RELATIONS BETWEEN TWO MARTIN TOPOLOGIES
ON A RIEMANN SURFACE

By

Zenjiro KURAMOCHI

Let R be a Riemann surface. Let G be a domain in R with relative
boundary 8G of positive capacity. Let U(z) be a positive superharmonic
function in G such that the Dirichlet integral D(min(M, U(z)))<oo for every
M. Let D be a compact domain in G. Let ,U%(z) be the lower envelope
of superharmonic functions {U,(2)} such that U,(2)=min(M, U(z)) on D+dG
except a set of capacity zero, U, (2) is harmonic in G—D and U,(z) has M.D.L
(minimal Dirichlet integral) < D(min(M, U(z))< o over G—D with the same
value as U,(z) on 6G+0D. Then ,U*(z) is uniquely determined. Put ,U(z) =
lim ,U"(2). If for any compact domain D ,U(z)= U(z) or ,U(2)< U(z), we call

M=

U(z) a full harmonic (F.H.) or a full superharmonic (F.S.H.) in G respectively.
If U(z) is an F.S.H. in G and U(2)=0 on 9G except a set of capacity zero,
U(z) is called an F,.S.H. in G. Let U(z) be an F.S.H. in G. Then ,U(2)t

as D1. For a non compact domain D, put U(z)=lim U (z), where {G,} is

n=o @,ND
an exhaustion of G with compact relative boundary oG, (n=0,1,2 ---).

W (U(2)) of an Fo.S.H. U(z) in G. Let D be a domain in G. Suppose
there exists at least one C,-function V(z) in G—D such that V(z)=1 on D,
=0 on 9G except a set of capacity zero and D(V(2))<co. Let o(D, 2, G) be
a harmonic function in G—D such that w(D,2,G)=1 on D, =0 on 9G
except a set of capacity zero and w(D, 2z, G) has M.D.1. over G—D. We call
o(D,z,G) a C.P. (capacitary potential) of D. Let U(z) be an F,.S.H. in G.
Then CP(QMU(z))=MD(w(gM, z, G)1 as M—0,” where g,=E[z: U(2)>M].

12

Put ¥ (U(2))= lim -~ D (,, U(2)).
Mo 2T Cay

W (U(=)) of an F.S.H. U(2) in G. For any compact domain D in G,
if we can define functions U,(z) such that U,(z) is superharmonic in G, U,(2)
is harmonic in G—D, U,(z)=min (M, U(z)) on D, U,(2)=0 on 3G except
a set of capacity zero and U,(z) has M.D.I. over G—D. Let °U%(z) be the
lower envelope of {U,(2)}. Put ,?’U(z)zjlwim SUM(2) (clearly SU(2)=<,U(2)).

1) Z. Kuramochi: Superharmonic functions in a domain of a Riemann surface. Nagoya
Math. J., to appear.
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Since D is compact, pU(2)=0 on 9G except a set of capacity zero. For a non

compact domain D, JU(z) is defined as ,U(2). For U(z), put W (U (z))=li_m WM’

(¢,U(2)), where {G,} is an exhaustion of G with compact relative boundary 4G, .

Let {R,} with compact relative boundary 9R, (2=0,1,2,---) Let U(z) be
an F,.S.H. in R—R, such that U(2)=0 on dR,. Consider R—R, as G. Then
pU(z) is defined. In this case we say that ,U(z) is defined relative to R—R,.
It is clear that the mapping U(z)—,U(z) depends on the domain (G or R—
R,) in which ,U(2) is defined. In the following we use ,U(z) relative to R
— R, which will be denoted by ZU(2) to distinguish from ,U(z) (relative to G).
We understand ,U(z) (without R on D) means ,U(z) of U(z) relative to G.

