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1. Introduction. Let 2 be a domain with a bounded boundary I' of
R™. We consider the mixed problems for the hyperbolic system of equations

.
(1) Za“-<x, ,gtr,z)z)ujzﬁ, =1,k (6 2)€(0,T)x2,
i ,,
( 1,00, ), 240, 2, -, 27 (0, 2))eD(a) x D(a)
R P > o
X"'XD(LZ'}), j:1:"'yk7
with boundary conditions
(D) ujlp:auj[r:---:a'";j'"ujf,v:O, j=1,--k
or
0 R b
(N) — 4P (x)|u; =(—+P(x)|au; =---
on r on \r
~(2 te@)at ) =0, =1k,
on / r
respectively, where a,,;( x a, D,| =3, " +al,(x, D) it + et ali(z, D)
Y\ o Yo T T g A
+(lower order terms), ai;(x, D)= 3 a/(x)D", D=(D,, -, D,), DIZ}/ : 1 aa ’
jal=n J— xl

d;; is a Kronecker delta, m; is even for all j, and let all of the roots z,(z, &)
(s=1,---,m+---+m,) with respect to ¢ of the characteristic equation

det (a‘,? 5, T, 5)> =0 be pure imaginary and distinct mutually, not zero uniformly

for xe 2 and |¢|=1, where a&,(x, z, &) is the principal part of a;;(x, , &)

Furthermore let a(x, D) be a uniformly elliptic operator such that a(x, D) =

- - K a;;(x) 9 +(lower order terms), a;;(x)=a;(x) are real-valued func-
i 0x, ox;

tions and J a;;(x)&£,>0|¢)* (6>0) for x€ 2 and £€ R*. Moreover D(a)=

H*(Q)nH (2) or D(a)= {uEHZ(.Q);((;—}f—+p(x)>uT :O} according as we con-
\ 071 I
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sider Dirichlet type boundary conditions (D) or Neumann ones (N) respectively,
('}a - is the conormal derivative of a(x, D) at the boundary I" and e(x)e C=(I").
n .

Furthermore we assume that after applying (any) coordinate transformation
UnQ,UnlN—(R*={ye R*; y,>0}, R*'={ye R*; y,=0}) such that on
the boundary the conormal direction of a(x, D) is changed into the normal
direction, the coefficients of the principal part of (1) containing odd power

of rra—a— are zero on the boundary R™!.
y?l

In the present paper we will extend the theory of Calderén-Zygmund’s
singular integral operator to that with boundary conditions and as one of its
application we will prove that the above mixed problems are solved by means
of the method of semi group analogous to the cases of second order. In
§2.1 we construct the theory of the singular integral operators with boundary
conditions on R* and next we extend it to one on the domain 2 with
bounded boundary in §2.2. Here we avoid to use the principle of reflection
as we can as possible, because it will be expected that the theory of our
singular integral operators is extended to that with respect to elliptic operators
of higher order. Finally we show the Energy inequality and the existence
of resolvent in §3.

Concerning the mixed problems it seems to us that J. Leray asked what
ones for hyperbolic systems of equations of higher order of Petrowski-Leray-
Garding were well-posed ([11], the third part, Introduction). Later extending
Cauchy-Kowalewski theorem to mixed problem G. F. D. Duff [7] treated the
mixed problems for the case of single equation and a=4 in the quarter space
(see also S. Mizohata [13] and S. Miyatake [12]). With the progress of re-
searches of boundary value problems for elliptic equations, applying them to
the mixed problems for hyperbolic equations has been considered. In particular
S. Agmon [1] showed that the certain mixed problems where the coefficients
of the differential operators are constant and the domain is quadrant were
well-posed. On the other hand the mixed problems for systems of first order
have been developed by Friedrichs-Lax-Phillips, Agranovi¢ and so on. How-
ever, it seems to us to be confronted with a large difficulty in the process to
reduce the operators of higher order to the system of first order theoretically.
Furthermore concerning the difficulty of the mixed problems A. A. Dezin [6]
pointed out from the general viewpoint of partial differential equations (see
also [9]).

For the simplicity of the description we assume that the coefficients of
the operators are sufficiently smooth and bounded with their derivatives in
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R™ and the boundary I' is also sufficiently smooth. Furthermore we will
be concerned with only single equations (see Remarks in §3). In this case
we write (1) as

2m -1

at ath 1
(lower order terms)u=f, (t, x)e (0, T)x 2.

(1) Luza(x,i,Dx)uz(g;m taya, D)L tay(x, D))u+

This article is the extension and details of our previous papers [3] and
[18]. Finally we note that the necessity for the condition about coefficients
of equations mentioned above is obtained by [19].

§ 2. Singular integral operators with boundary conditions

2.1. Singular integral operators with boundary conditions defined
on R". ‘

Definition 1. Let 57 be the set of o(x, &) such that o(x, &)e Che (R x
(R*—{0}) (this means that o(x, &) is defined on R»x(R™—{0}) and all
derivatives of ¢ with respect to x and & such that the order with respect
to x is not higher than four are continuous), o(x, A&)=0c(x, &) for 2>0 and
for every integer s(=0) we have the following estimate.

(2) > sup (aax )"(jf)”ﬂx,s)sM,(aKoo.

lni<4 xER"
IvI<s |§]= 1

Let Y={¢e R"; |¢§|=1} and let {Y,.,.(6)} be a complete orthonormal
system in L*(Y) such that every Y, ,(§) be a real polynomial of spherical

harmonic of homogeneous order / and LYl,m(E)dZ =0.

Then for o(x, &)€ £7, we can expand it such that

(3) olz, &) = 2201 (T) Y, (€ in L2),

here 01 () = f 0(2,8Y,,@)dS.

Moreover, as well known we obtain the following estimates.

( oy y (=Dl
sup (2 Vi@l <etn )1 ,

the number of m is of order I"* as [ oo,

> supJ< 4 >”0,,m(x)’< c(n, k)M, (a) "% '72!’, where % is an
x

|n) <4 zeR%|

arbitrary non negative integer.

Definition 2. Let U be the algebra generated by o(x, &) and f(x) Ig"’
S
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with the following properties: o(x,&)€ 57, 0(x, &, 8,)=0lx, &,—&,), fla)e
284( B*) and f(a',0)=0, here x,& will denote x=(Zy, ", X,_y, L,) = (X, x,),

=&, 61, 8,)=(&,¢,). For alx, &)€ N consider the singular integral oper-
ator alz, D) as follows:
ale, Dju= P, Fle for welA(RY),
where (Fo)(&) :j e “y(x)dr,
Iﬁ/)l

(Fo)(8) = (22) " [ eola)de  for ve LM(RY), xt=Yxk,

i=y—1, and @(x) is the extended function of u(x) to R™ by defining it to
be the odd function or the even one with respect to x,.

Furthermore for a(x,&) e U, let M,(a) = min(M,(c )+ZM <0J x, &) f;x

]EE,L[» , where a(x, &) =90z, &)+ Zli 9 (x, &)f;(x) E] €W, Then M,(a+a) <
M, () + M, () and M (oe,) <M, (a1> ().

Definition 3. Let A, A2 and A= —4, whose definition domains are

{ue H: (R, a@t (@, O):O}, HY(R®)nHy (R?) and H*(R"), respectively.
x

n

Then they are selfadjoint operators on LZ(H/Z), L (R?) and L*(R™), respec-
tively. Let A, —(/12) A —(/12) and A=(A ) then we see that D(A,)=H'(R™),
DA )=H{(R?) and D(A)=HR").

Lemma 1. Let u(x)e D(A,) and a(x, &)e . Then alx, D)u, alzx, D*u
€ D(A.) where in Definition 2 we assume that u(x) is the odd extension or
even one of ulx) respectively according as the case where we consider A_
or A,.

In what follows #(x) will be defined as above.

Proof. We will show only the assertion for D(/A.), because the proof
for D(A4,) is more obvious than that for D(A_).

Let
Fou@)=[ e sinzg)ulr, x,) dx, (for §,20)
F"’u(§)=4(2n)”‘f”n = sin (2,8, ) u(x, x)dx  for we L*(R™).

Then we find that € D(A_) if and only if F-u(&) and |&| F-u(8)e L*(R™).

For if wu(x)e D(A.) then from F u(g) = ; Fa@), ,, it follows that Fu(§)

and |E]F u(&)e L*(R™). Conversely let F~u(é) and |&|F w(f)e L*(R™). Then
&) and |&|Fa(é)e LA R™), from which @(x)e H{R") and u(x)e H'(R"). Next,
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to show wu(x)e Hy(R") let us set partial Fourier transformation F} such that
for u(2’, x,) € L*(R7) '

£

(Fra)@,x)={ ¢ ul, ,)de .

-

Then we see that

oo

F e,z = 7 [oin @8 0@ &)

0

Furthermore from the hypothesis it follows

SO ‘(F 7”) (El5 571)‘(15”-
0 k 0

<([uvair we et ae) ([T 0+arae) <o,

and
(Fl u) (E” xn) 12

< cf(l +&)(F u)e, &)

Z(ZE,,SOO(I +&)'ds, for x,>0 and a.e. &,
0
from which it implies by virtue of Lebesgue’s theorem

(F (@, 0)= 7 lim Swsin (@,8)(F w)(&, &,)dz,

'Jl'”HO 0

- "77; Soo lim Sin (’r71€,z>(F 7u> (S’, Sn)(ls:n = O for a.e. E’ >
~ 0 2,0
hence
(5) tim (* (R e, 2" s =" lim (R, ) @
z,—0 b ooz, =0’

— S  (RwE,0f dg =o.
On the other hand we see that
(6) |7t w) e = o [ (FwE a)dE for 2,30,
From (5) and (6) it follows
iirgo gfm[u(x’, x,‘)f dx' =0,
that is, u(x)e HI(R?).

Now we will prove a(x, D)ue D(A_) for ue D(/A_) using the equivalent
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relation stated above. Let a(x, &)= f(x) E__"I and f(#/,0)=0. Then
!

a(z, Dju=F'a(x, s)F‘j = flx)F’ % Fi

From f(2',0)=0 it implies a(x, D)u€ H;(R").

