A NOTE ON THE SIEVE METHOD OF A. SELBERG

By
Saburô Uchiyama

The purpose of this note is to obtain a universal upper bound for the remainder term in a useful formula in number theory, known as the sieve of A. Selberg [5, see also 4; Chap. II, Theorem 3.1].

Let $N>1$ and let $a_{1} a_{2}, \cdots, a_{N}$ be natural numbers not necessarily distinct. We wish to evaluate the number S of those $a_{j}(1 \leqq j \leqq N)$ which are not divisible by any prime number $p \leqq z$, where $z \geqq 2$. Let d be a positive integer and let S_{d} denote the number of a 's divisible by d. Suppose that

$$
S_{d}=\frac{\omega_{a}(d)}{d} N+R(d),
$$

where $R(d)$ is the error term for S_{d} and where $\omega(d)$ is assumed to be a multiplicative function of d, namely a function such that $\left(d_{1}, d_{2}\right)=1$ implies

$$
\omega\left(d_{1} d_{2}\right)=\omega\left(d_{1}\right) \omega\left(d_{2}\right):
$$

in particular, we have $\omega(1)=1$ if $\omega(d)$ does not vanish identically.
We put

$$
f(d)=\frac{d}{\omega(d)} .
$$

Then $f(d)$ is a multiplicative function of d. We shall suppose that $1<$ $f(d) \leqq \infty$ for $d>1 ; f(d)=\infty$ only if $\omega(d)=0$ and then $S_{d}=R(d)$. We now define for positive integers m and d

$$
\begin{aligned}
& f_{1}(m)=\sum_{v_{m},} \mu(n) f\left(\frac{m}{n}\right), \\
& Z(d)=\sum_{\substack{r, s, j) \\
(r, z)=1}} \frac{\mu^{2}(r)}{f_{1}(r)}, \quad Z=Z(1), \\
& \lambda(d)=\mu(d) \prod_{p / a}\left(1-\frac{1}{f(p)}\right)^{-1} \frac{Z(d)}{Z},
\end{aligned}
$$

where $\mu(d)$ denotes the Möbius function. It is clear that $f_{1}(m)$ is a multiplicative function of m and that if $\mu^{2}(m)=1$ then

$$
f_{1}(m)=f(m) \prod_{p, m}\left(1-\frac{1}{f(p)}\right) .
$$

The formula of Selberg hereinbefore mentioned is given in the following

Theorem. Under the notations and conditions described above we have

$$
S \leqq \frac{N}{Z}+R
$$

with

$$
R=\sum_{d_{1}, d_{2} \leq z}\left|\lambda\left(d_{1}\right) \lambda\left(d_{2}\right) R\left(\left\{d_{1}, d_{2}\right\}\right)\right|,
$$

where $\left\{d_{1}, d_{2}\right\}$ denotes the least common multiple of d_{1} and d_{2}.
We shall suppose in what follows that for all d, d_{1}, d_{2} we have

$$
\begin{equation*}
|R(d)| \leqq \omega(d), \quad \omega\left(\left\{d_{1}, d_{2}\right\}\right) \leqq \omega\left(d_{1}\right) \omega\left(d_{2}\right), \tag{1}
\end{equation*}
$$

the latter inequality being automatically satisfied when $\omega\left(\left(d_{1}, d_{2}\right)\right) \geqq 1$. This condition for $\omega(d)$, as well as the assumption that $\omega(d)$ should be a multiplicative function, is in fact satisfied in many cases of applications of Selberg's sieve method. The remainder term R in the theorem is then not greater than

$$
\sum_{d_{1}, d_{2} \leq z}\left|\lambda\left(d_{1}\right) \lambda\left(d_{2}\right) \omega\left(d_{1}\right) \omega\left(d_{2}\right)\right|=\left(\sum_{d \leq x}|\lambda(d)| \omega(d)\right)^{2} .
$$

We show that if the condition (1) is fulfilled, then

$$
\begin{equation*}
R=O\left(z^{2}(\log \log z)^{2}\right), \tag{2}
\end{equation*}
$$

where, and henceforth, the constants implied in the symbol O are all absolute. Furthermore, if $\omega(p) \leqq 1$ for all primes p, then we have, under the condition (1),

$$
\begin{equation*}
R=O\left(\frac{z^{2}}{Z^{2}}\right) \tag{3}
\end{equation*}
$$

Indeed, we have by the definition of $\lambda(d)$

$$
\begin{aligned}
& \sum_{d \leq \varepsilon}|\lambda(d)| \omega(d) \\
& \quad=\frac{1}{Z} \sum_{d \leq \varepsilon} \mu^{2}(d) \omega(d) \prod_{p, a}\left(1-\frac{1}{f(p)}\right)^{-1} \sum_{\substack{n \leq z, d) \\
(x, y)=1}} \mu^{2}(n) \frac{\omega(n)}{n} \prod_{p \mid n}\left(1-\frac{1}{f(p)}\right)^{-1} \\
& \quad=\frac{1}{Z} \sum_{m \leq \varepsilon} \mu^{2}(m) \frac{\omega(m)}{m} \prod_{p p m}\left(1-\frac{1}{f(p)}\right)^{-1} \cdot \sum_{d \mid m} d .
\end{aligned}
$$