Martin topologies on R—R, and on a subdomain GC(R—R,). Let
N(z, p) bs an N-Green’s function of G such that N(z, p) is positively harmonic
in G—p, N(z,p)=0 on dG except a set of capacity zero, N(z,p) has a loga-
rithmic singularity at p and N(z, p) has M. D.I. (where Dirichlet integral is
taken with respect to N(z, p)+log |z—p| in a neighbourhood of p). We sup-
pose N-Martin topology is defined on G+ B using N(z, p),s and the distance
between p, and p, is given as

N(z, pl) _ N(Z, PZ)
1+ N(z, py) 1+ N(z, p»)

3(P1 , P2) = sup

z€D

b

where D is a fixed compact domain and B is the set of the ideal boundary.
Let L(z,p) be an N-Green’s function of R—R, with pole at p. Then also
N-Martin topology is introduced on R — R,+ B* with metric:

L(z, p) — L(z, p)
14+ L(z, ) 1+L(z, p,)

b

0(p1, p2) = sup[

z€R;

where B’ is the set of the ideal boundary points.
In the following for simplicity we call above two topogies L and N-topologies.
Let peR—R,+B{ (Bf is the set of minimal boundary points of R—R,).

If &L(z,p)<L(z,p) (CG is thin at p), we denote by péG. Then

Theorem 1. Suppose p€ R—R,+ BF and péG. Then U(z, p)=L(z, p)
—N(z, p) is an Fo.S. H. in G with D(min(M, U(2)))<2zM, whence W' (U(z, p))
=1.

Proof. Nz, p): pe R—R,+ B* is contintinuous on G except p. Hence
el (z, p)=L(z, p) on G and U(z, p)=0 on 8G except a set of capacity zero.
Case 1. peG. In this case, clearly U(z, p)=N(z,p) and D(min(M, Ul(z, p))
=2nM.

Case 2. p€dG. Put G,=G+v,(p), Then CG,1CG and ca, L(z, p)1 &L (2, p)
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as n—oo, where v,(p)=E

[r—

z: dist (2, p)< %] . By peG,, we have

D(min (M, U(z, p))<lim D(min(M, L(z, p)—ca,L(2, p))=2xM

Case 3. pe BE—Bf. In this case it was proved? D(min(M, Ul(z, p)=2zM,
where B is the set of singular points, i.e. set of point p such that w(p, 2, R
—R))>0 and Bf is the set of minimal boundary points of R—R,.

Case 4. peBF. It was proved only D(U(z,p))<oco but as case 3 it can be
proved D(min (M, U(z, p))) =2z M.

Hence ZU(z, p) can be defined. Now &. (&L (2, p))=dL(z, p) by CG+
D)CCG and Cg+b (z,P)éL(Z, P) Hence DU(z’P)=Cg+D(L(z, P)—Cg (z,P))z
&, pL(z, p)—EL(z, p)¥ = L(z, p)—c&L(z, p)=U(z, p). By D(min(M, Ulz, p)))=
2r-M we have at once W (U(z, p))<1. Thus U(z, p) is an F,.S.H. in G with
W (Ulz, p))=1.

Lemma 1. ). Let p, € R—R, and piipeR—Ro—i—B" (p; tends to p
relative to L-topology). Then L(z,p)—lim EL(z, p)<L(z, p)—&L(z,p)-

92). Let py5p*€ R—Ry+BF and p,5p°c G+B: p,€G. Then

N(z, pf)=(1—a)(L(z, p")—c&L (2, p*)): 1Za=0.

Proof of 1). For any ¢>0 we can find a number 7, such that (L(2, p*)<
Enr,L(z,p*)+e for n=n,. Since L(z, p;)—L(z, p*) on CGNR,, lim §L(z, p,)
gl_i_irg conr, L(z, ps) ZcaL(z, p*)—e. Let e—O0. Then we have (1). ’

Proof of 2). L(z, p.)—&EL(z, p)=Nl(z,p;) in G for p,€G. By the as-
sumption lirin L(z, p,) and lign N(z, p;) exist, whence lign ceL(z, p;) exists. We

denote this limit by U(z). Let g be a canonical mass distribution® of U(z)
on R—R,+BE. Assume p has a positive mass in int (GNCv,(p%) (int G
means the interior of G relative to L-topology and wv,(p®) is a neighbouhood
of p* relative to L-topology). Then we can find a number 7, such that G,

has a positive mass on G,,o N Cv,(p%), where G,=E [z € R—R,+ B*: dist (2, CG)

>%] . Since dist(CG+Vpe(p?) Gn,—va(p))>0,

2) Z. Kuramochi: Correspondence of boundaries of Riemann surfaces. Journ. Fac.
Sci. Hokkaido Uni., XVII (1963). See page 101.

