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§1. Introduction

_ Let R be the open half space {x=(x/, x,)e R*; 2’¢e R*, x,>0} and
R its closure. We consider a hyperbolic operator in [0, 7] x R* (T>0):

1) PeasD) =L 2% ata) 2 — 3 z
: s 23 D)= = — s &) LX)
* or? J‘:laj * otox; j.kzlajk( z) 0x,0x,
+(first order)

which satisfies

(1. 2) 2 {anlt, 20+ 4y, Dals, )} 66,0

Jok=
(1 3) Ayn (t’ x) > O

for any (¢, x)€[0, T'] % R" and any non-zero &=(&,---,£,)e R*. The condi-
tion (1.2) means that P(z, x; D) is strictly hyperbolic and (1.3) assures to
impose one boundary condition on a mixed problem considered below (cf.
§2). Here we assume that a,, are symmetric. Moreover we consider the
following boundary operator on the boundary [0, 7] x (R" — R"):

n -1
(L4 Bl D)=-2 bt )2 —ct, )9 +hit, 2.
dx, i1 ox; ot

Here we assume that all coefficients in (1.1) and (1.4) are real valued, suffici-
ently smooth and constant except a compact set.

In the case of operators with constant coefficients, a necessary and
sufficient condition for L%well-posedness”’ of a mixed problem with homo-

1) The mixed problem (P,AB) is L2-well-posed if and only if there exist positive con-
stants C, T and T7(0<T"<7T) satisfying the following property: For every f€H' (0, T)
X R%¥) with f=0 (¢<0) the problem

. . 0 ;
Pu=f (t>0, 2,>0), Bu=0 (£>0, 2,=0), u:—a‘;:o (=0, 2,>0)
has a unique solution « €& H2(0, T’/)x R?) such that

T’ R ro ,
[ e par=c |t g,
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geneous initial-boundary conditions is established in [1] (see also [10]). Let
P(t, x; D) and B(t, £'; D) be the constant coefficient operators resulting from
freezing the coefficients at (¢, ). Then this condition is written by the terms
of coefficients, that is, '

(C)  a,.(t, x)clt, ")+ a,(t, ©)=0 and

(C,) the following quadratic form H(¢, x;6) in 6=(gy, -, 0, )€ R* " is

positive semi-definite,

where

H(t, xZ, U) = (annc + an)z (anne - bZ) —2 <annc + an) (anna - anb> (annb + b)
- <a7L7L + a?z) (annb + b)Z )

n-1 n--1

a =2 at,xjg;, b=720b, 20y,

n-1 n-1

b = lel7lj<t, I)G'j, e = Zlajk<t, l‘)()'j()'k.
J

When a,,c+a,>0 and H is positive definite on the boundary, it is so called
the uniformly Lopatinskii condition. These facts are proved in §2.

The purpose of this paper is to prove the following energy inequality
which is shown in §3.

Theorem. Suppose that the conditions (C,) and (C,) are satisfied on
the boundary [0, T1] x(R"—R"). Then there exists a positive constant K
such that for every real uc H*((0, T')x R%) with Bu=0 on [0, T'] x (R? —R»)
the following energy inequality holds: for amy ¢t (0<¢<T)
1

ult, )“f = K{S;“(Pu)(s, -):"st—i—”u(o, )H‘?},

(1.5)

where Hu(-)H%ZH“(‘)”?’(R%) and
Cate, =L, ] 2, ) 9
futes Off; = e, A+ G ]+ R

2
¢, )H

o

It seems to us that one of difficulities of our problem comes from the
following fact: there is non zero vector (r,s) with Re =0 and g€ R*!
such that Lopatinskii determinant R(r, 6)=0 and the characteristic equation
Plz,¢,2)=0 has a pure imaginary double root with respect to 2. However,
we can avoid this difficulity by introducing the above algebraic conditions
(C,) and (C,).

