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Certain bilinear operators on Morrey spaces
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Abstract. In this paper, we consider that T (f, g) is a bilinear operator satisfying

|T (f, g)(x)| ¹
Z

Rn

|f(x− ty)g(x− y)|
|y|n dy

for x such that 0 /∈ supp (f(x− t·)) ∩ supp (g(x + ·)). We obtain the boundedness of

T (f, g) on the Morrey spaces with the assumption of the boundedness of the operator

T (f, g) on the Lebesgues spaces. As applications, we yield that many well known

bilinear operators, as well as the first Calderón commutator, are bounded from the

Morrey spaces Lq,λ1 × Lr,λ2 to Lp,λ, where λ/p = λ1/q + λ2/r.

Key words: Multilinear operators, bilinear Hilbert transform, the first Calderón com-

mutator, Morrey spaces.

1. Introduction

Let T be a multilinear operator from the product of Schwartz space
S(Rn)× · · · × S(Rn) into the space of tempered distribution S′(Rn), which
commutes with simultaneous translations. The operator T can be formally
written in the integral form of

T (f1, . . . , fm)(x) =
∫

Rnm

K(y1, . . . , ym)
m∏

j=1

fj(x− yj)dy1 . . . dym,

where x, yj ∈ Rn, j = 1, 2, . . . , m, and K is a distribution kernel. This
operator has received extensive study in the last two decades, see [4], [8],
[9] and [10]. For instance, if one chooses n = 1, k = 2 and K(y1, y2) =
y1
−1δ(y2 + y1) with the Dirac delta function δ, then one obtains the famous

bilinear Hilbert transform

H(f1, f2)(x) = p.v.

∫

R

f1(x− y1)f2(x + y1)
y1

dy1.
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Connected to the operator H(f1, f2) is the famous Calderón conjecture that
says H(f1, f2) is a bounded operator from L∞ × L2 → L2, see [11]. The
conjecture was solved on a more general setting by Lacey and Thiele in their
celebrated theorem published in 1997.

Theorem A (Lacey and Thiele [13]) Let 1 < q, r ≤ ∞, and 2/3 < p < ∞.
Then

‖H(f1, f2)‖Lp(R) ¹ ‖f1‖Lq(R)‖f2‖Lr(R),

provided 1/p = 1/q + 1/r.

We note that the original proof of Theorem A is on f1, f2 ∈ S(R).
Then it is naturally extended to all f1 ∈ Lq(R) and f2 ∈ Lr(R). Thus H is
a bounded operator from Lq(R)× Lr(R) to Lp(R).

Besides the Lebesgue space Lp, the Morrey space Lp,λ is a function
space raised from studying some well-posed problem in partial differential
equations (see [15]). Let f be a locally integrable function. For 0 < λ < 1
and 1 ≤ p < ∞, we define the norm ‖f‖Lp,λ by

‖f‖Lp,λ(Rn) = sup
B

{
1
|B|λ

∫

B

|f(x)|pdx

}1/p

,

where the supreme runs over all balls B in Rn, and |B| denotes the volume of
B. The Morrey space Lp,λ is the linear space consists of all locally integrable
functions f for which

‖f‖Lp,λ(Rn) < ∞.

Also, for convention, we denote

‖f‖L∞,λ(Rn) = ‖f‖L∞(Rn)

for all 0 < λ < 1.
The Morrey spaces have also recently received a lot of attentions. The

reader can see [1], [2], [5], [14], [16] and [17], among numerous references.
Based on this observation, we naturally hope to establish the Lacey-Thiele
theorem on the Morrey space. Recall that the proof of Theorem A is very
difficult and it is completed with a very elegant method of time-frequency
analysis. Clearly, we do not expect using this difficult method, since the
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structure of the Morrey space seems more complicated than the Lebesgue
space if we invoke the time-frequency analysis. Thus, in this paper we apply
some “transference” method to transfer the Lacey-Thiele theorem from the
Lebesgue space to the Morrey space. Our result can be stated in a more
general setting in the following theorem.