3) If p€G, Ulz,p)=N(z,p), we suppose p€BG. Then L(z, p) is harmonic in R—R,,
whence sup L (z, p)<co on a compact domin D and it is clear pU(2)=c&,p(L(z, p)—cGL(2, ).
If D is non compact, consider DNG» and let n—oco.

4) Z. Kuramochi: Potentials on Riemann surfaces. Journ. Fac. Sci. Hokkaido Univ,
XVI (1962).
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Cg+ 7’7?.+i(pa) U(z) < U(z) .5)
Hence by cg.v,,,0L(2, p%) = L(z, p%) (for p*€¢ R— R+ BF) we have
N(Z, pﬁ) = L(z’ Pa) - U(z)>Cg+un+t(p")L(z’ Pa)_0g+vn+¢(p") U(Z)
= Ca+v,, 400 L(2, p) = U(2) =, ,0n(L(2,p)—U(z)). (1)
On the other hand, L(z,p*)—U(2)=N(z, p") is an F,.S.H. in G, whence
o s s L (2, p)—U(2) < L(2, p7)— Ul(2). (2)

(1) contradicts (2). Hence x#=0 on Cuv,(p)NintG. Let n—>oo. Then p=0
except on p+CG. put V(z)=jL(z, p)dy' (p), where ' is the restriction of
¢ on CG. Let a be the mass of g at p. Then 1=a=0, £V (z)=V(z) and
U(z)=V(2)+aL(z,p*). Now V(z)=(1—a)L(z,p*) on G excpt a set of ca-
pacity zero. Hence V(z2)=#£&V(z)=(1 —a)@&L(z,p*). Thus U(r)=(1—
a)ceL(z, p*)+aL(z, p*) and

N(z, p)=L(z, p)—lim §L(2, ps) = (1 —a) (L(z, p) —c3L (2, p7)).

We denote by é(G) the set of points p such that pe R—R,+ Bf, p€B and
pel G. Clearly é (G) is an F, set relative to L-topology by the upper semi-
L
continuity of L(z, p)—&L(z,p) and if p€dG, p€ B(G) if and only if p is an
irregular point for the Dirichlet problem in G by Lemma 1.(2).

Lemma 2. Let piéé(G)+G and p,#p,. Then L(z,p,)—EL(z, p))#

L(z, p;)—c&L(z, p.)-
Assume L(z, 1) — caL(z, p1) = L(z, po) — c6L(2, p2) = U(z). Let n be a
number such that dist (v, (p,), v.(p,)>0, where v,(p;) is a neigebouhood of

p.: relative to L-topology. Now p, é v, (p,) imply
(GNwa(p) 355"

Let V,=G—v,(p)). Then V,D(GNv,.(p,)3p.. Whence
v, L(z, p)<L(z,p) .

By CV,.DCG we have § (GL(2, p:))=cEL (2, ps):i=1,2. Now % L(z,p)| as
n—oco by CV,|. Hence there exist a point 2z, in V., a number 7, and a
const. 8>0 such that f L(z,p,)<L(zy,p,)—6 for n=n,. Hence

C)I?,, ( U(zo)) = Cf;rn (2o, Pz) —ca (zo > Pz) <caL (zo > D2)— ceL (20, Pz) —0
=U(2y)—06 : n=n,. (3)