Combining the method of the proof of the theorem with a certain
remark, it is shown that energy inequalities of higher order are valid. By

2) See §2 and refer also to [4], [7] and [8]. In particular consider only r with Re ¢ =0.
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the method of approximation, we can show the existence and the regurality
of the solution of our problem if 3 a; (¢ x)&,&, is positive definite. Here
J k=1

we use the following facts: Cauch};—Kowalewsky theorem [9] with respect to
mixed problem and that the conditions (C,) and (C,) are invariant under the
Holmgren transformations®.

Concerning already known results related this problems see [2] and [3].
The author wishes to express his sincere gratitude to Professor T.

Shirota for his invaluable suggestions and constant encouragement.

§2. Conditions (C,) and (C,)

In this section we show that, in the case of constant coefficients, con-
ditions (C,) and (C,) are a necessary and sufficient condition for L*well-
posedness. Throughout this section we assume that P(D) and B(D) are
homogeneous and with constant coefficients. We use notations in [1].

First of all let us remark that the condition (1.2) is equivalent that

2.1) A, +at >0 and

(2.2) the quadratic form D(s)=(a,,+a%)(a®*+¢)—(a,a+D)?
is positive definite,

where, a, ® and e are defined in §1.

Let P(z, 0, A)=7*—2iar—2ia,rA+a,, X+ 201+e¢ be the characteristic pol-
ynomial for P(D) and let 2'(z,6)(2 (r,0)) be a root in 2 of Pz, 2 ¢)=0
which has positive (negative) imaginary part for re ', = {r: Re >0} respect-
ively. Then by (1.3) they are written by the form in €, :

Zi (T’ O‘) = a‘!L?lL [(ianr - b) i Z {(ann + ai) TZ - 22 (anna - anb)z- + a, 6 — b2} }]

where the square root ( ) is determined such that Re ( ¥>0 if Re
t>0. Moreover we consider i*(r, ¢) to be continuously extended to C, x
R* ' where C, is the closure of €'.. By the choice of the square root it
implies

2.3) el }¥) (@ +a) I 1) —(a,.a—a,d)} >0 in C,

where the bracket { }% is the same one in 1 (z, g).

To get a necessary and sufficient condition for L*well-posedness, zeros
of Lopatinskii determinant R(z, ¢) in C. x R*' and the behavior of the re-
flection coefficient C(z, ¢) near zeros play an important role. In this case,

3) See the remark in the end of the paper.
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(2.4)  R(r,0)=il (z, 0)—ib—cr
= —a! [{(@me+a)r+i(@nb+0)} + {(@n +a)e?
—2i(a,a—aDd)z+a,e—t ],
Clr,0)={i2 (z,0)—ib—ct} /R(z, o).

Applying now the results in [1] to this case we obtain the following
criteria for L2well-posedness.

Theorem.

(A) If the mixed problem (P, B) is L™-well-posed, then S(r)= {o€ R* ',
R(r, 0)=0} is independent of 7€C,.

(B) Let S(r) (=S) be independent of t€C.. Then the mixed problem
(P, B) is L*-well-posed if and only if the reflection coefficient C(z, o) is
bounded in a neighbourhood of (z,, 00)#0 with Re 7,=0 or (r,, 0,)€C, X S.

As a special case of (B) we see that

(C) if (P, B) satisfies the uniformly Lopatinskii condition (that is, if
R(z, 0)#0 for any non zero (r,0)eC x R*Y), then the mixed problem (P, B)
is L’-well-posed.

Using the theorem we shall show that the conditions (C,) and (C,) are
a necessary and sufficient conditions for L:well-posedness. To prove this
we need the following lemmas.

Lemma 2.1.

(i) If amc+a,# —(am+ad)t, then R(z,0)%0 in C,— {0}.

(i) If @mc+a,= —(an,+a2)?, then R(r,0)=0 in €, and Clz, d) is not
bounded in any neighbourhood of (z,, 0) (r,€C.).

