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§0. Introduction.

Let (M" g)(n=2) be an n-dimensional Riemannian manifold” with a
positive definite metric tensor g. The following is well known.

TueoreM A (T. Nagano [7]?). Let (M™ g)(n=4) be a Riemannian
manifold. If C does not vanish on (M?", g), there exists a metric tensor ¢’

‘conformal to g such that
C(M™, g)=1(M", ¢')

where C is the Weyl’s conformal curvature tensor of (M™, g), and C(M?*, g)
and I(M™, g) are the groups of conformal transformations and isometric
transformations of (M™, g), respectively.

From Theorem A, we can conjecture that (M7, g) is conformally flat if
C(M™, g)#I(M™, g) ([10]). In this respect, we can consider that if (M7, g)
admits a transformation with a certain property, it shall restrict some geomet-
rical properties of (M?”, g). Taking the above into consideration, we shall
study groups of homothetic transformations, conformal transformations and
projective transformations.

The author wishes to express here his sincere thanks to Professor
Yoshie Katsurada and Doctor Tamao Nagai for their kindly guidences and
encouragements.

§ 1. Homothetic transformations.
Let C(M™, g), A(M™, g), H(M?", g) and I(M", g) be groups of conformal

transformations, affiine transformations, homothetic transformations and iso-
metric transformations of (M7 g), respectively. M. S. Knebelman and K.
Yano ([4], [5], [13]) proved the followings.

THeoreM B (K. Yano). In a compact Riemannian manifold (M™, g)

1) Throughout the paper, we assume that (M=, g) is connected.
2) The numbers in brackets refer to references at the end of this paper.
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(n=2), an infinitesimal affine transformation is an infinitesimal isometric
transformation,

Tueorem C (M. S. Knebelman and K. Yano). In a Riemannian mani-
Sfold (M™, g) (n=2) of constant curvature (an Einstein manifold or a Rieman-
nian manifold of constant scalar curvature), one of the following two
conditions must be satisfied.

1) An infinitesimal homothetic transformation is an infinitesimal iso-

metric transformation.

2) R=0 (Ric=0 or S=0),
where R, Ric and S are the curvature tensor, the Ricci tensor and the scalar
curvature of M7, q), respectively.

The generalizations of Theorem B were studied by J. Hano [2], S.
Ishihara and M. Obata [3] and S. Kobayashi [6], and concerning H(M?*, g),
the following theorem was proved.

TueEOREM D (S. Ishihara and M. Obata [3]). In a complete Riemannian
manifold (M™, g) (n=2), one of the following two conditions must be satisfied.

1) HWM®™ g)=IM" g).

2) (M~ gq) is locally flat.

In this section, we consider the case where (M™, g) satisfies some condi-
tions on the curvature tensor instead of the completeness in Theorem D.
We denote by |T'|, the length of an arbitrary tensor 7" with respect to g.
The first theorem is the following.

TueorREM 1. If the curvature tensor R of a Riemannian manifold
(M™, g)(n=2) does not vanish on (M7, gq), there exists a metric tensor g’
conformal to g such that H(M™, g) is implied in I(M™,g’).

Proor. In the same way as a proof of Theorem A, we can prove this
theorem. Let ¢* be a metric tensor on M™ induced from ¢ by fe H(M?, g)
and R* the curvature tensor defined by ¢g*. Then, there exists a constant
¢ such that ¢g*¥*=¢*g, and we have

<1> R*=R, IR*IQ*:eMZCIRIg-
Therefore, defining ¢’ by |R|,g, we have
S*@) =R *g)=¢',

where f* denotes the dual mapping of the induced mapping fi. The last
equation shows that f is an isometric transformation of (M™, ¢').

CoroLLARY 1. If the Ricci tensor (the scalar curvature, the Weyl's
conformal curvature tensor, or the Weyl's projective curvature tensor) does
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not wvanish on a Riemannian manifold (M™,g), there exists a metric tensor
g’ conformal to g such that H(M™, g) is implied in I(M™g").
In connection with Theorem C, we obtain the following.