Theorem 1.1 Let 1 ≤ p < ∞, 1 < q, r ≤ ∞, 0 < λi < 1 for i = 1, 2, and
T (f, g) be a bilinear operator satisfying

|T (f, g)(x)| ¹
∫

Rn

|f(x− ty)g(x− y)|
|y|n dy (1)

for x such that 0 /∈ supp (f(x− t·)) ∩ supp (g(x + ·)). If 1/p = 1/q + 1/r,
and

‖T (f, g)‖Lp ≤ C‖f‖Lq‖g‖Lr ,

then there exist two positive constants C1 and C2 independent of 0 < |t| ≤ 1
such that

‖T (f, g)‖Lp,λ ≤ (C1C + C2|t|(1−λ2)n/r)‖f‖Lq,λ1‖g‖Lr,λ2 ,

where λ/p = λ1/q + λ2/r.

As applications, we obtain the boundedness from the Morrey spaces
Lq,λ1×Lr,λ2 to Lp,λ for the bilinear Hilbert transform H(f1, f2), the bilinear
singular integral

TΩ(f, g)(x) = p.v.

∫

Rn

f(x− y)g(x + y)
|y|n Ω(y′)dy,

and the first Calderón commutator, where λ/p = λ1/q +λ2/r. Also, we will
discuss the boundedness on the Morrey spaces for the bilinear oscillatory
singular integral

TP (f, g)(x) = p.v.

∫

R

eiP (x,y)f(x− y)g(x + y)
y

dy.

Throughout this article, we will use C to denote a positive constant,
which is independent of the main parameters and not necessarily the same
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at each occurrence. The symbol A ¹ B means that there exists a constant
C > 0 independent of all essential variables such that A ≤ CB. We also use
the notation A ' B if A ¹ B and B ¹ A.

2. Proof of Theorem 1.1

To prove Theorem1.1, we need some preliminary work. For any ball
Bδ = B(x0, δ), there is a k0 ∈ Z such that 2k0 < δ ≤ 2k0+1. Let B =
B(x0, 2k0+4).

For the sake of simplicity in the notation, we assume x0 = 0 since the
general case can be achieved similarly by shifting an x0 unit. We let

A0 = B = B(0, 2k0+4),

Ai = {x : 2k0+3+i < |x| ≤ 2k0+4+i}, i = 1, 2, . . .

and

Bi = {x : |x| ≤ 2k0+4+i}, i = 1, 2, . . .

Now for fixed t with 0 < |t| ≤ 1, there is a nonnegative integer k1 such
that

2k1 ≤ 1
|t| < 2k1+1.

We have three lemmas in the following.

Lemma 2.1 For x ∈ Bδ and 0 < |t| ≤ 1, if x− ty ∈ Aj, then

2k0+k1+j+2 < |y| < 2k0+k1+j+6.

Proof. For x ∈ Bδ, 2k0 < δ ≤ 2k0+1, and x− ty ∈ Aj , we have

|y| ≤ 1
|t| (|x− ty|+ |x|) < 2k1+1(2k0+4+j + 2k0+1)

= 2k0+k1+2(23+j + 1) < 2k0+k1+j+6,

and
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|y| ≥ 1
|t| (|x− ty| − |x|) > 2k1(2k0+3+j − 2k0+1)

> 2k0+k1+1(22+j − 2j) > 2k0+k1+j+2. ¤

Lemma 2.2 For x ∈ Bδ and 0 < |t| ≤ 1, if

j > 10 and |j + k1 − i| > 4,

then

{y : x− ty ∈ Aj} ∩ {y : x− y ∈ Ai} = ∅.

Proof. We will use a contradiction argument to prove the following two
cases:

Case 1: i > j + k1 + 4; Case 2: i < j + k1 − 4.
In Case 1, if x− ty ∈ Aj , by Lemma 2.1, we have

|y| < 2k0+k1+j+6.