Proof. By the choise of the square root we get

R{r,0)=—a,} {a,mc +a,+(a,,+ ai)%} z,
Clr, 0) = {auc + @, — (@ + @} [{anc+a, + @+ a2},

which proves the lemma.
Hereafter we may assume that ¢+0.
Now it follows from (2. 4) that R(r, ¢)=0 implies

(2' 5) F(Ta U) = {(annc + an)z - (an.n + a?l)} TZ + 21 {(anna - anb)

+ <an7lc + a?l) (aﬂ“b + b)} T— (annb + b)? - (anne - bz) = O b

where the first equality is a definition.
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The roots in 7 of F(z,0)=0 are

— i{(@uC + @) (@b + D) +(@,,a—a,d)} +(H (o)—a,.D(o)}

(2. 6)

where H (o) is the quadratic form. in (C,). From (2.6) it is seen that R(iy, o)
#0 for any real y if H(0)—a,,D(6)>0 and R(z,0)#0 for any reC, if
H(o)—a,,D(c)<0.

Now we first consider the case that (a,,c+a,)’+#a,,+a% and investigate
zeros of Lopatinskii determinant according to a sign of H(¢)—a,,D(s)."

Lemma 2.2. Suppose that (a,,c+a,)}+a,,+a’, and H(e,)—a,,D(a,)>0
for some a,#0. Then '

(1) Ry, 6)#0 for amy real 7,

(i) if awc+a,>0, R(r,00)#0 for any z€C.,

(i) #f au.c+a,<0, Rz, 0)=0 for some 7,€C,.

Remark 1) In this lemma we may assume that a,,c+a,#0. In fact,
if a,,c+a,=0, then H(o,)= —(a,, + a2)(a,,b, + b,)* where b,=b(s,) and dy=">0(ay).
Hence by (1.3), (2.1) and (2.2) we have H(g,)—a,.D(d,)<0. This contradicts
the assumption.

2) If a,,c+a,<0 and H(s)—a,,D(s) is positive definite, then by the
proof of this lemma S(z) depends on z€C..

Proof of Lemma 2.2. From the remark mentioned before this lemma
it sufficies to prove (ii) and (iii). It is obvious that R(z, ¢,)#0 except roots
in ¢ of F(r,0,)=0. Let 7, be a root of F(r,s,)=0. Then it follows from
(2.4) (2.5) that

R(TO > 00) = - a;; [ {(annc + an) To + Z.(annb() + b0)}

+ {{lane+ a2 ],

By the choice of the square root we obtain

- 261,;71 {(annc + an) To + i(annbo + bO)} lf annc + an > 0 ’

R(Tm 0'0) = l
0 if a,,c+a,<0,

from which our assertion follows directly. Remark 2) is proved by the above
equality and (2.6).

Lemma 2. 3. Suppose that (a,,c+ a,)+#a,,+a’ and H(e,)—a,,D(c,)<0
Sfor some 6,#0. Then
(i) R(r,00)#0 for any t€C.,
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(ii) if H(oy)>0 and a,,c+a,>0, R, 0,)#0 for any real 7,

(i) if H(ey)=0 and a,,c+a,=0, R(in, ao)=0 for some real n,, but
C(z, 0) is bounded in a neighbourhood of (iy,, a,),

(iv) if H(a))<O0 or if H(o)=0 and a,,c+a,<O0, there exists a real »,
such that R(iny, 69))=0 and C(z,e) is not bounded in any neighbourhood of
(190, 00)-

Remark. In the case (ii) we may assume that a,,c+a,#0. In fact, if
a,.c+a,=0 then by (2.1) we have H(o,)= —(@, + a2)(@,,0,+D,)? <0.

Proof of Lemma 2.3. (i) is proved before Lemma 2.2. By (2.6) and
the assumption of the lemma the equation F(i7, 6,)=0 in 7 has two real
roots (counting the multiplicity). Clearly R(i%, ,)#0 except roots in 7 of
F(in, 0,)=0. Let 7, be a root of F(in, ,). Then it follows from (2.3), (2.4)
and (2.5) that

—2 mlz nn! + n + nnb +b f G 0,
(2.7) R(i%,go):{ i, {(@uc+ )0+ @ubo+ D) if Glag)>

0 if G(o)<0,
and
2.8) the numerator 0 if G(00)>0,
" of Clina) | —2iaii{(@me+a)mranbo+d) i Gla)>0,

where a,=a(g,) and G(a) = {(@unC + @2) 00+ @pabo + Do} {(@n + @2) 90— (@100 — @,D5)}.-