THEOREM 2. If the length |R|, of the curvature tensor is bounded on
a Riemannian manifold (M™, g)(n=2), one of the following two conditions
must be satisfied.

1) H(M?" g)=I(M"q).

2) (M™ g) is locally flat.

Using the following lemma, we can prove this theorem.

Lemma 1. Let (M™, g)(n=2) be a Riemannian manifold which is not
locally flat. If H(M~, g)#I(M?", g), there exists a point p, of (M™, g) such
that R does not vanish at p,, and for the point p, of (M, g), the number
of elements of the set

M,= {f4p)eM»; k=0,1,2,
is infinite, where f*=f. f---f (k-times) and f°=identity.

Proor. The first half is obvious. For the latter half, we now assume
that there exist two distinct numbers ¢ and j such that

S =S (po), Le, f7H(po) =po-
Therefore, from (1), we have
[RI,(£0) = ((F79*IRl,) (po) =€ | R|,(p0)

From |R|,(p,)#0 and i#j, we have that ¢ is zero. This is contradictory to
H(M™, g)=1(M™, g).

ProofF of Theorem 2. If (M" g) is not locally flat and H(M™, g)+
I(M™, g), there exists a point p, of (M™ g) and a negative constant ¢ such
that R does not vanish at p, and

f*g=¢"g for a certain fe HM™ g).
On the other hand, we have
((F2¥IR1,) (o) = e Rl (p0) (R =10,1,2,-).
Therefore, from Lemma 1, |R|,(p)#0 and c¢<0, we have
Lim [RI,(£4(p0) = |R],(po) lim 7% = + 0o

This is contradictory to the boundedness of |R],.
COROLLARY 2. In a locally symmetric Riemannian manifold (M7, g)
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(n=2), one of the following two conditions must be satisfied.

1) HM" g)=1M"g).

2) (M™ g) is locally flat.

In the same way as the proof of Theorem 2, we have the following
theorem.

Tueorem 3. If |Ricl, (S, |C|,, or |P|,) is bounded on a Riemannian
manifold (M", g), one of the following two conditions must be satisfied,
where P is the Weyl’s projective curvature tensor.

1) H@M*, q)=I(M" g).

2) Ric=0 (S=0, C=0, or R=0).

§ 2. Conformal transformations.

In the same way as the proof of Theorem 2, we obtain the following.

THEOREM 4. Let (M7, g)(n=4) be a Riemannian manifold such that
the length of the Weyjs' conformal curvature tensor is bounded on it. If
there exists a conformal transformation f such that

f*g=2¢"g and |P|>e>0
Jor a certain positive constant e, then, (M™, g) is conformally flat.
CorOLLARY 3. In a compact Riemannian manifold (M™, g) (n=4), if
there exists a conformal transformation f such that
f*g=¢*g and P+0 on (M™g),
then, (M™, g) is conformally flat.

Let (M”, g) and (M*, ¢)(n=2) be two Riemannian manifolds. A corre-
spondence f from (M™, g) to (M”, §) is conformal if and only if there exists
a function @ defined on (M™, g) such that

J*g=2¢"g.
Then, we have the following lemma.
LEMMA 2. Let (M7, g) and (M™, §)(n=4) be two Riemannian manifolds.
If there exists a conformal correspondence f from (M?”, g) to (M™, §), i.e.,
f*a=e*g, one of the following two conditions must be satisfied at each

point of (M™, g).
1) C=0, if C=0.

2) pzéﬂ(loglclg—loglﬁ* o), if C#0,

where §* and C* are a metric tensor on M" induced by f from § and the
Weyl’s conformal curvature tensor defined by,g*.
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Proor. From g*=¢*g, we have
(2) C*=C and |C*|;.=e¥|C],.

From (2) and f*C=C*, this lemma is obvious.

From Lemma 2, we have the following.

COROLLARY 4. Let (M*, g) and (M*, §) (n=4) be two Riemannian mani-
folds such that the lengths of the Weyl’s conformal curvature tensors of
(M*, g) and (M*, §) are constant. If there exists a conformal correspondence
f from (M» g) to (M, §), one of the following two conditions must be
satis fied.

