﬁnltely monotone [10]
follows from above
Corollary 3. If a norm |[|-|| on R is uniformly monotone, we can
define a lower semi-p-norm ||-||, which is equivalent to [|-|| for some P

with 1<p< + oo,
A norm ||-]| on R is called finitely flat [10], if
(4.2) for any y>0 there exists €>0 such that llz;|| =e, x;~x,;=0, 1=FJ
(¢,7=1,2,---,n) and n=rle imply Hizl x| =<1.
It is known that the finitely monotonousness and the finite flatness
are of conjugate type [10; Th. 1.4, 1.5]. Thus each upper semi-p-norm
I|-]] (1< p) is finitely flat.

Since the norm satisfying (N. 1), (N 2) is reflexive [11]**, we obtain
in virtue of Theorem 6

Theorem 7. Let @ norm ||| on R be finitely flat and R be semi-
regular. Then we can define an upper semi-p-norm ||-||, which is equi-
valent to ||-||, where 1<p=<+ .

Furthermore we have ; N

24) See the footnote 19) for the definition of reflexivity.
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Theorem 8. If a norm ||-|| on R is both finitely monotone and finitely
flat, we can define an upper semi-p and lower semi-g-norm ||-||, which
18 equivalent to ||-||, where 1<p=q< + oo,

Proof. Since the norm ||-|| is finitely monotone, there exists a lower
semi-g-norm ||-||, equivalent to ||-|| for some 1=q< 4o in virtue of

Theorem 6. Then the conjugate norm ||7]|, (o_ceﬁ) of ||-]le is an upper
semi-¢’-norm (1/¢’+1/g=1) and it is also finitely monotone, because -1
is finitely flat too. Now we define

n 1 . =n
|[®|l,=  sup (Z lz|I5)”  (@eR),
‘~=é";§ n=1,2,000
where p’ is a real number such that 27 =N(1/2)+1%., It is clear that

g <p’ and ||%||, is a lower semi- p-norm and is equlvalent to ||=||o (wGR)
as is shown in Theorem 6.

. On the other hand, from Minkowski’s inequality it follows that AN
(weR) remains still to be an upper semi-¢’-norm. Thus, the conjugate
norm || X]|| (XGRH) of |lz||, (Eeﬁn) is the upper semi-p and lower semi-g-
norm, where 1/p+1/p'=1 and 1<p=q< + oo. .

Since RC R and the norm ||| (xeR) is reflexive, we have obtained

an upper semi-p- and lower semi-g-norm ||-||; which is equivalent to [|-]l.
Q.E.D.
At last we shall make a note on finitely monotone norms.

Lemma 4. If a norm ||-|| is finitely monotone, it satzsﬁes the Sol-
lowing:

(4.8) for any 1>e>0 there exists a natzwal number n(s) such that e
=|ls]l, z,eR* (2=1,2,-- 'n) and HZ{X) [|=1 tmplies n=n(e).

Proof. At first suppose that &, be a real number with 1/2<el<1 a

be such that 1/2<a<e, and [p,]=[(2;,—ax)*], where x= sz, 2;=>0 and

|x;|| =&, (i=1,2,---,n). Now we have [p,]+0 for each 1 w1th 1<z<n
because, in the contrary case, we have z,<ax for some ¢ (1=1i=n), and
hence ||z||Zallr||=a<e, 'Which is a contradiction. We have also that
[p,][p,]=0 for ¢==J holds. Because, [p,][p,]+0 implies

’ [p]lp; (@ +2;)=alp;] [pJ]xwLa[pJ[zoJ]w =0 ]lp,]=

which is inconsistent with the fact that x= §_| z, and x,=>0 (¢=1,2,---,m).

25) Since 1Z![o (a‘ceR) is finitely monotone, there exists an natural number which satisfies
(4.1) for e=1/2. We denote it by N(1/2) here. ‘



236 S ' T. Shimogaki

Now putting y,=[p,]x; (1=i{=n), we obtain Yin Y= O(H=J) H%H—H[pz]wll
=llz|| —[(1—[p. Dzl =]|2.]]| —||ax|]|=e,—a and IIZyH<HZxII<1 As’|[-]]
is finitely monotone, there exists a natural number N(sl——a) appeared in
(4.1), for which n=<N(¢;,—a)* holds.

For any 0<e<1 we choose a natural number m such that 0<er<e.
Putting n(e)=(N(¢;,—a))™, we can Verlfy evidently that n(e) satisfies the

condition (4.3). ' Q.E.D.
Slmllarly we have .
Lemma 5. If a norm || .| s finitely _ﬂat 1t satzsﬁes the following:

(4.4) for any r>0 there exists ¢>0 such that ||a||<e, r,eR* (1=1,2,
s m) and n=yle imply ||U @ l|=1.

As the proof is quite 51m11ar we omit it.

From these lemmas we obtain a following thecrem Whlch enables us
to conclude that “finitely monotone” and “finitely flat” are of dual type
(cf. [10; Th. 1.4, 1.5]), that is,

Theorem 9. If a norm ||-|| on R is finitely monotone (finitely ﬂat)

then the associated morm ||:r|| (xcR) 18 finitely flat (resp. finitely mono-
tone)?®,

The proof is obtained by showing that (4.3) and (4. 4) are of dual
type in the quite same manner as Theorems 1.4 and 1.5 in [10].
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