Let $\sigma(m)$ be the sum of divisors of m, i.e.

$$
\sigma(m)=\sum_{d \mid m} d
$$

It is known that

$$
\sigma(m)=O(m \log \log m)
$$

(cf. [3; Theorem 323]). It follows that

$$
\begin{aligned}
& \sum_{m \leqq z} \mu^{2}(m) \frac{\omega(m)}{m} \prod_{p, m}\left(1-\frac{1}{f(p)}\right)^{-1} \sigma(m) \\
& \quad \leqq\left(\sum_{m \leqq z} \frac{\mu^{2}(m)}{f_{1}(m)}\right) \cdot \max _{m \leqq z} \sigma(m) \\
& \quad=Z \cdot O(z \log \log z)
\end{aligned}
$$

and this proves the assertion (2).
To prove (3) let us suppose that $\omega(p) \leqq 1$ for all. primes p. Then we find that

$$
\begin{aligned}
& \sum_{m \leqq z} \mu^{2}(m) \frac{\omega(m)}{m} \prod_{p \mid m}\left(1-\frac{1}{f(p)}\right)^{-1} \sigma(m) \\
& \quad \leqq \sum_{m \leqq z} \mu^{2}(m) \frac{1}{m} \prod_{p \mid m}\left(1-\frac{1}{p}\right)^{-1} \sigma(m) \\
& \quad=\sum_{m \leqq z} \mu^{2}(m) \frac{\sigma(m)}{\varphi(m)}
\end{aligned}
$$

where $\varphi(m)$ is the Euler totient function. It is easily verified that

$$
\frac{\sigma(m)}{\varphi(m)}=O\left(\frac{\sigma^{2}(m)}{m^{2}}\right)
$$

and hence

$$
\sum_{m \leq z} \mu^{2}(m) \frac{\sigma(m)}{\varphi(m)}=O\left(\sum_{m \leqq z} \frac{\sigma^{2}(m)}{m^{2}}\right) .
$$

By a result due to S . Ramanujan (cf. [2; p. 135]) we see that

$$
\sum_{m \leqq n} \sigma^{2}(m)=O\left(n^{3}\right)
$$

Using this relation we obtain by partial summation

$$
\begin{aligned}
\sum_{m \leqq z} \frac{\sigma^{2}(m)}{m^{2}} & =\sum_{m \leqq z-1}\left(\sum_{r \leqq m} \sigma^{2}(r)\right)\left(\frac{1}{m^{2}}-\frac{1}{(m+1)^{2}}\right)+\frac{\sum_{r \leq z} \sigma^{2}(r)}{[z]^{2}} \\
& =\sum_{m \leqq z-1} O(1)+O(z)=O(z),
\end{aligned}
$$

and hence

$$
\sum_{m \leq z} \mu^{2}(m) \frac{\omega(m)}{m} \prod_{p \mid m}\left(1-\frac{1}{f(p)}\right)^{-1} \sigma(m)=O(z)
$$

completing the proof of (3).
As an easy application of (3) we can prove that the number of positive integers $\mathrm{n} \leqq x$ such that $p \nmid n$ for all primes $p \leqq z$ is less than

$$
c(a) \frac{x}{\log z}
$$

provided that $z \geqq 2$ and $x \geqq z^{a}, a \geqq 2$, where $c(a)$ is a positive constant depending only on a. This result is slightly better than [4; Chap. II, Theorem 4.10].

Also, we may mention the following. Let k and l be integers such that $k \geqq 1,0 \leqq l<k,(k, l)=1$. Let $\pi(x, k, l)$ denote, as usual, the number of primes $p \leqq x$ of the form $k m+l$. Then, if $k=O\left(x^{a}\right), 0<a<1$, we have

$$
\pi(x, k, l)<\frac{2 x}{\varphi(k) \log (x / k)}\left(1+O\left(\frac{1}{\log x}\right)\right)
$$

This is a slight improvement of a result due to I.V. Čulanovskiǐ [1; Theorem 1]. (Here the O-constant may possibly depend upon a.)

References

[1] I.V. Čulanovskiii: Certain estimates connected with a new method of Selberg in elementary number theory, Doklady Akad. Nauk SSSR (N. S.) vol. 63 (1948), pp. 491 -494 (in Russian).
[2] G.H. Hardy, P.V. Seshu Aiyar and B. M. Wilson: Collected papers of Srinivasa Ramanujan, Cambridge 1927.
[3] G. H. Hardy and E. M. Wright: An introduction to the theory of numbers, 3rd edition, Oxford 1954.
[4] K. Prachar: Primzahlverteilung, Springer-Verl., Berlin-Göttingen-Heidelberg 1957.
[5] A. Selberg: On an elementary method in the theory of primes, Norske Vid. Selsk. Forh. Trondhjem, vol. 19, no. 18 (1947), pp. 64-67.