1) (M" g) and (M”, §) are conformally flat.

2) fis homothetic.

This corollary implies the result obtained by T. Adati and T. Miyazawa
[1].

Proor. Since |C|; is constant,
|C*|5 = £*(|C|;) = |C|; = constant.

Therefore, from Lemma 2, if C is zero at a certain point of (M?*, g), (M™*, g)
and (M™, g) are conformally flat, otherwise, @ is constant.

CoroLLARY 5 (T. Sumitomo [12]). Let (M™, g)(n=4) be a Riemannian
manifold such that the length of the Weyl’s conformal curvatature tensor
is constant. Then, one of the following two conditions must be satisfied.

1) (M~ g) is conformally flat.

2) CM*, q)=IM",g).

Proor. Denoting by ¢* a metric tensor on M™ induced by f from ¢
for feC(M™, g), since |Cl, is constant, we have

!C*Ia* :f*“C]a) = Icly .

Therefore, if C+#0, we have that £ is zero.

Next, we shall consider the relation between the curvatures and the
conformal correspondences of two Riemannian manifolds. The following
theorem is well known.

TueoreMm E (M. Obata [9]). There is no conformal correspondence be-
tween a compact Riemannian manifold of everywhere nonpositive scalar
curvature and one of everywhere nonnegative scalar curvature except for
the case where both scalar curvatures are identically zero.

With respect to the relations between the sectional curvatures and the
conformal correspondence of two Riemannian manifolds, we have the follow-
ing theorem which is similar to the above Theorem E.
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THEOREM 5. Let (M™, g)(n=2) be a compact Riemannian manifold of
everywhere nonpositive sectional curvature and (M", §) one of everywhere
nonnegative sectional curvature. If there exists a conformal correspondence
f from (M", g) to (M*, §), then, (M", g) and (M*, §) are locally flat and f is

homothetic.

Proor. Let §*, R* and K* be the metric tensor, the curvature tensor
and the sectional curvature induced by f from §, R and K, respectively,
where K is a sectional curvature of (M”, g) and K one of (M, g). Denoting
by {u,,--,u,} the orthonormal basis of the tangent space of (M™" g) at each
point with respect to ¢ and by P;; the plane expanded by u, and u;, we
have

3 K Pi' — g(R(uz, uj)uh uj) — R Uy, Us)Uyy U
(3) ( J) g (u;, ui)g(uj, uj)_(g(uh uj))z 7R j> )

g* (R* (uz > uj) U,y uj)
g* (uz > uz) @ * (uj’ uj) - (‘7* (uz > uf))z
where 0 is an associated function with f. On the other hand, using local
coordinates, we have

(5) R*”U;c =R —0%0,;+ 00— q:,0™ + 9:4P";
Where p5=a¢p, P}’¢=g”‘0ﬁ and

(4)  KX(P,) =

= ewng (R* (ui > uj) Us, uj) >

(6) 5=V ;0,—00,;+ %{*G“t"k:"zg”,

and F; is a covariant differential operator defined by ¢ with respect to

il

Therefore, from (3), (4) and (5), we have
e K*(P,;) = K(P,,)+ (uf + u'u?)o,,

where u,=u —aa—k From (6), we obtain the following system of partial
x

differential equations.

a’p

7 i+ utu —
(1) (a0

+ (g0, + A0, = eZPK*(PM)_K(P“) >

where A%, is denoted by
— ekt + ) (1) — atad+ wac ),

and {2 /e} are the coefficients of the connection defined by ¢g. Therefore, for
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n planes Py, Py, -, P, 1, and P,;, from (7), we have

n 2 w1
(8) 2 Sty T (v, + AL,
i=1 oxfox’  im1

n—1

= (T K*(Poy )+ R¥ P} — (L KP., )+ K (P}

7=1

On the other hand, since (X uful) is positive definite, applying Theorem of
i-1

E. Hopf [14] to (8), we have that @ is constant, and K* and K are identi-
cally zero.

COROLLARY 6. Let (M™, g) and (M", §)(n=2) be two compact Rieman-
nian manifolds of constant curvature. If there exists a conformal corre-
spondence f between (M", g) and (M*, §), one of the following two conditions
must be satisfied.