To determine a sign of G(o,) we first remark the following facts. Sub-
stituting —7(a,,,b +)/(@,.c +a,) and i(a,.a —a,d)/(a,,+a%) as values of 7 into
F(z, 6) we get directly the following relations:

(2.9) F(-ﬁﬂ_f’if’_ iyo)=—— 9
ApnC +ay (@ +a,)
F anna_anb i, ol=— annD(a) _ I(G)Z s
A+ a A+ (At ai)

where 1(0)=(@u.c+ a,) (@0 —a,D)+(a,, +a2)(a,,b+b). Hence it follows from
(1.3), (2.1) and (2.2) that

(2. 10) F(M 7, a) is negative definite.
a,,+a,

Moreover by the definition of I(s) we have the following relations:

(2.11)  Fm0—ad _(_ @0 +D >: R (C) N

A+ @ a,.c+a, (@pn + @) @pnc +a,)
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(2 12) :(annc + an) (annb + b) - (anna _al;b‘)_ _ ( _ annb + 0 >

(an7lC + an>2 - (a7171 + afl) allnC + all
—I(o)
(annC + an) {(annc + an.)z - (ann + ai)}

)

where the first term of the left hand of (2.12) is a value at which the func-
tion F(in, ¢) in 7 take an extremum.

We consider only the case that a,mc+an>(a,m+a,,) because for another
case (ii)-(iv) are proved by the same method. In this case F(in, o) is a
concave function in 7.

(ii) The case that H(g,)>0. It follows from (2.9)-(2.12) that I(go)#0

7 < — Znnio_:_abo < a;:ao —:Z;bo if I(Uo> > 0
_ annbo + bO Apno— anbo 3
" > a,,c+ az? > QApy + ai ) i I(Uo> < 0

This shows that G(e,)>0. Hence by (2.6) we have R(in,, 6,)#0.

(iii) The case that H(g,)=0. By (2.9) we see that 5= —(a,,b~+ Do)/
(@uc+a,) is a root in 5 of F(in, g,)=0. Hence by the same as the case (ii)
R(iy, 6,)#0 for any 9p#7,. From (2.7) and (2.8) it is easily seen that R(ix,, o)
=0 and the numerator of C(in,, g,) is equal to zero. To prove that C(z, o)
is bounded in a neighbourhood of (in,, 6,) we consider the expansion of
2*(z, 0) near (iny, a;). (cf. [6]). Let P(r, g, A)=(r—ir\(0, A))(t—ir,(a, 2)) where
7;(a,2) (j=1.2) are real analytic and distinct and moreover let 1, be a root
in 2 of P(in, 6y, )=0. Then without restriction we may asseme that 7,=

71(00, A) and A= —(a,n,+d)/a,,. Since A, is double, we have %‘%(ao, A)=0

2
and aa;‘ (60, 4)7#0. Hence there exists a real analytic function 2,(¢) such

that A(go)=2, and = aT 1 (a, A(¢)=0 in a small neighbourhood of ¢,. Now let
us set

it—n, = 1y(a, A)—11(00, 4o)
=7 <o‘, 20(0)> -7 (00’ 20) —i‘ ‘QZ - ( )\2 20 >>

o,
or
tive (negative) imaginary part respectively. Then for an arbitrarily fixed ¢
near ¢, we obtain the expansion in &* of i*(z, o) near i7,:

or
Let & (¢7) be the square root of —(2ir+7, (a Aolo > <o Ao )) with posi-



228 R. Agemi

2% (7, 0) = A(0) + & + cy(a)(EXF+ -+,

where c¢;(0) are real. Using A(0,)=2= —(a, 7+ Dy)/@p»,
Cle, oy = £-F0(E D)
§+0(e)) -

Since |£/&7|=1 ‘and &' (6)—>0 when t—1in,, C(z,0) is bounded in a
neighbourhood of (77, , o).