On the other hand, if x− y ∈ Ai, we have

|y| ≥ |x− y| − |x| ≥ 2k0+i+3 − 2k0+1 > 2k0+1(2k1+j+6 − 1) > 2k0+k1+j+6.

This leads to a contradiction.

In Case 2, for x− ty ∈ Aj , by Lemma 2.1, we have

|y| > 2k0+k1+j+2.

On the other hand, if x− y ∈ Ai, we have

|y| ≤ |x− y|+ |x| ≤ 2k0+i+4 + 2k0+1 < 2k0+1(2j+k1−1 + 1) ≤ 2k0+k1+j+1.

Again, it leads to a contradiction. The lemma is proved. ¤

Using the same idea as in the proof above, we have

Lemma 2.3 For x ∈ Bδ and 0 < |t| ≤ 1, if

i > 10 and |j + k1 − i| > 4,
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then

{y : x− ty ∈ Aj} ∩ {y : x− y ∈ Ai} = ∅.

We now give the proof of Theorem 1.1.

Proof of Theorem 1.1. For any f ∈ Lq,λ1 and g ∈ Lr,λ2 , we write

f =
∞∑

j=0

fjχAj
, g =

∞∑

i=0

giχAi
,

where χE is the characteristic function of a set E. Therefore,

‖T (f, g)‖Lp,λ ≤
∥∥∥∥

∑

i≥j≥0

T (fχAj
, gχAi

)
∥∥∥∥

Lp,λ

+
∥∥∥∥

∑

j≥i≥0

T (fχAj
, gχAi

)
∥∥∥∥

Lp,λ

.

To prove the theorem, we first show that
∥∥∥∥

∑

j≥i≥0

T (fχAj , gχAi)
∥∥∥∥

Lp,λ

≤ (C1C + C2|t|(1−λ2)n/r)‖f‖Lq,λ1‖g‖Lr,λ2 .

By the assumption and the Minkowski integral inequality, it is easy to
check

{
1

|Bδ|λ
∫

Bδ

∣∣∣∣
∑

10≥j≥i≥0

T (fχAj , gχAi)(x)
∣∣∣∣
p

dx

}1/p

≤
∑

10≥j≥i≥0

{
1

|Bδ|λ
∫

Bδ

|T (fχAj , gχAi)(x)|pdx

}1/p

≤ C
∑

10≥j≥i≥0

1
|Bδ|λ/p

{ ∫

Bj

|f(x)|qdx

}1/q{ ∫

Bi

|g(x)|rdx

}1/r

≤ CC1‖f‖Lq,λ1‖g‖Lr,λ2 ,

where the last inequality holds because that there are only less than 11!
terms in the summation and in each term |Bj | ' |Bi| ' |Bδ|.

We now need to show that the following estimate holds:
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∥∥∥∥
∑

j>10,j≥i≥0

T (fχAj , gχAi)
∥∥∥∥

Lp,λ

≤ C2|t|(1−λ2)n/r‖f‖Lq,λ1‖g‖Lr,λ2 .

By Lemma 2.2, we know that for x ∈ Bδ,
∑

j≥i≥0,j>10

(fχAj
)(x− ty)(gχAi

)(x− y)

=
∑

j>10,|j+k1−i|≤4

(fχAj
)(x− ty)(gχAi

)(x− y)

=
∑

j>10,|l−j|≤4

(fχAj
)(x− ty)(gχAl+k1

)(x− y).

By the Minkowski inequality, we have
∥∥∥∥

∑

j>10,j≥i≥0

T (fχAj , gχAi)
∥∥∥∥

Lp,λ

≤
∑

j>10,j≥i≥0

‖T (fχAj , gχAi)‖Lp,λ

=
∑

j>10

∑

|j+k1−i|≤4

‖T (fχAj , gχAi)‖Lp,λ

=
∑

j>10

∑

|l−j|≤4

‖T (fχAj
, gχAl+k1

)‖Lp,λ .