1) The sectional curvatures of (M", g) and (M*, §) are of the same sign.

2) fis homothetic and (M?", g) and (M, 9) are locally flat.

§ 3. Projective transformations.

K. Yano and T. Nagano [15] and T. Sumitomo [12] proved the following
theorems.

Tueorem F (K. Yano and T. Nagano). Let (M™, g)(n=3) be a locally
symmetric Riemannian manifold. If (M™, g) admits an infinitesimal projec-
tive transformation X, one of the following two conditions must be satisfied.

1) (M?™, g) is of constant curvature.

2) X is an infinitesimal affine transformation.

TueoreM G (T. Sumitomo). Let (M™, g)(n=2) be a Ricci symmetric
Riemannian manifold. If (M™, g) admits an infinitesimal projective trans-
formation X, one of the following two conditions must be satisfied.

1) (M7, g) is an Einstein manifold.

2) X is an infinitesimal affine transformation.

In connection with Theorem F, N. S. Sinyukov [11] gave the analogous
result in the case where there exists a projective correspondence between a
locally symmetric Riemannian manifold and an arbitrary Riemannian mani-
fold, and T. Nagano [8] obtained a similar result in the case where there
exists a projective correspondence between two complete Ricci symmetric
Riemannian manifolds. In this section, we shall prove the following theorems.

THEOREM 6. Let (M”, g)(n=4) be a conformally flat Riemannian mani-
Jfold of constant scalar curvature and (M”,§) a Riemannian manifold such
that the tensor VRic is symmetric, where V is a covariant differential operator
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with respect to §. If there exists a projective correspondence f from (M", g)
to (M”, §), one of the following two conditions must be satisfied.

1) (M7, g) and (M™, §) are of constant curvature.

2) fis an affine correspondence.

THEOREM 7. Let (M7, g) and (M*, §)(n=2) be two Ricci symmetric
Riemannian manifolds. If there exists a projective correspondence f from
(M™, g) to (M, §), one of the following two conditions must be satisfied.

1) (M» g) and (M*, §) are Einstein manifolds.

2) fis an affine correspondence.

Lemma 3. In a conformally flat Riemannian manifold (M7, g)(n=3),
if there exists a vector field ¢, on (M™, g) such that

(9) ¢7LP,;]'L~:O,

then, (M™, q) is of constant curvature, or ¢, is a zero vector field, where
P, are components of P with respect to local coordinates.

Proor. From the definition of P and (9), we have
(10) ¢1LR"M/¢ = n—i‘l‘(ﬁkaw‘“ﬂ/’jRM)

Contracting (10) by ¢“, we have

(1) R, = S
On the other hand, since (M™, g) is conformally flat,
(12) Rl = -1 (0Riy=03Reu+ 0., R s~ gueR")
— St~ g
(n—1)(n—2)

Substituting (12) into (10} and using (11), we have

(13) Ry =R~ S (u0s— 1) = 0.

Contracting (13) by ¢*¢, and using (11), we have
(091 Ry~ —-S1s) =0 .

Therefore, (M™, g) is conformally flat and Einsteinian, i.e., of constant curva-
ture, or ¢, is a zero vector field.
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Proor of Theorem 6. Since (M7, g) is conformally flat, from (12) and
the Bianchi’s identity, we have

L (g S gl ) =0.

14 V,R,,—~V,R; — -
( ) k J J k 2(7[——1)

Since S is constant, from (14), we have

(15) ViR;;—V;R;,=0.