5) See page 60 of 4).
6) See page 99 of 2).
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By CV,+(v,(p)NCG)Dv,(p:), we have |
CII?,, (z: Pl) + vn(pl)ﬂCgL(z’ Pl) g vn(pr (z’ Pl) = L(z’ Pl) .

z
We proved if a domain 2€p, lim oymncsL(2, p)=0.” Hence for any ¢>0
there exists a number 7’ such that % L(z,, p,)=L(2,, p)—¢ for n=n'. Hence

C]I?'n Ul(zy)= anL (2o, P1)— C]I!;n (&L(zo, p1)= C]IE,LL (20, P1)—caL (=0, 1)
> L (2, p)—cEL(20, p1)—e = Ulzy)—e, for n=n'. (4)

By (3) and (4) U(zy))—6=U(zy)—e. This is a contradiction. Hence L(z,p)
—c&L (2, p1)=* L(z, p2)—caL (2, p,)-

Let p* be a point in G+é (G). If there exists a sequence {p,} such that
pop* and: pop’e G+ B, we say that p° lies on p°. We denote the set of
points p lying on p* by p(p*). Then

Lemma 3. Let p"eG+lL3(G). Then p(p*) contains only one point p°
of G+ B, and L(z,p*)—dsL(z, p)=N(z, p*), where B, is the set of minimal
boundary points of G relative to N-topology. We denote such p* by f(p.).

Let po>p* and p>p". Then by Lemma 1.2) N(z,p")=(1—a,) (L(z,p")
—ZL(z,p%). Hence any function N(z, p*) corresponding to p* is a submultiple
of a fixed function and there exists at most one minimal or inner point p* of

G+ B, in p(p°) such that M(p*)=1 (M(Pp*)=W(N(z,p"))=1 is a necessary

condition for p* to be minimal).® Let p“€G+é(G) and v,(p*) be a neigh-
bourhood of p* relative to L-topology and %,(p") be the closure of v,(p.)

relative by M-topology. Then by peG +é:(G) L(z, p*) —EL(z, p*)=08;N(z, p°) :

05 = 1 and by , =L (2, p*=L(z,p) and CG+v,(p*)DCG we have

5;’-‘N(za Pﬁ) = L(Z, p“)—CSL(z, Pa) = CG+-un(pa)(L (Z, Pa) - ggL(Z, Pa))
= 5ﬁ?7n(pa) N(z’ Pﬁ) *
Let n—>oc0. Then N(z,p*)=zN(z, p")>0, where F=N5,(p,) is a M-closed
n>0

set, whence N(z,p?) is representable by a canonical mass distribution on F.%
This implies p(p”) contains at least one point in G+B,;. Thus p(p®) contains
only one point p* in G+ B, and (1—a*)(L(z, p*)—c&L (2, p%)=N(z, p*). On the
other hand, YW (L(z, p)—&EL(z,p) =<1 by Theorem 1 and IM'(N(z,p*)=1.

7) See 6).
8) See Lemma 4 of 1).
9) See 5).
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Hence a*=0 and L(z, p*)— &L (2, p*)= N(z, p*).

Theorem 2. Let p° be a point in G+ B,. Let fYp?) be the set of
points p in R—R,+ B* (not only in G+é(G)) such that L(z p)—cEL(z, p)=
N(z,p?). Then f~'(p?) consists of only one point peG +B(G). Hence the

mapping f(p°): p“eG+é(G) is one-to-one manner between G+BL(G) and
G+ B, and further f~(p°) is a continuous function of p* in G+ B, but f( 2%
ts not necessarily continuous in G+é(G).
Let pef~'(p"). Then L(z,p)—EL(z, p) is minimal in G and is equal to
N(z,p): p€ G+B,. There exists a canonical distribution p(p*) on R—R,+
Bf such that L(z,p SL z, p*)du(p*). Hence