The relationship |l − j| ≤ 4 means that l ' j for all j > 10. So the above
double series

∑
j>10

∑
|l−j|≤4 ‖T (fχAj , gχAl+k1

)‖Lp,λ essentially is a single
series

∑
j>10 ‖T (fχAj

, gχAj+k1
)‖Lp,λ . Thus it suffices to show

∑

j>10

‖T (fχAj
, gχAj+k1

)‖Lp,λ ≤ C2|t|(1−λ2)n/r‖f‖Lq,λ1‖g‖Lr,λ2 .

Here by the assumption and Lemma 2.1, we have that for x ∈ Bδ,

|T (fχAj
, gχAj+k1

)(x)|

¹
∫

Rn

|(fχAj
)(x− ty)(gχAj+k1

)(x− y)|
|y|n dy

¹ 1
2(k0+k1+j)n

∫

Bk1+j+2

|(fχAj
)(x− ty)(gχAj+k1

)(x− y)|dy.
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Using Hölder’s inequality, noting that for x ∈ Bδ, gχAj+k1
(x−y) has support

in Aj+k1 , and changing the variables, the previous term is controlled by

¹ 1
2(k0+k1+j)n/p

1
|t|n/q

‖fχAj
‖Lq‖gχAj+k1

‖Lr

¹ 1
2(k0+k1+j)n/p

2k1n/q2n(k0+j)λ1/q2n(k0+k1+j)λ2/r‖f‖Lq,λ1‖g‖Lr,λ2

= 2n(λ−1)(k0+j)/p2n(λ2−1)k1/r‖f‖Lq,λ1‖g‖Lr,λ2 .

The previous estimate leads to for j ≥ i ≥ 0, j > 10

{
1

|Bδ|λ
∫

Bδ

|T (fχAj
, gχAi

)(x)|pdx

}1/p

¹ 2n(λ−1)(k0+j)/p2n(λ2−1)k1/r|Bδ|(1−λ)/p‖f‖Lq,λ1‖g‖Lr,λ2

¹ 2n(λ−1)(k0+j)/p2n(λ2−1)k1/r2k0n(1−λ)/p‖f‖Lq,λ1‖g‖Lr,λ2

= 2n(λ−1)j/p2n(λ2−1)k1/r‖f‖Lq,λ1‖g‖Lr,λ2 .

Finally, we obtain
∥∥∥∥

∑

j>10,j≥i≥0

T (fχAj , gχAi)
∥∥∥∥

Lp,λ

≤
∑

j>10

‖T (fχAj , gχAj )‖Lp,λ

≤ C2

∑

j>10

2n(λ−1)j/p2n(λ2−1)k1/r‖f‖Lq,λ1‖g‖Lr,λ2

≤ C2|t|(1−λ2)n/r‖f‖Lq,λ1‖g‖Lr,λ2 .

The proof of the estimate on the integral
∥∥∥∥

∑

i>j≥0

T (fχAj , gχAi)
∥∥∥∥

Lp,λ

is similar to that of the above one. The main change is to use Lemma 2.3
in place of Lemma 2.2. This completes the proof. ¤
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3. Some applications

As applications, we can easily obtain the boundedness on the Morrey
spaces for several well known bilinear operators. These operators include
the bilinear Hilbert transform, the bilinear oscillatory Hilbert transform,
the bilinear singular integral with rough kernel and the first Calderón com-
mutator.

Our first result is about the bilinear Hilbert transform.

Corollary 3.1 Let λ, λ1, λ2 be as in Theorem 1.1 and let 1/q + 1/r =
1/p, 1 < q, r ≤ ∞, 1 ≤ p < ∞. Then

‖H(f, g)‖Lp,λ ¹ ‖f‖Lq,λ1‖g‖Lr,λ2 ,

if and only if

λ/p = λ1/q + λ2/r.

Proof. The sufficient part follows from Theorem 1.1 and Theorem A.
To prove the necessary part, let

fε(x) = f(εx), gε(x) = g(εx).