Furthermore let a(x, £)€ £7 and a(x, &, &,)=a(x, £, —&,). Then by virtue
of (3), (4) and regarding that a(a:, €) is an even function with respect to &,
we see that

( 7 ) a(.r, ) =l§ al,m(x> YlJ,rm(E)

where Y/, (&) :—; (Y,,"L(E’, &)+ Y, (&, -—En)> and that it converges uniformly

on (z,8)e B2 x (R"— {0}).

Then we see by the characterization mentioned above that every
€)Y, (D)€ D(A ), because Fa () Yy (8 Fal, so=apn(2)F 'Yy (@) F u,
Y (& F u(§) and |6 Y/, E)F u(€)e L*(R?). Hence we have only to show
that lZ A ()Y, (D)u converges in H'(R®). But it is easily seen from the

fact that this expression converges in L*(R®) by virtue of (4). Furthermore
from (4) and by the fact that Y;',, (D)4 u=A4_Y,;, (D)u for ue D(4 ) we see
that above expression converges in H'(R").

We also find that a(x, Dy*ue D(A.) for ue D(4.). To prove this let

a(x, &)=f(x)-22-, f(«’,0)=0. Then for every ve Cy(R")

(a(x, Dy*u, A v) 0,50 = <u, alx, D)/ij) 250 = (u fla) 717 v )

. 1 ] ﬁﬁari J—
= ( 2, v) :

from which we find that

i(a(x7 D>*u7 AJU)::,)O} <CH“HI'L’(”bHUHz,po bl

where Nzl >0 = S LNuldr and (u, v), 5 :SH" uvdzx for wu,ve L}(R*).

This implies a(x, D*ue D(A*)= D(A.).
Furthermore let a(z, )€ £Z7 and al(x, &, &,)=al(z, &,—¢&,). Then we find
that a(x, D*u=> Y, .(D)a;, ,(x)u. Moreover every term on the right is in
Lym

D(A_) and similarly to the case stated above this expression converges in
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H'Y(R"). This implies a(x, D)*uve D(4 ). q.e.d.

Theorem 1. Let a(x, &) and B(x, £) €. Then for u(x)e D(A.) we ob-
tain the following estimates:

(8) (ale DIt~ Ao, D)ju <CMy (el
(9) (ala, DA, —A.alz, D\*>u o) el 50+
| 1
(10) (atz, (2, D)) Asu| %>O<CMZ([SH]H> (@l o0,
) ‘(a —(a)la; D)) Al

<CA4([1 ] )( )MZn(;B)HuHx,pO’

where o*(x, D), (a=f)(x, D) are the operators with symbol a(x, &), a(z, &) B(x, &),
respectively, | | denotes Gauss symbol and the constant C depends only on
dimension n.

In the following C will be used to denote various constants depending
only on #n.

To prove Theorem 1 the following Lemmas 2-11 will be needed. Here-
after the proofs of Theorem 1 and Lemmas 2-10 except Lemma 11 will be
carried out only the case of 4.. In the case of /4_ the proofs are obtained
by regarding #(x) in the proofs mentioned below as the odd function.

Notation. For a(x)e B*(R”), k: non negative integer, let |a|, be the
norm of a(x) such that

lal = Sup( 9 )"a<x>,
lal<k z€R ox |

and for a(x)e B (R), k: non negative integer and & is a constant such
that 0<8<1, let |al;., be the norm of a(x) such that

laly.,=|al|.+ Hélder constant of order §.
Lemma 2. Let u(x)e D(A,). Then A.u=Aul, 5.
Proof- Similarly to the case of D(4_) in Lemma 1, let

Fru@={_ e cos (z,6)u(x, z,)dx,

Fug)= 4(27r)’”jme“'f' cos (x,&,)ulx’, x,)dx for w(x)e L*(B™).
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Then
(FuE) = L (FOE)
and (F 10§ = 2(F')(E)| 0

From our definitions it follows that
Fr(4.u)(&) = |&[(F*u)€) €.>0),
and that for v(x)e D(A)
F(Av)(&) = |€](Fv)(€).
Thus it implies
Avu=F "F'Aou=F"(|g|(Fu)(@) = 2F' (1§ (Fu)(@))

@, >0

= F'(jglFa@) =4z

,>0 ,, >0

Lemma 3. Let a(x)e B(R*). For u(x)e D(A.)

(al@)1, =1 a@)u <Clal ]l

‘1'”

Proof. Let us decompose a(x) as follows:
a(x) = a, (@) +a,(2)x, + a2, x,) 2% = b, (x)+ b,(x) ,
here b (x) = a)(x)+as(x, x,) 2, by(x)=a,(x)x,.
Furthermore choose ¢(x)e B(R”) such that 0<¢(x)<1, ¢(x)=1 for
0<x,<1 and ¢(x)=0 for x,>2.
Then

a(x) = o(x)bi(x)+ ()b, (x) + <1—¢(x)>a(x)
= a4(x) + as(x) + ag(x) .

From our decomposition we see that

t4(x)e B R,
N [ a(@)|z,| for |z,|<1, j—
5 = 5\« E“B 1 7: 5
G () | o for |x,|>2, (%) (£%)
and Gg(x) € B(R").

Now by virtue of Lemma 2 it implies
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<a(x)A+—A,:a(x)>u

= (@(2)4,—4.a <x))a'

2 ,>0
= (@A —AG) U] 50+ (G5 A —NTs) | o o+ (@A —ATe) U] 4 50 -
Because of @, and @€ B' (R, the first and the last terms are bounded by

Cliall, so(=Cllull+,>0) from the theory of the ordinary singular integrals.
Hence to complete the proof of Lemma 3 it suffices to prove the following

Lemma 4. Let a(x)e B (R") such that

[ a@)zx, for 0<z,<1,
alx)= )
| o for x,>2.

Then for wu(x)e D(A.)

<a(:c)/1‘ —/la(x))u"

o

L S<Clalsllulle,>-

Proof. Since Cg(L7) (this means the set of all functions u(x) such
that « is C* function with compact support contained in [I”) is dense in
D(A.) it suffices to prove this lemma for we Co(R?).

Here we remark that hereafter we may prove following Lemmas 5-11
for u(x)eCy(R?).

Let R; be the operator from L*(R7) into itself such that

(FR)E)—=- Y . Si(F)E)  for v(x)el(R).
V=1 ¢
From this it follows that
Ni=3 9 Ra=%R,-? 7,
i1 dxy =1 7 dxy

and  (a(x)d—alx))z= jl (@) R,—Rala)) aa Z— 3R, a‘?j 7.

Where oa is not continuous but bounded, so each of the second term on
:ll‘j

the right is bounded in L’-sense. Therefore we may investigate each of the
first term on the right.

To this end we set
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- Sm-y;:‘ <Zi(x)_ 5(’!/)>Rj(x—y)27(y) cos 7,dS,

+ Slxyp:az/jj’ W) R, (x—v)#(y)dy
i Slz—yl}: <6(x)— &(y)) (a%j‘RJ>(x—y)Z7(y)dy

= v, () + vi(z) +vi(z),
where S, = {xER"; |z| :s} .

Then we may show the following estimates:

l‘if? loi(@)]|2,50 < Clal:. 5Hqun>o (i=1,2,3)

We at first estimate v!(x).
vt<x>=g D) =8W) |z y|R,(x—y)aly) cosT,dS..
lz—yl=¢ Ix_yl
Hence

Lz + ew)|edS,
&

]vf(x)léla(x)ilcg &=

S,

- CIa(x)IISS |2z + )| S, .

t

The right hand tends to Cla(x)],0,|#(x)| as e—>0, where “’":Ss ds,
Therefore
i @l < Cla(all, el

aa—ﬁ)(x) as ¢—0, hence

Next v%(x) tends to v.p. R, (x)*(

i (022, o< (@) 7 (@], 0= @@ @), o

Finally we estimate v?®(x). We decompose it as follows:

o) =S dy + S dy
e<jz-y|<1 lz—y| 21

= vi(x)+v° ().

(e

ox;

From |v*(x)| < 2l|a(a)l, *|#(@)] andgé ~R,(x) =0(|z| "),
L5

|z 21
it follows
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i

Jz| >1] 0L

\lv“(?f)\lzn>o<2|6(x)|o<S leldx) N2 (@)lz,50 < Cla(@)lollee(2)]l2,50-

Furthermore we estimate v!(x). ,
We see that d(x)=a(x) and @(y)=a(y) on e<|x—y|<1 where x,>1. Hence
by virtue of the theory of ordinary singular integrals it follows

lim [[o2(2)]l, = lim [oi(@)dz) < Claly.llule, o

(zeR™;2,,>1)

Moreover we estimate vi(x) where 0<x,<1. By &(x) set the odd extension
of a(x) to R™ with respect to x,. Then

o= (aw-aw) (—"”—~Rj>(x—y>zz<y>dy

e<lz-yl<| ox;
" S:&.’x-ykl (5(?/)—5(1/)) (i Rj>(x"y)&(y)d?/

= v(x) +vi(x) .
As a(x)=a(x) on x,>0 and a(x)eB'*’(R™), vi(x) is estimated similarly to
the case where x,>1 of v!(x). Hence

tim ot @loca,cr=lim ([ Jer(a)id))* <Clalylale oo
=0 =0 \J (zeR";0<z,<1}

To finish the proof we may estimate only v’(z). As @(y)=&(y) on y">0,

de=2{  at LR )e-nama

e, <|z-yI<1 J

Yp<

‘ P _
=2 S a'(y")yn (——- Rj) (@' =y, 2+ y) a0y, —v.) dy,
aslal =y En i y,|<1 0x;
?/7l

where ¢, =distance <x, {x,=0} > .

Hence

@l <laliC,, v (12 —v'| + 2+ ) 2l —v.)ldy
+

<Clah{,, (1#' =9I +2.+v.) " 12, —vldy .