Nz, p) = L(z,p)—c& )= [ (L(z, p)— EL(2, p)dp(p) .20
Now by Lemma 3 L(z, p*)—2&L(z, )=N(z, g) is minimal in G, where p*€ G
L L
+B(G) and g=f(p*). Clearly L(z, p*)—EL(z, p=)=0 for p& G+ B(G). Since
N(z, p’) is minimal p(p*) must be a pomt mass a at p’ € R— Ry+ B{ and clearly
?»'€eG+B(G). Hence N( 2, pf)=a(L(z,p')—@&L(z,p)) : a>0. But D(N(z, p?)
=1 and M(L(z, p*)—~EL(z, p))<1 by Theorem 1, hence a=1 and N(z, p*)=
L(z,P’)_CGL(z,P) :P € G+B(G) .
L
Suppose there exist two points p, and p, in G+ B(G) such that L(z,p,)—
c6L(z,p)=N(z,pf) : i=1,2. Then by Lemma 2 p,=p,. Thus f1(p is
uniquely determined and f~*(p")e G+ B(G). '

We show f~'(pf) is continuous in G+B,. Let pic G+ B, and pﬁ—ﬂipﬁe
G+B; as i—>oco and let pi=f"(pf). Then {p3} has at least one limiting
point p in R—R,+B*, since R—R,+ B’ is compact. Let {p3} be a sub-
sequence of {pi} such that p5—p and pf—p* : p5=Ff(p5). Then lim L(z, p3)=

j
L(z, p), lim N(z, p) = N(z, p*) and lim (ZL(z, p5) eXiSts, i.e. L(z,p) —lilelch(z, 25
g
=Nl(z, 7). Let p'=f"(pf). Then L(z,p')—EL(2,p')=N(z,t) and p' € G+
L
B(G). By lir ch(z,Pi)zog(hm L(z, p3)=cé (z,P), we have

L(z p)=caL(z, p)Z L(z, p)—lim gL (2, p5) = N(z, ).

Let p(g) be a canonical mass distribution of L(z, p) on R—R0+Bf; Then

L(z,p)=[L(z, 9)dp(q) and [dp(q)=1 by ¥ (L(z,p)) = Ziﬂs.a?n_

R,

L(z, p)ds

10) Becaus §caL(z, p)du(p)=cal§ L(z, p)dp(p). See Theorem 1 of 1).
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=[dp(@)=1. Now
L(z, p)—&L(z, p) = [(L(z, 9 —EL(2, 9))dp(q) = [ N(z, ¢")8(g)dn(q) ,

where d(g)=1 or 0 according as g€ G +LB(G) or not and ¢*=f(q)C G+ B,.
Hence W' (L (=, p)—ceL(z, p) = §6(q)dp(q) by Theorem 6. On the other hand,
by N(Z,Pﬁ)gL(Z,P)—CgL(Z,P>, gﬁf(N<zapﬁ)) =1 égjzf(ll(z’p)_(}g (Z,P))él by
Theorem 1. Hence 6(¢g)=1 if p(g)>0 and Sdu(q)=1=D(L(z, p)—EL(z, p))-
Both L(z, p)—EL(z,p) and N(z, p°) are F..S.H.s in G. Let V,=E[z: L(z, p)
—&L(z, p)>M] and Vy=E[z: N(z,p)>M. Then V,,DV;. W (N(z,p"))=
MD (0(Vy, 2, G))
2r
Niz,p). Also 1=D¥(L(z, p)—EL(z, p) 2P0 Vi 2 C) o MD (Vi 2.G)
i m
=1, because MD(w(Vy, 2, G))} as M—0. Hence V, DV, and o(Vy, 2, G)=
o(Vi, 2,G) for any M. This implies L(z, p)—c%L(2, p)=Nl(z,p?) and p=
L
F U pf)=p' € G+B(G). Since any subsequence pj—p’, {pi} converges to
fY(ps) as pi— 1"

We show f(p?) is not necessarily continuous. Let R—R, be E[0<|z|<1]
=0, and F be a closed set on the real axis such that z,=0 is an irregular
point for the Dirichlet problem of G=2—F, where F= i Fp and Fy is a

KXK=0

segment. Then L(z,p) of 2 and N(z, p) of G are Green’s functions G(z, p)
and G'(z,p) of 2 and G respectively. Then by Lemma 3 there exists a
sequence {p;} such that G(z,p,) converges to a function G’(z,p") with
W (G' (2, p*))=1 and p,—=2,. Hence pf=f(z,). Let p, be a fixed point in G.