By changing the variable, we have

‖H(fε, gε)‖Lp,λ(R) = ε(λ−1)/p‖H(f, g)‖Lp,λ(R),

‖fε‖Lq,λ1 (R) = ε(λ1−1)/q‖f‖Lq,λ1 (R),

and

‖gε‖Lr,λ2 (R) = ε(λ2−1)/r‖g‖Lr,λ2 (R).

Therefore,

‖H(f, g)‖Lp,λ(R) ¹ ‖f‖Lq,λ1 (R)‖g‖Lr,λ2 (R),

for all f, g if and only if

‖H(fε, gε)‖Lp,λ(R) ¹ ‖fε‖Lq,λ1 (R)‖gε‖Lr,λ2 (R),

if and only if
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‖H(fε, gε)‖Lp,λ(R) ¹ ελ1/q+λ2/r−λ/p‖f‖Lq,λ1 (R)‖g‖Lr,λ2 (R).

Since ε is arbitrary, we must require

λ1/q + λ2/r − λ/p = 0.

The corollary is proved. ¤

Next, we consider the bilinear oscillatory Hilbert transform

TP (f, g)(x) = p.v.

∫

R

eiP (x,y)f(x− y)g(x + y)
y

dy,

where P is a real-valved polynomial. In [3], the authors proved that the
operator TP is a bounded operator from Lq(R)×Lr(R) to Lp(R) with 1/r+
1/q = 1/p ≤ 1. Also they showed that the operator bound

‖TP ‖Lq(R)×Lr(R) → Lp(R)

is independent of the coefficients of P . By this result and Theorem 1.1, it
is easy to obtain the following result.

Corollary 3.2 Let λ, λ1, λ2 be as in Theorem 1.1 and let 1/q+1/r = 1/p,
1 < q, r ≤ ∞, 1 ≤ p < ∞. If

λ/p = λ1/q + λ2/r,

then we have

‖TP (f, g)‖Lp,λ ¹ ‖f‖Lq,λ1‖g‖Lr,λ2 .

Also the operator norm

‖TP ‖Lq,λ1×Lr,λ2→Lp,λ

is independent of the coefficients of the polynomial P .

In the high dimensional case, we consider the bilinear singular integral
with rough kernel

TΩ(f, g)(x) = p.v.

∫

Rn

f(x− y)g(x + y)
|y|n Ω(y′)dy,
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and its maximal operator

T ∗Ω(f, g)(x) = sup
ε>0

|TΩ,ε(f, g)(x)|,

where TΩ,ε is the truncated bilinear operator defined by

TΩ,ε(f, g)(x) =
∫

|y|>ε

f(x− y)g(x + y)
|y|n Ω(y′)dy, for ε > 0.

where Ω(y′) is a function defined on the unit sphere Sn−1 in the Euclidean
space Rn, and y′ = y/|y| for any y 6= 0.

Corollary 3.3 Let λ, λ1, λ2 be as in Theorem 1.1 and let 1/q+1/r = 1/p,
1 < q, r ≤ ∞, 1 ≤ p < ∞. If Ω ∈ L∞(Sn−1) is an odd function, then

‖TΩ(f, g)‖Lp,λ ¹ ‖f‖Lq,λ1‖g‖Lr,λ2 ,

if and only if

λ/p = λ1/q + λ2/r.

Proof. By Theorem 1.1, we need to show

‖TΩ(f, g)‖Lp(Rn) ¹ ‖f‖Lq(Rn)‖g‖Lr(Rn).

The proof for the above inequality can follow a standard rotation method
by Calderón and Zygmund. We state its proof for completeness. By the
spherical coordinates and changing variables,

TΩ(f, g)(x) = p.v.

∫

Sn

{ ∫ ∞

0

f(x− ty′)g(x + ty′)
t

dt

}
Ω(y′)dσ(y′)

= p.v.

∫

Sn

{ ∫ 0

−∞

f(x− ty′)g(x + ty′)
t

dt

}
Ω(y′)dσ(y′).

This means that

2TΩ(f, g)(x) = p.v.

