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The purpose of this note is to obtain a universal upper bound for
the remainder term in a useful formula in number theory, known as the
sieve of A. Selberg [5, see also 4; Chap. II, Theorem 3.1].

Let $N>1$ and let $a_{1}a_{2}$ , $\cdot$ . ., $a_{N}$ be natural numbers not necessarily
distinct. We wish to evaluate the number $S$ of those $a_{j}(1\leqq j\leqq N)$

which are not divisible by any prime number $p\leqq z$ , where $z\geqq 2$. Let $d$

be a positive integer $and\rightarrow$ let $S_{a}$ denote the number of $a’ s$ divisible by $d$ .
Suppose that

$S_{a}=\frac{0\langle d)}{d}N+R(d)$ ,

where $R(d)$ is the error term for $S_{d}$ and where $\omega(d)$ is assumed to be a
multiplicative function of $d$ , namely a function such that $(d_{1}, d_{2})=1$

implies
$o)(d_{1}d_{2})=\omega(d_{1})\omega(d_{2})$ :

in particular, we have $0’(1)=1$ if $\omega(d)$ does not vanish identically.
We put

$f(d)=\frac{d}{\omega(d)}$ .

Then $f(d)$ is a multiplicative function of $d’$ . We shall suppose that $1<$

$ f(d)\leqq\infty$ for $ d>1;f(d)=\infty$ only if $\omega(d)=0$ and then $S_{d}=R(d)$ . We now
define for positive integers $m$ and $d$

$f_{1}(m)=\sum_{n1n}\mu(n)f(\frac{m}{n})$ ,

$Z(d)=\sum_{a(r,)=1}\frac{\mu^{2}(r)}{f_{1}(\gamma)}r\leqq z/d$ $Z=Z(1)$ ,

$\lambda(d)=\mu(d)\prod_{p1d}(1-\frac{1}{f(p)})^{-1}\frac{Z(d)}{Z}$ ,

where $\mu(d)$ denotes the M\"obius function. It is clear that $f_{1}(m)$ is a
multiplicative function of $m$ and that if $\mu^{2}(m)=1$ then
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$f_{1}(m)=f(m)\prod_{pm}(1-\frac{1}{f(p)})$ .
The formula of Selberg hereinbefore mentioned is given in the fol-

lowing
THEOREM. Under the notations and conditions described above we

have

$S\leqq\frac{N}{Z}+R$

with
$R=\sum_{a_{1},a_{2\leqq z}}I\lambda(d_{1})\lambda(d_{2})R(\{d_{1}, d_{2}\})|$ ,

where $\{d_{1}, d_{2}\}$ denotes the least common multiple of $d_{1}$ and $d_{2}$ .
We shall suppose in what follows that for $\backslash al1d,$ $d_{1},$ $d_{2}$ we have

(1) $|R(d)|\leqq\omega(d)$ , $\omega(\{d_{1}, d_{2}\})\leqq\omega(d_{1})\omega(d_{2})$ ,
the latter inequality being automatically satisfied when $\omega((d_{1}, d_{2}))\geqq 1$ .
This condition for $\omega(d)$ , as well as the assumption that $\omega(d)$ should be a
multiplicative function, is in fact satisfied in many cases of applications
of Selberg’s sieve method. The remainder term $R$ in the theorem is then
not greater than

$\sum_{d_{1},d_{2\leqq\approx}}|\lambda(d_{1})\lambda(d_{2})\omega(d_{1})\omega(d_{2})|=(\sum_{d\leqq z}|\lambda(d)|\omega(d))^{2}$ .
We show that if the condition (1) is fulfilled, then

(2) $R=O(z^{2}(\log\log z)^{2})$ ,
where, and henceforth, the constants implied in the symbol $0$ are all abso-
lute. Furthermore, if $\omega(p)\leqq 1$ for all primes $p$ , then we have, under the
condition (1),

(3) $R=O(\frac{z^{2}}{Z^{2}})$ .
Indeed, we have by the definition of $\lambda(d)$

$\sum_{d\leqq z}|\lambda(d)|\omega(d)$

$=\frac{1}{Z}\sum_{d\leqq z}\mu^{2}(d)\omega(d)\prod_{pd}(1-\frac{1}{f(p)})^{-1}\sum_{n,(n,d)=1}\mu^{2}(n)\frac{\omega(n)}{n}\prod_{p|n}(1-\frac{1}{f(p)})^{-1}$

$=\frac{1}{Z}\sum_{m\leqq\approx}\mu^{2}(m)\frac{\omega(m)}{m}\prod_{p|m}(1-\frac{1}{f(p)})^{\neg 1}\cdot\sum_{d|m}d$ .
Let $\sigma(m)$ be the sum of divisors of. $m,$ $i.e$ .
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$\sigma(m)=\sum_{d|m}d$ .