(iv) The case that H(s,)<0. From (2.9)and (2.10) we see that there exists
a root 7, between (a,,00—a,D,)/(@n, +a%) and —(a,,b,+D,)/(a..c+a,,). Hence
we have that G(g,)<0. Consequently it follows from (2.7) and (2.8) that
the conclusion of (iv) in the lemma is valid.

Next ,we consider the case that (a,.c+a,f=a,,+a%. In the case that
ApnC+a, = —(:aml+af,)% we use only Lemma 2.1 for our aim.

Lemma 2.4. Suppose that a,mc+a,l:(a,m+a,l)%. Then

(1) 2f (@unC + @) (@nbo + D) + (@00 — a,0y) =0 for some a,70, R(z, 6,)#0
in C,,

(1) 2f (@unC + @) (@nbo + Do) + (@ Go— @, D) #£0 for some 6,#0, R(r, a)#0
in C, and the conclusions of (ii), (i), (iv) in Lemma (2.3) are valid according
to H(a,)>0, H(s,)=0, H(o,)<O0 respectively.

Proof. We prove only (i) because (ii) is proved by same method in
Lemma 2.3. In the case (i) F(z, a))=a,.D(a0)/(a,., +a2). Hence the assertion
follows immediately from (1.3), (2.1) and (2.2).

Using Theorem (A), (B), (C) and lemmas (2.1)~(2.4) we can show the
following

Theorem 2.5. The mixed problem (P, B) is L*-well-posed if and only
if apc+a,>0 and the quadratic form H(e) is positive semi-definite.

Proof. 1. Sufficiency of our condition. First cosider the case that
apmc+a,>0 and H(o)—a,,D(c) is positive definite. By the remark 1 of
Lemma 2.2 we may assume that a,,c+a,>0. Note that H(s) is positive
difinite and (a,.c+a,)’#a,,+a:. In fact, the first assertion follows immedi-
ately from (1.3) and (2.2). I (a..c+a,f=a,,+a:, then H(¢)—a,,D(e)=
— {(@pnc + a,) (@, 0 + D)+ (a,,a—a,d)}?<0. Hence it follows from Lemma 2.1,
2.2 and Theorem (C) that the mixed problem (P, B) satisfies the uniformly
Lopatinskii condition and consequently it is L*well-posed. Next consider
the case that a,,c+a,>0 and H(o,)—a,,D(s,)<0 for some ¢,. If H(ag,) is
always positive for such all ¢,, then by lemmas 2.1-2.4 the problem (P, B)
satisfies the uniformly Lopatinskii condition. If H (g, is non negative for
such all ¢, and in fact H(g,)=0 for some g, then by lemmas 2.1-2.4 S(z)
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=¢ for any reC, and the reflection coefficient C(r ¢) is bounded in a neigh-
bourhood of a zero of Lopatinskii determinant. Therefore the problem is
L*-well-posed by Theorem B.

2. Necessity of our condition. First if a,.c+a,>0 and H(s,)<0 for
some a,, then by lemmas 2.3, 2.4 and Theorem (B) the problem is not L*-
well-posed. Secondly if a,.c+a,<0, a,,c+a,#(a,,+a’) and H(o)—a,,[D (o)
is positive definite, then by the remark 2 of lemma 2.2 and Theorem (A)
the problem is not L*well-posed. Thirdly if a,,.c+a,<0, a,.c+a,# (@, +a%)
and H(gy)—a,,D(0,)<0 for some ¢,#0, then by Lemma 2.3 and Theorem
(B) the problem is not L’well-posed. Finally if a,.c+a,=—(a,,+a%), then
by Lemma 2.1 and Theorem (B) the problem is not L?well-posed. In a final
case note that S(r)={0}. Thus the proof is complete.

Remark. From the proof of the theorem we see that (P, B) satisfies the
uniformly Lopatinskii condition if and only if a,,.c+a,>0 and H(o) is positive
definite.

§ 3. Energy inequalities

In this section we prove Theorem stated in §1.
First of all we may assume that B(4 2': D) is homogeneous. In fact,
we take a real valued function ¢eCg([0, T'] x R*) with following properties :

%<¢<1 in [0, T]x Rz,

=1 and ~§9L+h=() on [0, T]x (B —R"),

xn

and set u=¢v. Then u satisfies

Blt,x: Dyu—=-0Y 55 W _ 00 [0, T]x(RB»—R?).
0x, i1 = 0x; ot

Hence it follows from this and invariance of principal part that the energy

inequality for u follows from that for v.