Let g, be a point such that g, is so near F; that G'(p,, qi)éi_. Then lim G(z,
) P

=1 for any M, since N(z,p’) is minimal and , N(z, p)=
. M

g¢)=0. For any i we can find G'(z, p;) such that p; lies on a curvc connecting
. and g, and that G(p,, pi)— a(G'(po, p°) as i— oo, where 0<a<1. Also we
choose a subsequence {pj} from {p;} so that p;— =z, (relative to L-topology)
and G'(z, p;)— p* (relative to M-topology): p* #p". Then since p;€G;, p;=
f(p;) and P2, but f( p})—}—i ¥ #p*=f(z). Hence f(p) is not continuous
at 2,.

We call the harmonic dimension of p€(dG+ B) relative to G and R—
R, the number of linearly independent F,.S.H.s with finite I in G and R
—R, which are harmonic in G and R—R, respectively. Then by Lemma 1
we have the following

11) If px is canonical, I (U(2))=§ dp(p). See Theorem 6 of 1).
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Corollarly. Harmonic dimension of p relative to R—R, is equal to
that of p relative to G.

Applications to extremisations. Let U(z) be an F,.S.H. in R—R, with
M (U(z))<oo. Then there exists a canonical distribution g such that U(z)=
[ L(z, p)dp(p)® and [du(p) = s,mf(U< ). Put V(2)=U(x)—£U(z). Then

V(2)=[(L(z p)— L (2, p)dp(p)=[ N(z, 9)6(p)dp(p), where g=F£(p) and 5(p)

=1 or 0 according as ;be G+B(G) or not. Hence V(z) is an F.S.H. in G
with S (V )<s p)<oo and U(z)— V(2)=(eU(z) is full harmonic in
G. We denote V(= )by imeaU(2). Let V'(2) be an F.S.H. in G with I(V(2))
<oo. Then V(z) is a potential such that V(z SN 2,q)dp(q)™® and fd;z

G+B,
=M(V'(z)). Put U'(z SL z, p)dp(q), where p=f"(g). Then U’(z) is an
F,,S.H. in R—R, Wlth WU (= <5dy and U’(2z)— V(z) is full harmonic
in G. We denote U’(z) by ..V'(2). Then U'(z)—cqU’'(2)=V"(2).

Let {G,} be an exhaustionof G with compact relative boundary 9G, .
Since ¢ V'(z) is full harmonic in G —G,,, the solution of Neumann’s problem
(to obtain an F,.S.H. W(z) in R—R, such that W(z)—g V’(2) is full harmonic
in G,,;,; and W(z) is full harmonic in G—G,, ;) can be obtained by smooting
process by dist (0G,.s, 8G,,4.;)>0 for a given singularity of 4 V(2) in G,, and
its solution is unique. It is evident that this solution coincides with (¢ V’(2)).
Clearly ..(s,V'(2))1 as n— co. On the other hand, f~!(p): pe G+ B, is con-
tinuous, we have ..(V'(z))=lim (.q,V’(2)). Hence ..V'(z) is the least F,.S.H.
in R—R, such that . V'(2)—V(2) is full harmonic in G. We have easily
the following

Theorem 3. 1). Let U(2) de an F,.S.H. in R— R, with W (U(z))< co.
Then .(imeU(2)SU(2) and .(mnUR)=U(2) if and only if the canonical
distribution of U(z) has no mass on CG.

2). Let V(2) be an F.S.H. in G with W (V(2))<oco. Then

in ex (ezV(z)) = V(Z) *
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12) See 4).
13) See 1).