R?
Using Hilbert’s inequality, we see that
1wl (@)l2, 50 < Clalillee (@)l 50-

From the above statements, by passing to the limit, we find that
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(a0t ~d.al@))u|  <Claliillul.,s  for weD(A,).

u”zn>0
Lemma 5. Leta(x)e B (R"), AE)€ET and A&, &)=A&, —¢&,). Then
Jor u(x)e D(4,)

L <ClalM, H(A) a0

n

<a(x)A(D)/l,,,——A(D)/La(x))u

i:c”>0

Proof. We define A(D) as follows:

AD)v=FA@EFv for ve L*(R™).
Then A(D)uzA(D)ZZ[an for ue L*(R%). From this and Lemma 2 it follows

\; <a(x)A(D)/1+ —AD) A, a(x>) u

i, >0
:“‘i <a(x>A(D)R]—A<D)R]a(I)> o _ 3 A(D)Rjiaﬁ;&
J{j""l axj ia axj ;‘)mn>o
- (5 A r ~ ou | nol o3
<3 (@@ ADR~ADRa)2L|  +% ADR %a .
jnl axj “‘x71>0 =1 I axj :\1‘71>0

Second term on the right is estimated as follows:

EIADR-Z 7 <ClalMy(A) i

J=1 7 lla,>0

Hence we shall estimate the first term on the right. For veL*(R™),

F <A (D)R;o) :471 1A(‘) r—éfFv and A(§) %— is of positive homogeneous de-

gree zero. From this, provided S A(g) —E:jrdz =¢;%0, dividing :/1 1~A(E) é-’[

into A,(&)+-", it follows that there exists a function f(x)e &*(R*— {0}) of
Wy,

homogeneous degree (—n) such that

F(A@)@) =vpfle), | fladsi=0 and
S sup Dfla)|<C % sup| DA (&)

lal<i |z]>1! la| <mt+1+k 2] 31

<C % sup|DA@E)].
la|<mtl+k |€>1
Replacing R,(x) in Lemma 4 by f(x) obtained above and making use of £=1
in the above expression, we can prove the following estimate similarly to
that used in the proof of Lemma 4
(@ ADIR,~AD)Ryat) S|

L |izy,>0

< C|a|4M,w2(A)HuHx >0 -

n
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Therefore

(al®)AD)4, ~ADI A al@)u < ClalMy ol A) |l sn. ded

| I x,,>0
The following Corollary is obtained by the same method used above.
Corollary. Let a(x)e B (R?) and AE)e 57. Then for ue D(A)
(ala) A(DU—AA (D)) < Claly Myl Al

Now, for 7)(E)=—|§E”| define the operators 7;(D) and %(D) as follows:

(D) = Fy(@) Fit, p(D)u=n,(D)i for wel*(Rv).

‘zn>0

Furthermore for convenience of calculations set 7*(D) as follows:
7(D)u=F(7@) Fa|__, for wueL*(R").
Lemma 6. Let a(x)eB'(R”). Then for ueD(A,)
< Clalillullz,>o -

1 o
Proof. From n(D)Aiu—r\/— S .

and Lemma 3 it follows

< 9(D)(al2)4, —4.al@)u_ +5D), alzju—al@)(D)A,ul.,m

S |
<Clalllal o0+ 2 —a@u—alz) 2L
‘.\ n axn ‘“”>0

<Clalalulls,>o+Clalflull .,
Lemma 7. Let flx)e B (R"), f(«',0)=0, A@E)€Ey and A&, &)=
AE,—¢,). Then for ulx)e D(A,)

>0 < Clalyflul| 2, >0 *

v

(FnDAD~ADf D) A <CIfluaMyolA)llull

1

Proof. We see that
p(D)AD) A= F'(7@AQ | Fr),  =F(A©&.Fr)
1

:F’(A(E)F<¢1 ; g;f))l o = A(D)<§£Z>'

and DDA = 2 AD(F o)

i,

z ) — 1s the odd func-
0x, ||zn>0 ax,,
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tion, from which and the theory of ordinary singular integrals it implies

“ —A(D)f()y (D)>/11u‘;‘

1T, >0

=\—.(f< DAD) ) —ADF@ T

ox, ox, ‘

<C|F @] Mol <CIF(D)], Mol Al 0.

Lemma 8. Let f(x) be as in Lemma 7. Then for u(x)eD(A,)

(@D A~ f@D)u)  <CIflulalayso.
Proof. From that %, (D)% is the odd function it follows
|(FemD .~ 1. 12 >qu y
= |7 (@) (D) 47— A F (2) 0 (D) ]| 1, 0

Lemma 9. Let f(x) be as in Lemma 7. Then for u(x)eD(A.)
(AamD)* = FlamD) A u), L, <Clfhalale,so
Proof. Let v(x)e Cy(R™). Then
((f@nD)* = F (@)y(D)) 4.4, )

’(f( A=A @)D

Ol flisslil] z,>0 *

7l>

z,, >0

(u oo — (F@mDI4, 0, v))
= (w, (4. fl@pmD)=fl@mD)A.)v)
+ (w0 @) (D) A.0) 50— (F(@)9(D) At 0) 50

From Lemma 8 the absolute value of the first term on the right is bounded
by C|fli:lulls, sollvlle 50 The rest terms on the right are calculated as
follows :

, A, fl@yp(D)v)

Z,>0

z, >0 z,, >0

:<u, f(x)%T%)w—ﬁ @ ”)

From this it follows
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(s @nD)1.0), —(F @D d o), <CLFLulysolvlh,s0-
Hence

(A2 7(D)*~F @D 4.1, v), ,, <CIF sl sollolhes0
Because that Cy(R?) is dense in L*(R%), it follows

((f@n(D)* = F @nD) Ao, L <CIf sl

1

)

2>

Lemma 10. Let f(x) be as in Lemma 7. Then for u(x)eD(A.)

(D f @D~ @PD) A <CUflrdluls,so-

.

Proof. We see that
v(D>f<x>v(D)A+u=F';7<5)F(7<x)# o )I

V=1 0z, Iz 5
and (D)4 u="F'9E} 6| Fii|, 5= F'y()F {756;‘ from which it
follows
| (n(D\f(@)7(D) = f (@) (D)) A u \
< (Fo@FF@—F @ F e F) ;; ’wo

g.e.d.
Now decompose Y, ,,(&) as follows:

Yl,m (S) == Yl,m (5,5 En)

= (Yt £+ Yo, =) + - (Yaml&' )= Yem (€' —22)

= Yle(SG En) + Yl:m(éla En)‘
Then we find that every Y i(&, E,)((Ylfm(é’, E,,)) becomes an even (odd) func-

tion with respect to &, and S Ylfm(é)dZ':O:S Y, .8d2.

Lemma 11. We have the following estimate for every [,m and «.

Il 9\« + ’
sup / (”a : ) Y. (€, 6.)

< SuP |‘ <§5"> ) Yl,m(éls En) .

Iélzll
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Proof. We see that

2 0 - !
A - Ylm /’ T Sn
() Yomiere () Yoot =21

for every [, m and a«. From which it implies the desired inequality. q.e. d.
We shall prove Theorem 1 using the preceding Lemmas.

Proof of Theorem 1. Similarly to the proofs of Lemmas 3-10, we may

calculate this theorem for u(x)e C¥(R?) and v(x)e Cy(R®) if it needs. Without

loss of generality, it suffices to prove for a(x, &)=alx, & f(x) é’; and Bz, &)

=b(x, E)g(x)f” (eA). By definition 2 aflx, &) is the even function with

I¢!

respect to &,. Therefore, as stated in the proof of Lemma 1 we see that

alx, &) =2 a, ()Y, . () = Za, X)) Y (6. We furthermore remark that 4.
L,m

»mn

Y . (Du=Y;,(D)Ad,u for uec D(A.).
Proof of (8. We see that

a(x, Dju = F'flx)y(§)alx, § Fil, 5
= F'fx)9(&) X a1, () Y. 10 (§) F |50

I,m

= 2. (2)fl2)n(D)Y . (D)u.

l,m

From this
alx, WA, —A,.a(x, D)
= lZmal,m (@) fla)y(D) Y, (D) A, — A, 3 g2 fl2) (D) Yo, (D)

Z,m

= T @) (f@)9(D) 4= 4. fl2)7(D) Y1 (D)
+ 3 (@) 4. = 4.a,,,(2)) fl2)9(D) Y (D).

z,m

Hence applying (2), (4) and Lemma 11 to all the terms, Lemma 8 to the first
term and Lemma 3 to the second term on the right we find that

(ale, D)4, —Lalz, D))u

i ‘:x: >0

|f[l +4 Hzn>0
FCM @ T L% U711l P a0 < CMa (@)t -

n -2 (n Z)

<CM,,(a )Zl

Proof of (9). Using (8), we see that
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((ate, D~ duat, D) 0),,
—ﬁ<<+axD—MxD)>> o0 SOV (@)l o010 -
Therefore
(alw, D, —duale, DF)u, L, <CMyy(@) oo
Proof of (10). We see that
(a(z, Dy —a*(x, D)) 4.
= 2 (Yin (D) (f@)(D)* @10 (2) = @1 (@) F (2)7(D) Y (D)) A,
= Z (YD) (f@)nD)* () 4.~ 4,a,.0 )
+ 5 Vi (D) ((f2)n(D)" = (@) (D)) d.a,(2)
+ 2 (YD) F @)9(D) = £2)9(D) o1 (D) 4,1, ()
+ DS @0(D) (YD) ()= 21, () Vi (D))
+ 5 F @) (0(D)ar (2=, ()7(D)) 4.Y 0 (D).

Hence applying (2), (4) and Lemma 11 to all the terms, Lemma 3 to the first

term, Lemma 9 to the second term, Lemma 7 to the third term, Lemma 5
to the fourth term and Lemma 6 to the last term, we find that

il

(alz, D~ (@, D) d.u

!xn>0

(n—2) -2+ o
<Cn I E T M@l 0
%(71 2) —2n+ - n
FCR L f L L M@)o
+ C;lfll Zz(n 2)<mzl~z( n]+1)+__ln ZMZ([an]+1 )”u”xn>0
([z"’] ) n—2 Z(n 2) +n+2
+Clf 2l S M3y (@laclls, >0

:}(71—2)

FCIAEE
z

<CMy, @l o

Proof of (11). We see that

M,,.(a)|u H.r”>0
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(@), D)u = F'f(x)n(&)a(x, &g (x)n(@)b(x, &) Fil, 50
—F(@)g(@) F'(5(8))" alx, §)b(x, &) Fit, 5
)

o (X) Y7, (8) pqup,q (@)Y, (&) Fit, 5o
=2 D an(0)b, ,(x)f(x)g(x)F(D)Y;,,(D)Y,,(D)u.
From this

(a(x, D)B(z, D)—(asf)(x, D))
= % a1, (2)f(2)7(D) Yia (D) £ by (4)g (@)9(D) Yy, (D),
— 3 X arn(@)b, o (@)f(@)g ()7 (D) Y, (D) Yy (D) A.