∫

Sn

{ ∫ ∞

−∞

f(x− ty′)g(x + ty′)
t

dt

}
Ω(y′)dσ(y′).

Thus by the Minkowski integral inequality,
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‖TΩ(f, g)‖Lp(Rn)

¹ p.v.

∫

Sn

{∥∥∥∥
∫ ∞

−∞

|f(· − ty′)g(·+ ty′)|
t

dt

∥∥∥∥
Lp(Rn)

}
dσ(y′).

Now for y′ fixed, take the rotation O such that O(y′) = 1 = (1, 0, 0, . . . , 0).
Denote function fO−1 by fO−1(x) = f(O−1x). Then

∫

Sn

{∥∥∥∥
∫ ∞

−∞

|f(· − ty′)g(·+ ty′)|
t

dt

∥∥∥∥
Lp(Rn)

}
dσ(y′)

=
∫

Sn

{ ∫

Rn

∣∣∣∣
∫ ∞

−∞

|fO−1(Ox− t1)gO−1(Ox + t1)|
t

dt

∣∣∣∣
p

dx

}1/p

dσ(y′)

=
∫

Sn

{ ∫

Rn

∣∣∣∣
∫ ∞

−∞

|fO−1(x− t1)gO−1(x + t1)|
t

dt

∣∣∣∣
p

dx

}1/p

dσ(y′)

=
∫

Sn

{ ∫

Rn

∣∣∣∣
∫ ∞

−∞

|fO−1(x1 − t, x)gO−1(x1 + t, x)|
t

dt

∣∣∣∣
p

dx

}1/p

dσ(y′),

where x = (x2, x3, . . . , xn).
Using the well known result of the bilinear Hilbert transform

{ ∫

Rn

∣∣∣∣
∫ ∞

−∞

|fO−1(x1 − t, x)gO−1(x1 + t, x)|
t

dt

∣∣∣∣
p

dx

}1/p

¹
{ ∫

Rn−1

( ∫

R
|fO−1(x1, x)|qdx1

)p/q( ∫

R
|gO−1(x1, x)|rdx1

)p/r

dx

}1/p

.

Using Hölder’s inequality and iterating the integral, we obtain

{ ∫

Rn−1

( ∫

R
|fO−1(x1, x)|qdx1

)p/q( ∫

R
|gO−1(x1, x)|rdx1

)p/r

dx

}1/p

¹ ‖fO−1‖Lq‖gO−1‖Lr = ‖f‖Lq‖g‖Lr .

This shows

‖TΩ(f, g)‖Lp(Rn) ¹ ‖f‖Lq(Rn)‖g‖Lr(Rn).

We prove the corollary. ¤
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It is well known that for the maximal bilinear Hilbert transform

H∗(f, g)(x) = sup
ε>0

∣∣∣∣
∫

|t|>ε

f(x− t)g(x + t)
t

dt

∣∣∣∣,

Lacey in [12] obtained the following remarkable result.

Lemma 3.1 Let 1 < q, r ≤ ∞ and 1/p = 1/q + 1/r. If 2/3 < p < ∞,
then

‖H∗(f, g)‖Lp(R) ¹ ‖f‖Lq(R)‖g‖Lr(R).

The same arguments as in proof of Corollary 3.3 and Lemma 3.1 apply
to yield

Corollary 3.4 Let λ, λ1, λ2 be as in Theorem 1.1 and let 1/q+1/r = 1/p,
1 < q, r ≤ ∞, 1 ≤ p < ∞. If Ω ∈ L∞(Sn−1) is an odd function, then

‖T ∗Ω(f, g)‖Lp,λ ¹ ‖f‖Lq,λ1‖g‖Lr,λ2 ,

if and only if

λ/p = λ1/q + λ2/r.

The first Calderón commutator is defined by

Cϕf(x) = p.v.

∫

R

ϕ(x)− ϕ(y)
(x− y)2

f(y)dy,

where, for a Lipschitz function ϕ, we may write,

ϕ(x)− ϕ(y)
x− y

=
1

x− y

∫ y

x

ϕ′(t)dt =
∫ 1

0

ϕ′((1− t)x + ty)dt.