Denote the inner products in L*(R")and L} R*— R?) by (-, -)and (-, ->
respectively. Furthermore set |u|[®=(u«, u) and (u)*={u, u). Hereafter we
may assume that u€Cy([0, T]x R?) with B(t,: 2’ D)u=0 on the boundary
[0, T]x (R* — R>).

Using the integration by parts we obtain that for any #(0<z<T)

t

3.1 2 S ((Pu)(s, g, 9 ))ds

ot

0
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I du 2 = ou ou !
= — , )+ > s s !
5o Blfesrgnen gre)f
+2S'<an<s, L0) s )+ B ans, -, 0)- 2 (s, -, 0),
0 at j=1 axj
%(s, -, 0)>ds +(lower order term),
‘ ‘ : au
3.2) 2\ ((Ps, ), —(s,))|ds
0 ox,
of Ou i ou ou ¢
:Z¥a‘_ s T NS )y 8 )
(=Bt )2 60, 2t )f
t n
+2S <an(s, 0) 2 s, 0)+ Xans, -, 0)-2% (s, -, 0),
0 at j=1 axj
aau (s, -, 0)>ds+ (lower order term) (k=1,2, -, n—1),
Ly
8.9 2 (Pots ), 2 1) ds
0\ 3xn

o (0% ¢ O Sa(s, )T (s, .y, 0 s
—2<'ét<5, ) nga](si )ax] (53 )? ax” (S’ )>.0

H
+S {<<%Z;<s,-,0>>>2+<am<s,-,0> 04 (s,.,0), 4 (s, -, 0)>

0 317 Bx,l
n-1
- 2<il{ (S’ ) 0)3 Z aj<sa © O)ﬂ_(‘g, ) 0)>
ot =1 0x;
n-1 au au
- Z <aj/c<s"’o>" '**(S,', 0>”"'7<5,'a0)> ds
j&=1 0x; ox,

+(lower order term).

Here “lower order term” means an integral of following type:
t

S (a bilinear form in , »—a.Li, ou

0 0 ox;

most first derivatives of those of P and B)ds.

whose coefficients are at

Consider the following integral :

(3. 4) zg

(s, 4158650+ B Ass )-Fts s,

where A (¢, x) and A,(¢, x) are real valued and determined later on.
By the same calculation as (3.1), (3.2) and (3.3) the part {-,-)|§ of the
integral (3.4) becomes
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.5 (4695005, 5065 ) +2( Fts. ), £ asts ) 2ts )

> ({A<s,->ajk<s,->—2aj<s,->Ak<s,->} % (s,.), 24 <s,->)]".

jE=1 ox; ox, o

Using the relation (Bu)(¢, 2/,0)=0 and denoting f|, -,=f(¢ 2',0) the
boundary part of the integral (3.4) becomes

ou

>

iz, =0 ot

u

ot

>ds

Z,, =0

(3. 6) St < {Z(a,mc +a,)A+(a,.c+1)A, }
0

2 au n-1
+ ZS <h‘ > Z {(annbj =+ anj) A + (anan]' —aj)An
o Ot 2,0 71
Hameta)A) 2| > ds
xj Z,, =0
"t n--1
+ S Z < {2 (annbj + anj) Ak + (annbjb/c _ajk)An} —@i s
0 k=1 axj z,, =0
ou
>ds.
axk z,, =0 ’

First we see that the quadratic form corresponding to (3.5) is positive

definite if and only if A>0 and i (A%, —2a;A,A—A;A)E£,>0 for any

J. k=1
non-zero £e R*. Put ,SB:’ZZT A,(t, x)o; where £€=(0,&,). Then by rewriting
=t

this condition we get

(3.7) A>0,

(3.8) amAt—2a,AA,—AL>0,

3.9 the following quadratic form L(¢ x: ¢) in ¢ is positive definite,
where

L{t, z; 0) = (a,,e— ) A*—2 {(am,a—anb)% +(a,e—abd) An} A
—(App +a2)B*+2(0+a,a)A,B—(a*+e) A%,
and a, b, » and ¢ are defined in §1.