,m p,q

= 3 S arn (@ f@)(D) Yin(D)b, () g(@)n(D) 4. — A,g ()9 (D)) Yia(D)

L,m p,q

+ 32 2y (@107 (D) Y (D) (b () A, — A,by , (2)) g (2)7(D) Y 3 (D)

Z,m p,q

+ 3 Dy @) 0(D) (Vi (D) A, by ()= o (2) Vi (D)A.)

Lym p,q

x g(2)y(D)Y;,(D)
+ 32 3y (@) f() (2(D)by 0 () by o (2)7(D) A, Y, (D) g (2)7(D) Y (D)

I,m p,q

+ 3 8 ar,n(@)by o (@)f(2)7(D) Yiin (D) (A.g (@) (D)— g (2)9(D)A.) Y, (D)

L,m p,q

+ 5 8 a1 (2)by, (@) f(2)7 (D) Yiin (D) g (2)9(D) — g ()9(D) Yiin (D))

X A,Y3,(D)
+ 2 1 0 (21 @) (5(D)g (2)9(D) g @17 (D) 4. Yia (D) YD),

Hence applying (2,)(4) and Lemma 11 to all the terms, Lemma 8 to the first
term, Lemma 3 to the second term, Lemma 5 to the third term, Lemma 6 to
the fourth term, Lemma 8 to the fifth term, Lemma 7 to the sixth term
and Lemma 10 to the last term, similarly to the proof of (10) we find that

o SCM o((30) 1) (@) Moo (B) 2]l 250 -
qg.e.d.

(alx, DB, D)~ (aef)w D) 4.,

|
; || ®n>

Furthermore we consider the singular integral operators with boundary con-
ditions on R™ for more extended symbol.

Definition 4. Let U be the set a(x, &) such that
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alx, &) = iai(x, &), a;(x, &)e N and for every integer s(=0), there exists
i=1
M, (a)(< o0) such that

(12) LM, (a) < Mo

For a(z, &)€W consider the singular integral operator a(x, D) as follows:

0

alx, D)lu= Y, a,(x, D)\u in L*(Rm") for uel’(R™).

=1
Here we remark that a(x, &)e 57 is in 9 if and only if a(x’,0, &) is an
even function with respect to &,.

Theorem 2. For the symbols a(x, &) and B(z, &)e N, alx, D)u, a(x, D)*u
€ D(A.) for ue D(A.) and the statements of Theorem 1 are also valid.

Proof. The first statement is shown by virtue of Lemma 1, (12) and
Theorem 1. The last statement is shown by virtue of Theorem 1 and (12)
regarding a;(x, &) and B;(x, &)e A. Hence we prove only (11).

(alx, DB, D)= (@ B)(a D)) dewe

< (Zawln DB, D= e )l D) At ,
<3 (owln Dfy(n Di=laefyla D) Ao,
<CZM, @) Mol [l o

<CIM,, @) 5 MalB)lle, o

<CM (@) Moy, (Bl eelly>0 - q.e.d

2([$2] )
Lemma 12. (Kohn and Nirenberg see [8])
Let o(x,8) €U and o(x, &)=d>0 for xe R* and |&|=1. Then for suf-
Jiciently large k>0
(ole D, 4R > (d=efl o+ (kP o
Sfor ue D{A.), where ¢ is ah narbitrary small positive number, k>0 and P

depends on n, ¢ and «.

Proof. We see that

(o, DA +R)u|

L2, >0

= |lod.ull} o +% <(a/L_,u, )y 5o+ (u, o/liu),,nx,) + Rl L,



20 T. Shirota and K. Asano

We at first estimate the first term on the right. Regarding that ¢(x, D)=
o*(x, D) since o(x, &) is real,

(01, 04 00), 50 = <0Aiu,(a*‘—o*)/liu>z o

+ <(a co—0co0) A, Aiu)> oo Tlocod.u, Aitt) s 5

The first two terms are bounded by e A.ulli oo+cle)llull} 50 by virtue of
Theorem 2. Let us estimate the last term on the right. From the assum-
ption we can choose ¢,(z,&) € 2 such that ¢(z, &f =(d—¢'f+(0,(x, )P, d>&' >0,

o(x, &)= >0 for xe R, |&|=1
Then
(0°0/1+u Astt)e, 50
= (d—&VAulls, 5o+ (0100140, Aste), o

= (CZ—E HAtuHSZr">0+ <(0’100‘1—0'1 . Ul)Aiu, Aiu>xn>0

(01/1+u( —01)A+u> 50+(01/1¢u, o Aitt) 5o -

Tp-

The second and the third terms on the right are also bounded by e|[4.u|} -
+c(e) lulli 5o by virtue of Theorem 2. Therefore

odsulls 5o = (d—e'Plldculis, 50— 26 [ durll? 50— cledlullZ, 50 -
Next we estimate (od.u, u), 5o+ (¢, 04d.1t), 5. From the assumption
g(x, £)=d>0, we see that <o(x,$)>%6 9.
From this

(0A+u> u)xn>0 = (G%OU%Aiu’ u)xn>0

= (Azobu, ¥ 5o+ (04— o) dsobu, ), |
n

+ (ohotde— Aot ), + ((oFoot—ob-ab) duuy ), .
z,,>0 z, >0

By virtue of Theorem 2 the last three terms are bounded by C|«|% .,. From
(dso%u, ohu), 50>0 it follows that

(13) (0d.u, )z sot+ (2, O'Aj:u)z 5022 CHqu >0 ¢
Therefore
lods +Rul = (d—e FllAutdl?, 0= 26 Atel2 o= cle)llael o0
— Chllu|: >0+k2HuHx >0
By setting % sufficiently large and &, sufficiently small (>0), we obtain the
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desired estimate. ge.d.

2.2. Singular integral operators with boundary conditions defined
on 2.

We at first describe the coordinate transformations, from which we reduce
above ones to singular integral operators with boundary conditions on RZ.

Lemma 13. There exist a finite covering {U,} of £ and diffeomor-
phisms T, from U, into R™ such that the following 1), 2) and 3) are satisfied:

1) If Unl'x¢, then T, U,n2)c R, T,Un"CR*" and T,U,nI)
contains origin.

2) Let alx, D) be the principal part of alx, D) and let b, (y, &)=
Zb§‘}( )68 161 P =ao(T y), AT )@)€ " for ye T.(U.,) and &€ R*-{0}, then

bnj( )=0 for y,=0 and for n=j, that is, the conormal direction of a(x, D)
at I' transfers to the normal direction of the surface B" ', here dT, is the
differential from the tangent space T, to the tangent space Ty ., and dT}
is the dual differential of dT, from T7 . to T, .

3) If UnUnIl'x¢ and yeT,(U.nU,), then the n-th component of T,
(T, '(y)) is equal to y,.

Proof. We can choose a function ¢(x) such that ¢(x)e C°(R"),
grad ¢(x)x0 on U(I') and ¢(x)=0 if and only if x€ I". Furthermore for x,€ I"
there exists a diffeomorphism S’ from some neighborhood of origin U’(0)
(cR*) into I' such that §'(0) = x,.

Now, for any %’€ U’'(0) we construct a curve S(y’, y,) transversal to
I" through S’(y’)eI’. To this end it suffices to solve the following ordinary
differential equations:

(14) DY), 5 a9 (St ) 2 (Sww)  i=Lem,

ox;
S(y',0)=S"(y") for '€ U'(0).

Suppose that S(¥’, ¥,) is not transversal at ,S'(y’), that is, there exists
A=(4, +++, A4,-1)€ R™"! such that

S at @) % ()= 5 2 % ) i=1,n,
axj ay/c
where x=8{W)= <S{(y'), "',S;L@'))-

From ¢(S8(y"))=0 it follows that
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Z":_‘gg*asi 0 for k=1,---,n—1.
i=1 ox; 0y,

Hence

LIWIRE B o 5% _
= A =Lk =0,

which is a contradiction for grad ¢0 and a(x, &) is elliptic. Therefore
Sy, y,) is' transversal at S'(y’).

Consequently, if we set U(0)=U"(0)x {y,; |y.|<e} for sufficiently small
e{>0), then we see that S indicate a diffeomorphism from U{(0) into R”.

Denote U=.S(U(0)) and the inverse transformation of .S by 7. Then
we find that a finite covering {U,} and diffeomorphisms 7°, are obtained as
I' is compact. Consequently, from the construction 1) is shown and 3) is
found from the facts that a,;(x) and ¢(x) are given in global and from the
uniqueness of solution of the equation (14). Now we show 2).

From  b,(y, &)=a(T:(v), dT2)(€))
= 2 (Band(8.00) Ze(5.0) T (S w)s) or fel=1
it follows that
15) b5 = Sau(S.) %7 (S.()) iail (S.(0),
where T(x) = (T, (@), -+, T., (@)

Furthermore from ¢(S,(y’, 0))=0 we find that there exists a function ¢(y)€
C*(R* such that ¢(y,0)x0, and ¢(S.(¥', v,) = v.¢(y), that is, o(x)=
1., (@) (T (x)).

From this and (14) it follows that

0S., / 0 (T, T, /
e D, 0= Hag(S.iy,0) S (5.0, 0)
0 aTn ’ i
= La(5.,0)) S (.4, 0))p (v, 0).
By (@,;) set the inverse matrix of (@{}). Then from (16)
oT, ’ ~ ' aS., ’ -1
S (8., 0)) = Zaw(S. (v, 0)) ' 0) (¢, 0) "

Substituting this into (15) setting v, =0, it follows that
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b, 0) = Kall (8.0, 0) Daw (8.0, 0) Do 1. 0)
x 0o (5.0,0))- (90, 0)
= o Dee w0 Tes (5.6, 0)- (010, 0))
=% Py, 0) 7l (8.0,0)) (9t,0))
=35 (90", 0) q.e.d.

We now take a partition of unity {¢,} with respect to £ such that
N .
Lex)=1 on 2, gue D(a) for ue D{a) and {Supp ¢,} is a star-finite refine-
é=1

ment of {U,} which is defined in Lemma 13 and also if Supp ¢;nI"x¢, then
(Supp ¢;°nI'x¢, here G° is an interior of G.

