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1. Problem and main results

In his paper [11], Nishida proved the followings. The Cauchy problem
for the nonlinear Boltzmann equation in the kinetic theory of rarefied gases
has a unique classical solution f^{\epsilon} locally in time t on an interval [0, \tau] inde-
pendent of the mean free path \epsilon>0 , if the initial distribution f_{0} is sufficiently
close to an absolute Maxwellian and is analytic in the space variable x.
When \epsilonarrow 0 , f^{\text{\’{e}}} converges on [0, \tau] to some f^{0} . For t\in(0, \tau] , the limit f^{0} is
a local Maxwellian whose mass density \rho(t, x) , flow velocity v(t, x) , tem-
perature T(t, x) are unique solutions to the Cauchy problem with initial data
specified by f_{0} for the compressible Euler equation obtained from the Boltz-
mann equation as the first approximation to the Hilbert expansion.

The uniform existence in \epsilon of the solution f^{\epsilon} was established using an
abstract nonlinear Cauchy-Kowalewski theorem developed by Nishida [10],
Nirenberg [9] and Ovsjannikov [13]. The convergence of f^{\epsilon} was shown under
the additional assumption \rho(0, x)>0 , based on the compactness argument
supplemented with the uniqueness theorem for the relevant Euler equation.

In general the convergence is not uniform in t near t=0 and the limit
f^{0} has a discontinuity at t=0. This singular behavior at \epsilon=t=0 describes
the initial layer of the solution of the Boltzmann equation, and the limit f^{0}

plays a role of the outer solution in the theory of singular perturbations.
The aim of the present note is twofold. The first is to give a simplified

proof which makes only use of the classical contraction mapping principle.
The use of a rather complicated abstract theorem of [9], [10], [13] can be
avoided by introducing a simple time-dependent norm which is analogous
to that used by Asano [1] to obtain local solutions of the Boltzmann equation.
As by-products, we can remove the assumption \rho(0, x)>0 , arid find a con-
vergence rate. The second aim is concerned with the initial layer. It will
be shown that a necessary and sufficient condition for the uniform con-
vergence and for the continuity of f^{0} on [0, \tau] is that the initial f_{0} is itself
a Maxwellian. This answers the Hilbert paradox that the Hilbert expansion
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solution to the Boltzmann equation is uniquely determined by the initial
fluid state [6].

All our proofs are applicable to the initial boundary value problem for
the Boltzmann equation in the half-space or in a rectangular domain with
the specular reflection boundary condition, with an elementary modification
stated in [6], [14], [15]. Then our results remains valid and it is worth
noting that in these special cases no boundary layers appear.

The Cauchy problem for the Boltzmann equation is written as

(1. 1) \frac{\partial f}{\partial t}=-\xi\cdot\nabla_{x}f+\frac{1}{\epsilon}Q[f,f] , (t, x, \xi)\in(0, \infty)\cross R^{n}\cross R^{n} ,

f|_{t=0}=f_{0} , (x, \xi)\in R^{n}\cross R^{n}

Here f=f.(t, x, \xi) is the density of gas particles having the position x and
velocity \xi at time t, \circ means the inner product in R^{n} , \epsilon>0 is the mean
free path and Q expresses a quadratic integral operator representing the
collision of gas particles and acting only on the variable \xi . The reader will
be referred to [3] for the derivation of the Boltzmann equation as well as
fundamental properties of Q. In this note only the gas of Grad’s cutoff
hard potential [5] will be dealt with.

When \epsilonarrow 0 , (1. 1) raises a singular perturbation problem. To find the
corresponding reduced problem, suppose f. have a limit f^{0} and \epsilon(f^{\epsilon\epsilon}+\xi\cdot\nabla_{x}f.)

arrow 0 as \epsilonarrow 0 . Then letting \epsilon tend to 0 in (1. 1), we find

(1. 2) Q [fl,fl]=0 .
According to [3], unique solutions to (1. 2) are Maxwellians

(1. 3) f^{0}= \frac{\rho}{(2\pi \mathcal{T})^{n/2}}e^{-|\epsilon-vI^{2}/2T}

Here \rho , v, T are the mass density, flow velocity and temperature respectively,
the hydrodynamical quantities independent of the individual particle velocity
\xi . If they are constants in t and x, then f^{0} of (1. 3) is called an absolute
Maxwellian, and if they depend on t and x, it is called a local Maxwellian.
In order to distinguish them we denote the absolute Maxwellian by g=g(\xi) .