When we denote by 7, R, Ric and P the covariant differential operator, the

curvature tensor, the Ricci tensor and the Weyl’s projective curvature tensor

induced by f from 7, R, Ric and P, respectively, it follows that

(16) ﬁlcjéij_ﬁjéik:o,

because PRic is a symmetric tensor. On the other hand,

(17) 17z Pos = Vi P’y 4 070 nP s s — 2P 41
‘—Sbiphzj/c'“(/)jphilk_S[’/rph«ijl )

where ¢, is a covariant vector field associated with f. Contracting (17) by

:, we have

(18) ﬁn ’ﬁhijk = V}zPhijk+(n_2>¢hPhijk .
From (15) and (16), we have
(19> ﬁh%”ﬁk = VIzth‘j/r =0

Substituting (19) into (18), for =3, we have (9). Therefore, from Lemma
3, we have that (M™, g) is of constant curvature, or ¢; is a zero vector field
(i.e., f is an affine correspondence). When (M™, g) is of constant curvature,
(M*, @) is also of constant curvature.

COROLLARY 7. Let (M" g)(n=4) be a conformally flat Riemannian
manifold of constant scalar curvature. If (M?", g) admits a projective trans-
Sformation f, then, (M™, g) is of constant curvature, or f is an affine trans-
Jormation.

LEmMA 4. Let (M?" g)(n=2) be a Riemannian manifold satisfying
(20) V.V.R,;~V.V,R,;;=0.

If there exists a vector field ¢; satisfying (9), then, (M™, g) is an Einstein
manifold, or ¢; a zero vector field.

Proor. From (9), we have (10) and (11). Contracting (10) by g*'¢,R%,
we have
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(21) g“gblgb,LR”R"”k = (gklﬁbkébzR“Rij—¢j¢’kRjz'RM)

n—1
On the other hand, from (20) and the Ricci’s identity,
(22> thRhikl +Rithj/cl =0.
Contracting (22) by ¢” and substituting the result and (11) into (21), we have

(23) 0“6, (R“R“— L SZ) 0.
n
Therefore, it follows from (23) that

Rij—LSgij:O, or ¢,=0.
n

Proor of Theorem 7. In the same way as the proof of Theorem 6,
since PRic and VRic are zero tensors, we have (9) and (20). Therefore, from
Lemma 4, it follows that (M”, g) is an Einstein manifold, or f is an affine
correspondence. Similarly, we have that (M”, ) is an Einstein manifold when
f is not an affine correspondence.

Addendum. Mr. T. Muramori indicated the author that we have the
following theorem in the same way as Theorem 2.

Tueorem 8. If |FR]| is bounded on (M™, g), one of the following two
conditions must be satisfied.

1) HM*, g)=IM"g).

2) (M=, g) is locally symmetric.

We can generalize this theorem as follows:

LemMa 5. Suppose that H(M™, g) is not equal to I(M™, g). If a tensor
T satisfies that there exists a number m such that \V"7T| is bounded on
(M™, g) and

FHPET]) = 5 Ve|P* T Jor all k (k=0,---,m)

then, T is a zero tensor, where V'™ is a covariant derivative of m times, ¢
is a non-zero constant and f is in H(M™, g) such that f*g=é“g.

This lemma can be proved by using a method of the proof of Theorem
2 and that |[F”7'T| is constant. From this lemma, we have the followings.

THEOREM 9. If there exists a number m such that |F"R| (|F"P|, or
\P™Z)) is bounded on (M*,g), one of the following two conditions must be
satisfied,

1) HM", g)=IM",q).

2) (M™, q) is locally symmetric,
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where Z"; ;.= R";;,—S(049:;,—059:) [ n(n—1).

THEOREM 10. If there exists a number m such that \W"C| is bounded
on (M™, g), one of the following two conditions must be satisfied.

1) H(M" q)=I(M"g).

2) (M™ g) is conformally flat.

THEOREM 11. If there exists a number m such that V™ Ric|, or |F"G],
is bounded on (M™, g), one of the following two conditions must be satisfied.
1) H(M", g)=1(M", g).
2) (Mm g) is an Einstein manifold of zero scalar curvature,
where G;;=R;;—S" g;;/n.

THEOREM 12. If there exists a number m such that |V™S| is bounded
on (M™, g), one of the following two conditions must be satisfied.
1) H(M* g)=I1(M", g).

2) (M» g) is of zero scalar curvature.

Department of Mathematics,
Hokkaido University
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