Definition 5. Let N, be the set of o(x, &) such that o(x, £)e 87 (2) < (R”
—A{0})) and for Supp ¢;nI'x¢ and Supp ¢,NSupp ¢, ¢

(Teo 00)-5( T ), @T)E)- (Tuep)e .
In the above by E7(2:<(R"—{0}) we mean the set being replaced R by
Q in Definition 1, U,DSupp ¢,YSupp ¢;, (Twou)(x)=u(T, (x)) and (T, (y),
dT5)E) =W o(T W), @TH)E) +(1—p(y))o(T,74(0), (@TX)Q) for dly)e
Cr(T.(U.)) such that ¢(y)=1 for ye T.(Supp p,VSupp ,).

Definition 6. For o(z, £)€ N, consider the singular integral operator
a(x, D) as follows: for ue L*(2)

olx, D)u= },0:(x, D)u.
7

Where if Supp o;nI'=¢, we set
O-ij(xy D)u = SO,,;(.T))E(J), D>50J<x)u >
here @, = r(a)olw. )+ (1-¢i(@)olm, &) for pu(xeCr(RY)

such that ¢,(x)=1 for xeSupp ¢;, Supp 0,2, x,€(Supp ¢, and &(x, D) is
the ordinary singular integral operator. Furthermore if Supp ¢;,nI'x¢ and
Supp ¢.NSupp ;5 ¢, we set

Ges(, D)= T ((Twog) - 5( T (w), @THD,))(Tueo 10
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here U,DSupp @ VSupp ¢;,  is defined by Definition 5 (see Definition 4)
and (T} cw)(x)=w(T,(x)). Finally if Supp ¢;,nI'*c¢ and Supp ¢;nSupp ¢,
=¢, we set

g, Dlu=0.

Definition 7. Let A. be as follows: for ue D(a%)
A=Y Aogsu.
57

Where if Supp o;nI'=¢, we define

Aseu = 04(2) N ay (@, D) Ap;(@)u,

here iy & =)V (w5 |+ (1) V(20 £, dufa) s asim Def

nition 6 and x/?;;’(x, D) is the ordinary singular integral operator. Further-

more if Supp o;NI'x¢ and Supp ¢;NSupp ¢;5¢, we define
Ay =TF (Toop) Vb, (v, D) A Toopsue),

o~

here U,DSupp ¢;YSupp ¢;, { b. (y, D) is defined by Lemma 13 and Definition
4 like as Definition 6. Finally if Supp ¢;,nI'*%¢ and Supp ¢,NSupp ¢;=9¢,
we define

Zﬂ-,ju =0.

Then we shall show that the definitions of ¢(x, D) and /. are invariant
with respect to the choice of U, satisfying Lemma 13. To this end we may
prove the following Lemmas 14 and 15, using theorem 7 in [15] (page 247).

Lemma 14. For o(x, &€ A
lo(x, D) Ayu— ordinary singular integral operator o(x, D) Au| 30 S Cllatllz, >0
for ue D(a}) with Supp uC {xe R ; x,>d>0}.
Lemma 15. Let T be a diffeomorphism fr_o_m (Rz, R,) to (R, R%,)
and satisfy 3) of Lemma 13. Then fo?* a(x, &)eN, ¢,(x), p,(x)eCy (RE)
| To(g0(@, D) Aupit) =(Tuog) (v, D AToopre) |, < Cltlla,so for

(T (y), ([dT*)(n))

] e and oz, &) =oal(x, £)|&| (see
Ui

ue D(at), here t(y,n) =-

the remark next to Definition 4).
Proof of Lemma 14. We see that

o(x, D) Au=F'o,(z, §)|¢|Fill, -, where ¢,(z, &) is the extension of ¢(x, &)
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such that ¢,(x, &) 57 (R < (R"— {0})).

Set _Jux) for z,>d,
¢ for x,<d,

and () = 7 (x)—uy (),

then 'o(x, E)|&|Fii=F"o(x, &)|&| Fu,+ F'o(x, £)|&| Fu,.

The first term on the right is the ordinary singular integral operator o(x, D) Au,
and the symbol of the second term on the right may be considered as zero
by virtue of Supp u, C {x€ R"; x,< —d}, from which and the theory of the
ordinary singular integrals we obtain the desired estimate. q.e.d.

Proof of Lemma 15. When o(z,8)e and o(z, &, ¢,)=0(x, &, —¢&,), we

see that
—~ |
pu(2)o(x, Digae = F' (@)l DIF@d) |,

where &(x, £) is an arbitrary extension of ¢(x, &) such that &(x, §eCrr (R
(K"—{0})) and &(x, &, &,)=d(x, £,—¢&,). Furthermore #(x, D) is the ordinary
singular integral operator.

From this and 3) of Lemma 13 it follows that

H Tyo (gﬁz -o{x, D)1 501u> —(Ty o) <ordinary singular integral operator

S Clal[ . g by virtue of the theory of Seeley.

Rn Fn

<y, D)) ATy,

HT*o<so2-o<x, D)Aspae) —(Tso9)(z(y, D) As Ticopte)) < Clll| |
< Cllulle, o for we D(ab).

Hn

For f(x)f—é"eg'z, we see that the proposition holds by virtue of 3) of

Lemma 13.

For ¢(x, &) = a,(x, &)f () |5"| €A, we set flx)y(D)Ad.u=v. Then, as

above, we see that

‘ Tye (g 0i(x, D)giw) —(Txe ) 0 (T (), (ATHD,) Ty i)
< C|\o) -2y for ve LHR™).

‘Cl/n>0
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By virtue of v=f(x )J: ot

=1 € LA R?) and from Theorem 2, we obtain
L

,>0

Tyo <$02 oz, D)4 +$01u> (Topn): ( D)Ax(T*°¥’1u)>Uyn>o<C(H7~)H—»1,7.2(R">

+ || g2 ry) = C(Hf ) aa;

—-1,Z%(R™)

| < Cllan < Clld o

g-e.d.

Furthermore we have the following Theorem and Lemmas similarly to
Theorems and Lemmas obtained in §2.1.

Lemma 16. For sufficiently large 2>0

2

| A+ 2ul’, ) = E—ull o+ @—0Plulie

for ueD(a}), ¢ is an arbitrary small positive number, P depends on ¢ and
n, and & is a constant determined by means of the ellipticity of a(x, D).

In the following 2 is assumed to be a sufficiently large constant satisfing
the above inequality and be fixed.

Proof. Let ueD(a). From the ellipticity of a(x, D) we see that
(17) (aola, D)y ) ) + Rl > 6l 1200

for some constant £(>0).
To obtain the desired inequality we at first show that

(18)  l(ao(x Dy, u) .y — At | < e ltllf oo+ Ol 2o -

Using the partition of unity described next to Lemma 13 (ao(x, D)u, u),2
goes over into

(19) % (@l Dige o) o + T [05 @l ) -

The second term is bounded by e||«||? ;2.0 + c(e)]|]|320) by means of the inter-
polation. We will estimate the first term.

We may suppose Supp ¢,nSupp ¢,5¢. If Supp ¢,nI"=¢ and Supp ¢,nI"
=¢, then, since ¢ueD(a),

(20) (ao (x, D)o su, 9’1”) 222) («/Zo— 4/20‘ Mg, Qi) )
= (Va A0;1, ¥ ay Apat)am + (W ay Apse, (g *— ay ) Apue)
+(«/;_§ °«/a;§ ‘“x/a;Q . x/—a‘? )Apu, Apae)rmr)
+(Wao oV ao A=A ay o ag) Ap e, pott) e, -
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We see that the last three terms are bounded by ellu|} 120+ c(e)llee)|520) by
means of the theory of the ordinary singular integrals and the inter-
polation.

Furthermore if Supp ¢,nI"*¢ or Supp ¢,nI"=¢, then

<ao (z, D)o u, 50,u> = (Jba(y, DA T, oo u, Ta*ogolu> 7,30

129
by using the transformation 7°, such that Supp ¢,;YSupp ¢,CU,, here J is a
Jacobian (>0).
By virtue of the uniform ellipticity of &, and Theorem 2 it is equal to

(21) (I oo (9 D) AT o010 b (y, D) AT oo )

Yy, >0
+ (I bn (w, D) AT oo pye, (b (v, D=y 6,2y, D)) A Too 0t
+ ((JWB. N B )y, D)= b (w0, D)V B, (4, D) A Towo gty A Tovo @)

Y, >0
+ (I Be A BN, D) A= AT B oA b s D)) A Toropt, Tvogit),

and the last three terms are bounded by el|A.T o0 ull} o+ || Tuwo @y 0.
On the other hand for u€ D(a?)

|| Asutl[3x0) = Zk Z(Ziwu, Ay rtt) 2oy -
20,5,

Let Supp¢;nI"=¢ and Supp ¢,nI'=¢. Then
(22) TZ' (Ziij u, Zikl W)rr0)

= Do a (@, D) Ap,u, oxla)y ay (2, D) Apue) .,

2%

= (Vay (@, D) A1, y ay (x, D) dp.u)

RN
Furthermore let Supp ¢,nI"'%¢ and Supp ¢;NI"'x¢. Then
(Assjtey Ay prtt) ooy
= (TF o ((ToopWbn (9, D) A Toroot), Tt
x ((Tyop0) Vb, (4, D) A Treo gt

here Supp ¢,NSupp ¢3¢, Supp ¢.NSupp ;> ¢ .

We may assume that Supp ¢;NSupp ¢.3 ¢, otherwise this expression is
equal to zero. Furthermore we may assume that {Supp¢;} is a star-star
finite refinement of {U,} in addition to the properties described before. Then
we can choose a, 8 as the same index. Hence using the coordinate trans-
formation 7', and omitting lower order terms this expression goes over into

30
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(J(Tuo W b (v, D) AT oo pgt, (Turo o)W b, (4, D) A Toeoptt)

Adding up this expression with respect to ¢z and %, it is equal to

n>0

(23)  (JVE. (0, D)AToog g, {b, (y, D) AT w0 i)

Yp>0 "

By virtue of Lemma 14 and theorem 7 in [15] (page 247) we can also treat
the calculation in the case where Supp ¢,nI"'=¢ or Supp ¢,nI"=¢ as above.
Hence from (19)—(23) we obtain (18).