Next we see that the quadratic form corresponding to (3.6) is positive
semi-definite if and only if on the boundary

(3. 10) 2(ac+a,)A+(a,.+1)A,=0,

(3.11) the following quadratic form J(¢, £'; ¢) in ¢ is negative semi-
definite,
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where
J(t, 25 0) = {(@unb +0) A= (e +a,)B}" +2A4,{(@.,0+b)(@,.cb—a)
- (annc + an) (annbz - e)} + 214n23 {(annc + an) (anan - C[)

— (@€ + 1) (@ + D)) + A2 {(@,,00— QP — (@, + 1)@, 0 —)}.

2

Multiplying J(¢, 2'; ) by (a..c+a,f a simple calculation gives

(8.12) @+, (0) = [(@une+ @S B—(@uc +a,) (@b +d) A
+ {(@nn + @,) (@D — ) = (@16 + 1) (@0 + D)} A, ]°
+ A, {2(@ne + @) A+ (@ + 1) A} (2(@00 + @) (@5 + D) (@,,c0—0)
— (A€ + @ @ €) — (@€ + 1) (@, 0+ D).

Consider the last factor of second term in the right hand of (3.12). Com-
pare coefficients of powers in ¢ of this factor with those of H(s). Then
we see that this factor is equal to H(s)/a,,. Consequently

(8.13)  (@unc + @, (0) = [(@unc+ @, PB— (@, +a,) (@b +D) A

2

+ {(@un + @) (@0 — Q) = (@, + 1)(@,, 5+ D)} A, |

+ _I{M {2 ((lnnC + an) A + (anncz + 1) A"} :

ann
Now let us set
A=(a,c+a,)f—a,a.ct+a,)+a,,+d,,
(3. 14) A;=a,b;a,.c+a,)—(a,a;—a,a,;) (j=1,--,n—1),
A, =—a,la.ct+a,),

Here we extend the functions c(¢, &') and b,(¢, ') (j=1,---,n—1) defined on

the boundary to [0, 7] x R* as follows: c(¢ x)=c(¢, ') and b,(¢, x)=b,(¢, 2').

Then we shall show that conditions (3.7) and (3.8) hold in [0, 7] x R* and

conditions (3.9), (3.10) and (3.11) hold on the boundary [0, T']x (R" — R™).
First by (C,), (1.3) and (2.1) we see that relations

A = (3nC° + Q@€ + @)+ A
2 2
annA - 2anAnA - An

=a,, {(a,,,,c +a,) + (@n€ + @) (An + @) + (A + aﬁ)2} ,
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(3.15) 2(apc+a,)A+(a,l+1)A, =(a,.c+a,) {(a,mc +a,+ (A, + a;)}

imply the assertions on (3.7), (3.8) and (3.10).
Next, after a little complicated culculation, we arrange L(s) with respect to
powers in a,,c+a,. Thus we see that

(3.16)  L(0) = (@muc + @, H(0) + @, D(0){(@nic+ @} + (@n, + a2},

where D(g)(=D(¢, x; o)) is defined by (2.2). By (C,), (1.3), (2.1) and (2.2) the
condition (3.9) holds on the boundary. Finally by a short calculation the
part [ ] of (3.13) vanishes. Hence it follows from (3.13) and (3.15) that

(3.17) J(0) = — H(o){(@nc + a,f + (@, +al)}.

Consequently by (1.3) and (C,) the condition (3.11) holds on the boundary.