Thus,

Cϕf(x) = p.v.

∫

R

ϕ(x)− ϕ(y)
(x− y)2

f(y)dy

= p.v.

∫

R

f(y)
x− y

f(y)
∫ 1

0

ϕ′((1− t)x + ty)dtdy
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= p.v.

∫ 1

0

∫

R
f(x− y)ϕ′(x− ty)

dy

y
dt

=
∫ 1

0

Ht(f, ϕ′)(x)dt.

A celebrated result due to Grafakos and Li [7] showed that the following

Lemma 3.2 For 2 < q, r < ∞ and 1 < p = qr/(q + r) < 2, then there is
a constant C = C(q, r) such that for all f, g on R,

sup
t∈R

‖Ht(f, g)‖Lp(R) ≤ C‖f‖Lq(R)‖g‖Lr(R).

We have the following result for the operator Cϕ.

Corollary 3.5 Let λ, λ1, λ2 be as in Theorem 1.1 and let p, q and r be
as in Lemma 3.2. If ϕ is a Lipschitz function, then we have

‖Cϕ(f)‖Lp,λ ¹ ‖f‖Lq,λ1‖ϕ′‖Lr,λ2 ,

where

λ/p = λ1/q + λ2/r.

Proof. By Theorem 1.1, it is easy to check that

‖Cϕ(f)‖Lp,λ ≤
∫ 1

0

‖Ht(f, ϕ′)‖Lp,λdt

≤
∫ 1

0

(C1C + C2t
(1−λ1)/r)‖f‖Lq,λ1‖ϕ′‖Lr,λ2 dt

¹
(

1 +
∫ 1

0

t(1−λ1)/rdt

)
‖f‖Lq,λ1‖ϕ′‖Lr,λ2

¹ ‖f‖Lq,λ1‖ϕ′‖Lr,λ2 .

The corollary is proved. ¤

4. Final Remarks

In this section, we give two remarks. First, our method in the proof
of Theorem 1.1 may be still valid if the condition (1) is replaced by some
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similar size conditions. For example, the bilinear oscillatory integral along
the parabola studied by Fan and Li in [6],

Tβ(f, g)(x) =
∫ 1

−1

f(x− y)g(x− y2)ei|y|−β dy

|y| .

They proved that if β > 1, then

‖Tβ(f, g)‖L2(R) ¹ ‖f‖L∞(R)‖g‖L2(R).

Using this result and following the same method in the proof for Theorem
1.1, we also easily obtain the following

Corollary 4.1 Let β > 1. Then for 0 < λ < 1, we have

‖Tβ(f, g)‖L2,λ(R) ¹ ‖f‖L∞,λ(R)‖g‖L2,λ(R).

We leave the proof of this corollary to the reader.
Secondly, our method works for the multilinear operator T satisfying

certain integral size condition

|T (f1, f2, . . . , fm)(x)| ¹
∫

Rn

m∏

j=1

|fj(x− θjy)| |y|−ndy

for x such that 0 /∈ ∩m
j=1 supp (fj(x − θj ·)), where θj 6= 0, j = 1, 2, . . . , m,

are fixed real numbers. In fact, without loss of generality, we assume

|θ1| ≥ |θ2| ≥ · · · ≥ |θm| > 0.

Then
∫

Rn

m∏

j=1

|fj(x− θjy)| |y|−ndy =
∫

Rn

m∏

j=2

|fj(x− ηjy)| |f1(x− y)| |y|−ndy,

where ηi = θi/θ1. Thus, we may assume that all ηj satisfying |ηj | ≤ 1. Now
pick some suitable nonnegative integers k1, k2, . . . , km−1 satisfying

1
|ηj | ' 2kj−1 for j = 2, 3, . . . , m.
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We can follow the same proof of Theorem 1.1 to show a multilinear version
of Theorem 1.1.
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