We next show that for some %,>0

(24) (Z:tu’ u)Lz(!)) +(u, Ziu)llz(!l)> —klnullzﬁ(m-

To prove this let ¢;(x)= <90¢(x)>%. Then we see that {¢;(x)} is also
another partition of unity with respect to 2 such that 3 <</)¢(x))2 =1, gue
D(a?) for ueD(az), ¢u and ¢iue D(a) for ueD(a) and {Supp¢,;} is a star-
finite refinement of {U,}. Then

(Z:tu” u)Lz(!)) = Z(Zi¢hu’ g!},,u)mm + ; <(¢ILZ:L- _Z.ﬂ[’n)u, Sl’au) 2"

1A

We estimate the first term on the right. If Supp ¢,NI'3¢, from Definition
7 we see that

(Zi¢hu, Sl’nu)ﬁ(g) = ;j(ziij¢hu, ¢hu)l,2(ﬂ)

=2 (T (Twe @V b, (0, D) (T p ), i) o,

=3 (J(Tuo 0B, (4, D) Ae(Toro gy ), Towoppt)
2,7 n

= (VB (v, D) Au(T oo ytt), Tonihrr)

By virtue of (13) it follows from this

yp>0 "

(Zﬂj‘/’h% Datt) 2o + (Pt Zi¢j¢ltu)L2(ﬂ)> —k || Ta*°¢hu”§/n>o .

We can estimate above expression when Supp ¢,NI"=¢ similarly to the
case when Supp ¢,nI"'¥x¢.

Furthermore 4.¢,—¢,4. can be extended to be a bounded operator from
L*(2) into itself, which will be proved at the following Theorem 3. Hence
we obtained (24).

Therefore from (17), (18) and (24) we have
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2
*9)

= || Astllsecor + (At ) 200y + (20, Dath) ) + 2 e300
- (ao(x, Du, u) ot (”Ziu“iz(”)_ (ao(x, D)u, u) L’<9>>
+ 2((21% )2y + (1, Z:”)L’m)) + 2|l 220y
> 6||ullf, 220 — Rl el 220y — ell el 220y — ()|l 22y — sl [al| 2200y + 2|t 220y
= (=) ullt o + (F—k—cle)— k) [t 3200

We take ¢ sufficiently small such that §>¢(>0), next take 4, ¢ sufficiently
large such that P*—%k—c(¢)—Pk >0 and 2>P. Then

H (Zi +2) u”

|(Ase + 2] gy = 0 —&)tlls, 22007 +@— PP ]300 -

For ue D(a?) we obtain the estimate by passing to the limit. q.e.d.

From Lemma 16 we may define D(a?) as the definition demain of the
closed operator 4. and denote it by D(4,).

Lemma 17. Let a(x, &€, and ue D(A,). Then a(x, D)u, a(x, D)*u
e D(4.,).

Proof. This is shown by virtue of Theorem 2, Definition 5 and Lemma

13. q.e.d.
From Lemmas 14, 15, 17 and Theorem 2 it implies the following theorem

by the same consideration used by Seeley (see theorem 2 in [15] (page 262)).

Theorem 3. For a(x, &), B(x, &)e N, the operators
alx, D)A.—A.a(x, D), alx, D)*A,— A.a(x, D)*,
(a(x, D*—a*(x, D)) 4., ((@°p) (@, D)—alz, D)B(z, D)) A
are extended to operators of B(L*(Q), L*(R2)), where the symbols of o*(x, D)

and (a°B)(x, D) are alxz, &) and a(x, &)P(x, &), respectively.
Furthermore we obtain the following lemmas needed for the next section.

Lemma 18. Let u€ D(A.). Then ue D(AF) and
H (Zx_2;>u|| < Cllul z2o) -

*(9)

Proof. It is seen from Definition 7, Lemmas 14, 15, 17 and Theorem
2 that the symbols of A.;; and A%, are same. It implies this lemma.

Lemma 19. /4.+2 has a bounded inverse from L*(Q) into itself such
that

[(As+2)72) | oy < (A—0) ]| 220y -

Z*(2)
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Proof. We take a partition of unity {®,} with respect to £ such that
> @:=1 on 2, @,u, D uc D(a) for uc D(a). Furthermore we assume that if

finite

Supp @,nI"'x¢ then (Supp @,°nI'x¢, {Supp®,} is a star-finite refinement
of {U,}. Let us choose x,€(Supp @, for every @, and in particular
x, € (Supp @,°nI" if (Supp@,)nI"x¢. Then we may assume that if U,D

Supp @, for any ye R”, sup lo.(y, &)—a.(y,, )] <e, for sufficiently small positive
g1 N
number ¢, which is determined later. Where y,=1T,(x,), 0.(y, D)=4b, (y, D)
if Supp @,nI'>x¢ and setting x=vy, o.(v, D)=¢Z; (x, D) if Supp@,nl'=6¢.
Furthermore we take another partition of unity {¢,} with respect to £
described next to Lemma 13. Here we assume that for every @, there exists
(at least) one U, such that U {Supp @,YSuppe:YSupp ¢,; Supp @,nSupp ¢, ¢,
4,4
Supp ¢;nSupp ¢;%¢} CU,. Furthermore we may assume that if Supp @,nI"
=¢, then U,nI"'=¢, hereafter we write one of such U, by U,.
Then we can write 4, +2 as

Ay Du= LTI (Lo )0, D) dse +2)(Toropsu))

for uED(a%), here T, =1 if Suppe,nI"=¢, I is an identity operator and
Arg=Ax.

As y, is in B*' when (Supp @,°nI'x¢, ¢,(y,, &) is the even function
with respect to &, from the construction of ¢,(y, £). Hence ¢,(y,, D)A.,+1
has a bounded inverse from L?*(R") onto D(A.).

Then set

R-=S T8 (0o @) (04(un D) dar+2) Tyee @y )€ B(LX(@), D(a3))
and calculate (4, +2)R.
Az +DRu= LT e((Tooog) 0.y, D)o + )
y T.vo ;oj(; T o ((Tre @) 04y D) Ass+2) " ThooByur))
for we L*(Q).

We may assume that Supp ¢;NSupp ¢, ¢, Supp ¢,NSupp @,x¢. Then
from the above convention we can choose «, 2 the same index. Hence

(As+ )R =T DT A Toeo ) (04 (0, D) A+ 2) Toeops
x <(71/z* ° (71/»* °@/L) <0h<y7n D)Ai—h ‘*‘Z) WlT/L* °@, u>> + Bu
= DT ((Two ) (04(y, D) Asn+2)(Theo D)

[N

(04 (¥s D) Asr+2) (Theo®@uts)) +Bu,
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here || Bu| ;20 < }g‘;Hqu}(m because of Lemmas 12, 14 and 15. Further-
more we find that
(040, D) Aen+2)(Teo @) (04 (y2r D) A +2) (T,
=((04 w2 D) Aus+2), (Tyeo®,)(0a(ys D)4
+(Theo®,)((04(y, D) =04y )AM)(% U D) Aen+2)"
+(Te> @) (04 (W D) Asn+2) (02 D) Acn+2) (Tpeo Do)

From the choosing of @,, [|(Tho®@,)(a4(y, D)—64(ys D) Adcuell, >0 < (e1+¢) x
I Auull, so+c(elull, 50 for ueD(A.) similarly to Lemma 12. Moreover from
Lemma 12 we find that

“ <0h(ym D)Asy +2> .

1

) (Theo @ptd)
NT oo @pte)

< @=2)ully, >0,

u“y7l>0
H < yha A+}L+X> ~lu
for ueL*(R7), here 4 is a constant determined by means of the ellipticity of
alx, D).
We remark here that in the case where Supp @,nI"=¢ we use the theory
of the ordinary singular integrals.
From this and Theorem 2 we find that

(52—5 HuHun>0

‘yn>

| L T2 +((Twe 004y, D) den+2)(Toee 1) (a1 (w2, D) A +2) (Theo Dp0))

+Bu—u|

I 22(Q)
< Eo i+ S5 i+l & Nulen

0 sh_ i—p A
1/
( C 4 61+87+ C(5> 4 c >Hu|[“m

T\a—e St =0 a—p

We choose ¢, so small that 51 ! <1 and also ¢ small such that ;—'_e,— <1,
Z—e 2—¢g
and then 2 so large that 7@,,,4_&'*7“",4_ cle) +- -C—<1. Then (I—(I—

A—p Gt—¢ a—p  a—p
(A, +)R)'=((4. +)R)"* exists and is bounded from L*(Q2) into itself.
From (ZiH)R((LH)R)*:I, we find that

-1

(As+2)7' = R((A:+2)R)
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Moreover from Lemma 16 we find that

A+ 27wl .y <=0l 0. aed.

Lemma 20. We find that ueD(a) if and only if ue D(ALA.).

Proof. Let ueD(a). We set aj(x, D)=—73, — a;;(x )—a— +k,, where
2J ax axj

k, is a positive constant, and @, is assumed a positive definite selfadjoint
operator with the domain D(a))=D(a).
Hence using the same consideration in Lemma 16 for ¢ € D(a?)

(25) (@@, Dy, 9) ..,y = (Astt, Do) 1300+ Bulat, )1
where IBI(% SD)LZ(M < Cillully, 2o l@ll 220 -
Then

(Astty A9}y | < (lastell s+ Cillel s, 22000) Nl 22 -

Consequently, from the fact that D(a?) is dense in L*(2), we find that
A.ue D(AZ), that is, ue D(A,A,).

The fact that if weD(4 f +) then weD(a) is shown by virtue of the
similar method stated above.

*

Lemma 21. D(4,)= D(4,) and D(a)= D(/A).
Proof. From Lemma 19, we find that

(A% + D = (T+(Ar—22)(A +2)7") (s + D
for ueD(A.).
Moreover from Lemma 18 and 19 we find that

< € <
A—p

(=2

(A:—4.)(4:+2)

| LA (2)-LH(Q)

for large 2.

From this it follows that (I+(A*—A4.)(4. +2)"Y)(4.+2) has a bounded inverse
from L*(2) onto D(4.), from which it imples this lemma because D(4.)C
D (4%) and Lemma 19. g.e.d.

Hereafter we set @(x, D)=a(x, D)+2, A, ,=A.+2
Corollary. We find that for ueDl(a)
|(alx, D)—Z2)u|

= C||A+ el 22 22 -

IPALED))

Proof. From (25), Lemma 16 and 18 it implies this corollary.
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Lemma 22. Let o(x, &)eN, with o(x,&)>d>0 for x€2 and |&|=1.
Then for sufficiently large k(>0)
(ot DI, + Rju ', (AP A sl + (k= 0l

for ueD(A,), here ¢ is an arbitrary small positive number, k>2, k>0 and
0 depends on n, ¢ and .