Suppose that the quadratic form L(¢ x; ) is positive definite in [0, 7]
x R* Then we shall show the energy inequality (1.5). The foregoing
consideration gives that for any ¢ (0<¢<T)

(3.18) K( LT R -)f)—K;(ai‘(o, )+ 5 e, ->;2)

< [ (@5 ), Al )2 )+ 5 A )24 (s, ))ds
o

ot i=1 0x; |

+ |(lower order term)|,

where A and A; are defined by (3.14) and constants K; and K, are in-
dependent of u. Note that

=2 [ et [ 216

Using Schwarz inequality it follows from (3.18) and (3.19) that for any ¢

(3.19) <‘”u(5

H‘u(t’>;‘f§K2<S:‘Hu< > dt+S u Pu ‘ ds—i—“u wl)
Since j 1 (Pu)(s, ) N|*ds + 1 «(0, - )i is increasing in ¢, we obtain

3200l f=Kes ([ Pl ) Pds a0, )

il o oll i ii i
Set K=K,e*:". Then (3.20) leads immediately to the energy inequality (1.5).
Now we shall remove the above assumption. Note that by (3.16)
L(t, x; o) is positive difinite on the boundary. Then by the assumption and

4) This assumption may be removed after.
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continuity of coefficients there exists a small positive constant § such that
L(¢, x; ¢) is positive definite in [0, T]x R* 'x[0,5]. From the foregoing
paragraph this shows that the energy inequality (1.5) holds for « with its
support in [0, T]x R*'%x[0,48]. Let us take a real valued function ¢(x,)€
Ce(RY) such that ¢(x,)=1 in 0<x,<6/2 and ¢(x,)=0 in x,>0 and set u=
du+(1—¢)u. Clearly the support of ¢u is contained in [0, T'] x R* ' x [0, 5]
and B{(¢u)=Bu on the boundary. Hence ¢u satisfies the energy inequality
(1.5). By regarding (1—¢)u as a solution of Cauchy problem for P(D) the
proof of Theorem is complete.

Finally we remark on the case of the uniformly Lopatinskii condition.
The operators P and B satisfy the uniformly Lopatinskii condition if and
only if on the boundary a,,.c+a,>0 and the quadratic form H(s) is positive
definite (See the remark of Theorem 2.5). Then the following corollary
follows immediately from the proof of Theorem (especially (3.15) and (3.17)).

Corollary. Suppose that P and B satisfy the uniformly Lopatinskii

condition. Then there exists a positive constant K such that for every
real ucH*(0, T)x R") the following energy inequality holds for any t
0<t<T):

(3. 20) ;Hu , ‘ S((u s, +, 0))ids

< K([ 1Pas s+ q(Bus. -, opzeds + o,

where

o=, O = (ulls -, O+ (20, O+ 5 (22~ (0, -, O
B t

Remark. We first prove the following energy inequality of higher order.
For every ue H™(0, T)x R*) (m=0: integer) with Bu=0 on the
boundary the energy inequality holds: for any t€(0, T)

I (OIS

wsy el =K ([0

+ S;N(Pu)(s, ),’fn . ds),

where

\rz

o))

il

ou 2
at( ,-)

m-F -

It suffices to prove the case m=0. The difference between the proof of
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(1.5) and one of (1.5) is as follows. Replacing « by @—, Ou in (3.4) and
ot~ dxy
moreover Bu=0 by Bat—(Bu):O, 9 (Bu)=0 (k=1,---,n—1) respectively, the
Ly

following remaining term arises from (3. 1), (3. 2) and (3. 3):

St <(Qu) (s, 2, 0), (Qut)(s, , 0) > ds,

0 d

where Q;(j=1,2) is a j-th order differential oparator in = 3 (k< n).
Ly

Using the trace inequality, the above integral is estimated by

(s, ),

1

Kfelut [+ C e [+, 4§

t
0
where ¢ is a arbitrary positive number. To estimate 2% we use the equa-
tion (1.1). Combining these facts with our method in §3 we obtain (1.5).

Secondly to prove the existence and the regularity of the solution of
our problem we use the method of approximation. In fact, by the assump-
tion that a,,>0 and a,,e—Db? is positive definite, the condition (C;) and (C,)
are equivalent to a,,c+a,=0 and a,.c+a,= the positive root of H=0

with respect to a,.c +a,. Hence P and B are approximated by P and B,
n-1
which satisfy the uniformly Lopatinskii condition, where B,= éa—f— 2 by
x, i1
0 _(c+e) 2 +h.
0x; ot
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