It is known that
$\sigma(m)=O$( $m$ log log $m$)

(cf. [3; Theorem 323]). It follows that

$\sum_{m\leqq z}\mu^{2}(m)\frac{OJ(m)}{m}\prod_{pm}(1-\frac{1}{f(p)})^{-1}\sigma(m)\sim$

$\leqq(\sum_{m\leqq z}\frac{\mu^{2}(m)}{f_{1}(m)})\cdot\max_{m\leqq z}\sigma(m)$

$=Z\cdot O$( $z$ log log $z$),

and this proves the assertion (2).
To prove (3) let us suppose that $\omega(p)\leqq 1$ for all. primes $p$ . Then we

find that

$\sum_{m\leqq z}\mu^{2}(m)\frac{\omega(m)}{m}\prod_{p|m}(1-\frac{1}{f(p)})^{-1}\sigma(m)$

$\leqq\sum_{m\leqq z}\mu^{2}(m)\frac{1}{m}\prod_{p|m}(1-\frac{1}{p})^{-1}\sigma(m)$

$=\sum_{m\leqq z}\mu^{2}(m)\frac{\sigma(m)}{\varphi(m)}$ ,

where $\varphi(m)$ is the Euler totient function. It is easily verified that

$\frac{\sigma(m)}{\varphi(m)}=O(\frac{\sigma^{2}(m)}{m^{2}})$ ,

and hence

$\sum_{m\leqq z}\mu^{2}(m)\frac{\sigma(m)}{\varphi(m)}=o(\sum_{m\leqq z}\frac{\sigma^{2}(m)}{m^{2}})$ .

By a result due to S. Ramanujan (cf. [2; p. 135]) we see that

$\sum_{m\leqq n}\sigma^{2}(m)=O(n^{8})$ .
Using this relation we obtain by partial summation

$\sum_{m\leqq z}\frac{\sigma^{2}(m)}{m^{2}}=\sum_{m\leqq z-1}(\sum_{r\leqq m}\sigma^{2}(r))(\frac{1}{m^{2}}-\frac{1}{(m+1)^{2}})+\frac{\sum_{r\leqq z}\sigma^{2}(r)}{[z]^{2}}$

$=\sum_{m\leqq z-1}O(1)+O(z)=O(z)$ ,

and hence

$\sum_{m\leqq z}\mu^{2}(m)\frac{\omega(m)}{m}\prod_{p1m}(1-\frac{1}{f(p)})^{-1}\sigma(m)=O(z)$ ,
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completing the proof of (3).
As an easy application of (3) we can prove that the number of posi-

tive integers $n\leqq x$ such that $pYn$ for all primes $p\leqq z$ is less than

$c(a)\frac{x}{\log z}$ ,

provided that $z\geqq 2$ -and $x\geqq z^{a},$ $a\geqq 2$ , where $c(a)$ is a positive constant
depending only on $a$ . This result is slightly better than [4; Chap. II,
Theorem 4.10].

Also, we may mention the following. Let $k$ and $l$ be integers such
that $k\geqq 1,0\leqq l<k,$ $(k, l)=1$ . Let $\pi(x, k, l)$ denote, as usual, the number
of primes $p\leqq x$ of the form $km+l$ . Then, if $k=O(x^{a}),$ $0<a<1$ , we have

$\pi(x, k, t)<\frac{2x}{\varphi(k)\log(x/k)}(1+o(\frac{1}{\log x}))$ .

This is a slight improvement of a result due to I.V. $\check{C}ulanovski\check{l}[1j$

Theorem 1]. (Here the O-constant may possibly depend upon $a.$ )
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