Proof. We can prove this lemma like as Lemma 12 by virtue of Lemma
16 and Theorem 3.

Lemma 23. Let o(x, €) be as in Lemma 22. Then for sufficiently large
k>0 olx, D)A,+F has a bounded inverse from L*() into itself such that

wl o <k—0)Mulliw — for ueLXQ).

AN

(olx, D)2, +4)

Proof. o(x, &) ya,(x, & >dyo >0 for x€Q and |&|=1, which implies
this lemma from Lemmas 14, 15, 22 and Theorem 3 similarly to Lemma 19.
g.e.d.

3. Reductions to the theory of semi group

We may consider 2(x)=0 on I' in the Neumann case. For, we set

9@ = ple)—ERAL oy on Ulg),
© L
B4 oy o,
where 0O(x) is an extended function of @(x) defined on U(Q) such that
O(x)eC(U(2)) and P(x)=0 on 2, = {xeR; dist (I, x)>¢}, & is an arbitrary
small but a fixed number. We furthermore set

ulx)=e " v(x).
Then we see that

(/ J +P(x))u1 _ 9 v and ( A +P(x>>alu( = afra'l"u:, ,
on iy on |r  on |
where a'=¢"%ae ', [=1,2,--.

Here we remark that the principal part of a’(x, D) is the same as one of
a(x, D). Hereafter we assume that @(x)=0 and set @(x, D)=a(x, D)+ 2 for
a sufficiently large, but fixed constant 2.

We state the following lemma to reduce the equation (1) to the system.

Lemma 24. If a,(x, D) satisfies the assumption stated in §1, then we
find that
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aZk(x, D)u = az/c(x, D)aku +ﬁgku 5

o1 (X, D)t = 0y 4 (2, D)Zi’jﬁku + Borrtt

‘1,,‘7<x’ zk_e——[g’
(ao<~73 &))"

for ueD(a*) or ueD(a" }) (k=0), respectively, where a,(x, &)= )
£
B: is a linear operator such that 8,,a “ VA:), and Bu..G "€ B(L*(Q), L*(2)).

Proof. From Lemma 15 the statement that «a,(z, E)z»ﬂu—’sl,fe No is
(@ (z, &)z

shown from corollary in [15] (page 244) and the first two expressions in this

lemma. Here we remark that (ao (x, é,»ée A,

Hence we will show the first two expressions.
We at first consider for a,(x, D). Let ueD(a*). Using the partition of
unity described next to Lemma 13, we have

au(x, D)u= Z azx:(x, D)S%“"‘ Z [§Dj, a?.k]u
and that ) [¢;, @] is a differential operator of order at most (2k—1) and
j -~
2o apla VA€ B(LA(Q), L(92).
7
If Supp¢;nI'=¢, then ¢;ucD(a*) and

ay(x, D)o ,u = aj(x, D)a*o u+ Biu = agp(x, D)o@ u+ Byu,

where al(, 5>=(Zz*(‘f’§)) J@el, and gna-t Vasie B(LA(Q), L(Q)).

Let Suppg¢;nI'3x¢. Using coordinate transformation 7, such that U,D
2

Supp ¢, we replace Wafz in the principal part of a2k<T,;“(y), (dT,,*)(Dy)> by

0y,
P ( a(To ), @TD)) -S89 0 =T b )+ lower
0V, 6y.ﬁayj =1 0,0y,

order terms).
Then from the assumption with respect to a,, stated in §1,

(T ), (@TH)D)) T oy
= I, fmw) X, X3, Yoo Yia(a( T () (dT2)D,)) ) " Tore ju
+ (lower order terms) u
where Xy, =D.D;, Yi=y.c(y)DiDy (0,5, L% n), 1= (0, 7,),
=y 7)), lgl=n+-+y, and |7 =71+ +7,.
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From this we see that
az(x, D)o u= 3 A,..(x, D) (a(x, D)> " pu + (lower order terms)u using
inverse coordinate transformation 7°,!, where A,,(x, D)="T, ( Son () X725 -+

.,p 7, Y- Y[;>. Furthermore using ¢u€eD(a) for ueD(a), apu= ¢ au—+
(lower order terms) u.
Hence

az(x, D)ou= 2 Az, D) <a (x, D)> /Hgo jau+ (lower order terms)u. Re-

peating this method for ay(x, D)p,u, we find that
a(, D)pu= 3 A, (x, D)o a"u+(lower order terms)u for ueD(a").
Using coordinate transformation 7', again, this goes over into
(T (), (@T5) (D) Toro 1
=2 fony) Xy, X Yii - YiaT o p(a"u) + (lower order terms) u.

Next we consider for a,. (x, D). Let ueD(a*'%). Similarly to the case
for a,.(x, D) we can show that after using the partition of unity

2les aa] a*eB(L}@), L*(9)),
s, D)@ =ty 1(x, D)p; A sa*u+ B vu if Supp 9,0 I = ¢ ,where

(T, &) = (ZZ*(;%%%( e, and By, @ *eB(LHQ), (LX(2), and if

Supp ¢,nI"'*x¢,
i 1T ) ATI)D,) Towo o

- 2l 2\ XKoo X, Yo YT, o,
|’7|+|rIZ—£h=k IT’(\y ay> adn 2 gDJ(a u)

”r’n
+(lower order terms) u,

where ﬁ‘,,,(y, Bay > is a differential operator of order one. Furthermore from

the assumption with respect to the coefficients stated in §1, the coefficients

of —a—a—— are zero at y,=0. Hence we may prove only the following
Yn

Lemma 25. Let X,;; and Y, be as described before. Then every term
|vmf?"r:kX§21‘ Xip; Y YT o u (Supp ¢;C U,) is represented as a(x, D)a*u

)Jp

+ B for ueD(a*) conszdermg it in Q, where a(x, &€, and Ba * VA e
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B(L*(R), L*(2)).

Proof. We prove this lemma by the methods of induction with respect
to k.

At first we consider the case 2=1. Let u€D(a). Then ueD(X,,) and
ueD(Y;) in R2, where D(X,,)=D(Y,)=H*(R"), X,; and Y, are being con-
sidered as only differential operators.

We see that

tlr=anyly, & ao<y, : l)xsv YaCon V) e =y, )a (
ai(y,E)e?(.

Hence from Theorem 2, Lemma 21 and definition of 5(D) we find that
for ue D(a)=D(a,)

o (X Tore 1) = T:((my, s>ao<y, |§!)>~ A;Ta*o;alu)

- 2 and , &),
lEI)lSI and a,(y, &)

=T <[oty Dialw £ AT o) + i
e=D
= 045, D)apu+ Biu = 0,;(x, D), au+ f; u
and T (Y, T,.opu) = o;(x, D)p,au+ B, where B;;4z; and B;4:',€ B <(L2(.Q),
LZ(Q)).
Next we will show that our assertion holds for the case % supposing

that it holds for the case (k—1). To this end it suffices to prove this for
the one of %-times product of X,; and Y;. For example we consider X*7'Y

=X, X, .o .Y, Furthermore we set X*'Y=X, ; X*?Y. By virtue
of the case 2=1 we find that
Tr o (X YT o) =T (X, 5 X2 YT ouo o)

= a;,;,(x, D)aTy (XY )pau+ B, 1,
where §,,a VA, e B(L'(2), L*(2)).
Furthermore
aT} o (X2 Y)pu =T} (X**Y)p,au +[a, TFo(X* ZY)gol]u.
From wueD(a*), we see that aueD(a**). Hence by methods of induction
TFo(X*?Y)pau = a, 1(x, D)p,a* 'au+ B au
=a,_,(x, D)p,a*u+ B;_ au.

Since [a, T (X" ?Y)¢,] is a differential operator of order at most (2m—1),



On Mixed Problems for Regularly Hyperbolic Systems 37
we can apply it to u(€D(a*)), and [a, T.* «(X*2Y) g, ]a"* "V A:},€ B(L*(Q), L*(Q)),
which complete the proof of this lemma. g.e.d.
By virtue of Lemma 24, the equation (1’) is rewritten as

aZm -2
822711, -2

2 - 2m -1
(26)  Lu— (’aﬁm el D)ies 2 el D)a

+ 'l(x’ D)Zt,xamrl aat' +C(2;,L(.T, D)c‘z’”)u

aZm 1
(B g =

au a?zn,"lu ” n 1 . .
for (u, o g eD(a™)x D(a»-%)x --- x D(a%), where B; is a linear

operator such that B,a ¢ VA:%;, ,BN_I&‘“’I)GB<L2(.Q), LZ(.Q)>.

Hence setting

0 1
A= to. .
0 1
— 0 @™ _a2m—lz:t,lam_l c e s —aa —alzd:,l s
0
0=
_ﬁZm —ﬁZm-—l * ¢ ¢ _ﬂl 1)
. 14 au azm,—lu
U: s T T s oo > F=t0a'“,0, )
(10, B0 T ) F=0.0.0)
we can rewrite (26) as
(27) 7 v _ (A+Q\U+ F, FE: unit matrix.

dt

From now on we consider only Neumann problem as we can consider
Dirichlet problem similar to Neumann one.

Here D(a)= {uEHZ(Q); _2 u‘ = 0}.

on |r

Then the basic space is &(4,)=D(a™ %) x D(a" ") x --- x D(a$) x L*(), and
the domain of 4 is D(a™)x D(am-%)x --- x D(a}). Furthermore we define
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the norms: |lu|, ;.1 =4, ;a%u| 12 for u€ D(ai*}), |ul| pt = ||@u|| 12 for
ueD(a?).

Similarly to Leray’s method, for the roots z,(x, &) (j=1,---,2m) of the
a(x, &) 7g2mr(xa §>4= T
anle, 2) +oee (aoﬁ(x, ) 0, we set 7,(x, &)=y —1 X
t;(x, €. From the assumption that r,(x, &) are pure imaginary, we see that

p;(x, &) are real. Now we set

equation "+

R(x, E) :J( ﬂl(x’ E) ............... #Zm (x, E) ’ , S _ RR‘ ,

& (g (z, E)Pmtennes (o (2, E)P 1/

and B(x, £)=8"'det 8§, whose components are polynomials of the coefficients
of the above equation.

Here we give an equivalent norm in €(4,) with the aid of B(z, &), which
will be needed to get the a priori estimate of (27). To this end we state
the following Lemmas.

Lemma 26. (Leray)

Each component of B(zx, &) belongs to A, (From now on we write it
as Bz, &eil,).

Lemma 27. Let G(z,&) be a (2m,2m) matrix such that G(x, &€,
and G(x,&)> 6, E>0. Then (G(x, £)ke,.

Proof. 1t is seen from

(G(z,8)* = Efs BOBE—-G)da,
where 7 is a sufficiently large circle whose radius is larger than the absolute
value of all eigenvalues with respect to G(z, &) and M,(G) (see (2)).

Lemma 28. Let G(x, &) be as in Lemma 27. Then for an arbitrary
small ¢(>0) there exists a constant c(e) such that

Re(G(z, D)4, ,U, 4,,U) , > (6, — ol 4. Ul vy —c(@NU 320
L%(Q)

~ 2m )
for all Ue(D(A,)f™", here (U, V);2= Z‘IW‘“ Vo) iz for U, Ve(L*(2)F
Proof. From Lemma 27 we see that (G(z, g)tefle. And Gi(z, D)=
G¥(z, D), from which we can prove this lemma by virtue of Theorem 3 and
interpolation (see the proof of Lemma 12).
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Now we will give an equivalent norm in £(4.). We set

y k -~ -~
() BEBY pioye B e Aoy

B1:E \
2 2

and set
LU= (BBA)U, BA))U)xw

for Ue&(4,), where

Z—vaam-—l
amﬂl 127"721‘2711 2
Ed.)= . (i) =
@ }L.,z 1),
I/,
i=4—1, B: a sufficiently large constant.
Lemma 20. C| E(A.)U", < U’<G|B@.)U|’, for Uc&.),

here C, and C, are independent of U.

Proof. 8 is real symmetric and 8§, >0, from which it follows that
B(x, &) is also real symmetric and B §,1>0.

Then by Lemma 28 for Ue(D(4.)#™ and for sufficiently small ¢(>0)
we obtain

(B, U, A, ,U)p
=Re(B(i))BE(i)A, U, 4.,U) 0 +BRe(A4.,U, 4, ,U) )
>0 — )| 4. Ullszey— @ Ul + 8 Re (4, ,U, U)oy -
Moreover from (24) it follows that
Re (4, ,U, U)oy =>Ci | Uls2ey where C,>0.
Therefore for sufficiently large B
(B, ,U, 4, ,U) 0,2 0—e)l 4. ;U o -

Next for Ve £(4,), we see that A;,E(4,)Ve(D(4,)*, from which it
follows that

(B.EA)V, BA)YV) ., >6—e) EA)V], .
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Moreover it is easily seen that

(B.BA)V, BA)V),, <C BA)V" g.ed

|
1,2(9) i AC O

Lemma 30. B, is a bounded selfadjoint operator from (L*(2)f™ onto
itself and also has a bounded inverse.

Proof. 1t is seen from the expression of B, and Lemma 29.

Lemma 31. (a priori estimate)
For UeD(A) there exists a constant t,(>0) such that

11 (=B A+0))U > (c—zo) U for >t

Proof. We see that
(4+QU U))=(B.BA)(4+QU, EA)U)

Lz(!))’
where
0 1
o .
E(A)A= . 1 A, ,E4.)+
0 1
— —Mp-1 O T -
0 0 )
0 KA,
0 0
4 e E(4,)
T KAz,
0 0

-, KA, 0 —a KA, 0 o+ o« o« «—q,KA7, 0
= PA, ,BEA)+O.E4,), K=a— & ,.
From Corollary stated above Lemma 22 (), is a bounded operator from
<L2(Q)>2m into itself.
Hence we find that
28)  (4+Q U, U))=(BPIL EA)U, EA,)U)
+(BOE@)U, E(A,)U)

L} (2)

+(B.Q.EA,)U, EA,)U)

A ) L2’
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where  H(A)Q=Q.E(1) and  QeB((L4@)", (2:@)").

To estimate the first term on the right of (28) we set P=:{E(i) ' P, E({)
Then we find that the symbol of the principal part of B, P is zE( ) x
Bz, &) Pz, £) E(i) which is anti symmetric, that is, Re(iE({) 'B(x, &) x
Py(x, &) E(i)=0 (see [11]),

hence

Re(BlP/l JBA)U, BA)U),,, < ClBE)UL,

) L2<rz>’ =

< Cluj®.

A (.(2)

The other terms on the right of (28) are also bounded by CjiU 2.
Therefore

(29) Ref((4+@U, U) <ClUl*.

It follows from this that for UeD(A) there exists a constant z,(>0)
such that

(fE—(4+Q) U[> ==l for >z

Theorem 4. (Existence of resolvent)

For sufficiently large constant v(>1,), tE—(A + Q) has a bounded inverse
R(z, A+ Q) from E(A.) into itself such that

1 —-

T—7g

\R(T A+0>

Proof. From Lemma 31, we may prove that for any Fe (L*(2)" there
exists a solution Ue (D(4,)"" of the equation

<TE—PZ a~,z“(()1+{)2)> U=F.

This can be shown by the same consideration in Lemma 19 indicating
the operator R. To this end, let 2, be a fixed point in I. Then we may
show that (ct E— P(T, (yo), (dTF)(D,))(6.(yo, D)A, +2)U has a similar estimate
in Lemma 16, that is, for a sufficiently large -

“ (e 18— P (T, v\, (T2)(D,)(0s(ve, D) 4. +2) Ul
C(I4, Uy, 0+ =0 Ul 20)

¥, >0

for Ue(D(4 )™, and also has a bounded inverse, here x,eU,, yo="T,(x,).
Set
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1 o 8 0 s e 1
Tl(Tu\yo) ATHE) o o o o o 0, (T (yo) (dTF)E)
(T (yo) (@THEN™ o o v (wonlT (wa) (@TEEN™ )

= N(yo, &), N (s &) ={N"(5o, &)
(TN, ([dT)(E) )

Z.D(yo, E) N

‘[‘[ZIII (Ta-] (?/0), (,dT«* ) (E))

Then D(yy, £)€U, Ny, &) Pyy, §)=iD(ys, §) Ny, &) and from Theorem 2,
NeE— Plo A, +2)—(OQ+ Q) N''=(cE—i D6, 4. +2)—(;, where Q, is a
bounded operator and D (y,, D)(o.(ye, D)4, +2) is a selfadjoint operator on
(LA(R7)P™ with its domain (D(4.)™. Thus our assertion is proved. q.e.d.

By virtue of Lemma 31 and Theorem 4 we will solve the equation (27)
applying the theory of semi group.

P 2772 — 1 -~

For U(0)="(u(0, ), ---,%4(0, )€ D(A) and F(2)e ([0, T1; £(A.)),
(A+Q)F(t)€C°<[O,T]; €(Z+)>, there exists a unique solution U(z) of the

equation (27) and

|| <exp e ([ UO]+ [ £6)] ),
that is,
: | A |
(30) (e, D oy H at (2, ) R (¢, x)lmm
o J
SCexp <T°t>(‘l u(0, z) D™ ) * “‘8—21:(0’ ) “mam’")
o¥m1 i t; ‘
+\I atz”“zf (0, x) v + So“f(S) Lz(md5>~

Moreover for f()eC* ([0, T']; L*(2)), we choose f,(¢) such that f,(z)e
C ([0, T]; D(A)nCY[0, T]; L*(2)) and passing to the limit we find the

existence of solution « (£). Furthermore using the equation itself we find that
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| ’
(31) Hu(t, x - ‘ e ) + e+ }. e t x)! o
< Cexp (o2 )(“zt (0, x)”nmm) l aau (0, x) ) T
*"u .
’. FAO)) + ” lwl 2(0) +S (s, x) Lz(g)ds)'

Remark 1. As seen directly in our proofs of §2.1, in the statements
of Theorems 1,2, 57 can be replaced by &7,(0<d<1) which is the set of

Jo (x, &) exist and uniformly
Horder continuous of order 6. Furthermore we can drop Hélder continuity
0 by the similar treatment as one in [4].

o(x, &) such that the first order derivatives

Remark 2. For the system mentioned in Introduction we can also apply
Iy

the same treatment as one in §3. Because setting = u,; ;.1 We may con-

sider “(un, tg, ooy Uy, sty oy Uz iy, o Usrs "' Ui,m, ) and  the  corresponding
system. Then using the partition of unity with respect to £x ), we can
construct R(z, ) locally and the norm same as one treating in Cauchy problem
(see [14]).

Remark 3. By the method of reflection we can reduce our mixed pro-
blems where 2= R" and a(x, D)=4 into Cauchy problems over the whole
space R*. Here we must remark that the coefficients of principal part of
reduced equation have Lipshitz continuity. Therefore for the case of single
equation we can apply the theory of Leray and Garding. Furthermore for
the case of system we can extend the theory of Calderén-Zygmund’s singular
integral operator to one for symbols which are introduced by the reduced
equations (see Remark 1, Corollary of Lemma 5 and [4]). Thus in this case
we can obtain the results in §3.

Remark 4. In the case for single equation it is easily seen that by
coordinate transformation in Lemma 13 a(x, D) is transformed to &(y, D)
with b,;(y’,0)=0 (i=1,---,n—1), therefore our boundary conditions (D) and

(N) are reduced to 7;@ +(lower order terms)|u=0 on I', i=2j (j=0,1, -,
n

m—1), i=2j+1 (j=0,1,---,m—1), respectively. Therefore by the trans-
n-1

formation such that # =t¢+¢), 9% the form of the boundary conditions are
71

invariant, we can prove that local uniqueness theorem is valid, that is, the
speed of propagation of waves is finite. Moreover by the same consideration
this fact is also valid for the case of systems.
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As mentioned Remark 2-4, we have various methods for solving our
problems. To apply these ones we must treat the perturbation with respect
to boundary operators by using the theory of elliptic operators for boundary
value problems and gather local solutions. As long as we are concerned with
the mixed problems mentioned in Introduction, we can avoid such trouble-
someness by considering our singular integral operators. Furthermore by our
method our system can be reduced into the first order system written in our
singular integral operators, which are as invariant for certain change of vari-
ables as formulation of our problems. Moreover we obtain (29) directly by
our method.
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