(1. 2) does not determine \rho , v and T. To accomplish the reduced equa-
tion we need the functions

h_{0}(\xi)=1 , h_{j}(\xi)=\xi_{j} (1\leq j\leq n) , h_{n+1}( \xi)=\frac{1}{2}|\xi|^{2} ,

and note that \rho, v, T are determined by the moments of \xi with respect to
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f^{0}, i . e. ,

\rho v=\langle h_{0},fl\rangle j

(1. 4) \rho v_{j}=\langle h_{j},fl\rangle , 1\leq j\leq n ,

\frac{n}{2}\rho T+\frac{1}{2}\rho|v|^{2}=\langle h_{n+1},f^{0}\rangle ,

where \langle h,f\rangle=\int_{Rn}h(\xi)f(\xi)d\xi . According to [3], h_{j}’s are collision invaliants,
i . e. ,

\langle h_{j}, Q[f,f]\rangle=0 , 0\leq j\leq n+1 ,\cdot

for any f, which, substituted into (1. 1), yields

(1. 5) \frac{\partial}{\partial t}\langle h_{j},f\rangle+\langle h_{j}, \xi\cdot\nabla_{x}f^{e}\rangle=0 , 0\leq j\leq n+1

Passing to the limit as \epsilonarrow 0 , using (1. 4) and taking into account that
\langle(\xi-v)h_{n+1},f^{0}\rangle=\rho vT, then lead to the system of nonlinear hyperbolic con-
servation laws

\frac{\partial}{\partial t}\rho+\nabla\cdot(\rho v)=0 ,

(1. 6) \frac{\partial}{\partial t}(\rho v)+\nabla\cdot(\rho^{t}vv)+\nabla p=0 , {}^{t}vv=(v_{i}v_{j}) ,

\frac{\partial}{\partial t}(\rho(e+\frac{1}{2}|v|^{2}))+\nabla\cdot(\rho(e+\frac{1}{2}|v|^{2})v+pv)=0 ,

supplemented by the equation of state of the ideal gas

T= \frac{1}{\rho}p=\frac{2}{n}e ,

where p, e are the pressure and internal energy per unit mass, respectively.
(1. 6) may be considered as the compressible Euler equation derived from the
Boltzmann equation. This is also obtained as the first approximation to the
Hilbert expansion, see [3].

The justification of this asymptotic procedure requires, first of all, solu-
tions to (1. 1) which exist on the interval [0, \tau] independent of \epsilon . Solutions
in the large in time have been found in [12], [15] for initial data f_{0} near
absolute Maxwellians, but as \epsilonarrow 0 , f_{0} should be chosen indefinitely close to
the Maxwellians. For arbitrary initials f_{0} (rapidly decreasing in \xi), local
solutions exists [1], [7], on the interval [0, \tau^{e}] where \tau^{e}>0 depends on \epsilon as
well as f_{0} and may tend to 0 with \epsilon .
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In order to obtain the desired solutions, therefore, we shall assume that
f_{0} is not only close to an absolute Maxwellian but also analytic in x. To
make this precise and for later purposes, we prepare some notations and
function spaces.

We denote by \hat{u}=\mathscr{F}_{x}u the Fourier transform of a function u\in \mathscr{S}’

(R_{x}^{n}\cross R_{\xi}^{n}) with respect to x,

\^u (k, \xi)=\mathscr{F}_{x}u(k, \xi)=(2\pi)^{-n/2}\int_{R^{n}}e^{-ik\cdot x}u(x, \xi)dx, k\in R^{n} , i=\sqrt{-1}\supset

and denote by X_{\beta}^{\alpha,l} the Banach space of functions u\in \mathscr{S}’(R_{x}^{n}\cross R_{\xi}^{n}) satisfying

(1. 7) ||u||_{\alpha,l,\beta} \equiv\sup_{k,\epsilon\epsilon R^{n}}(1+|k|)^{l}(’1+|\xi|,)^{\beta}e^{\alpha 1kI} |\^u (k, \xi)|<\infty ,

where \alpha, l, \beta\in R. We claim that if \alpha>0 , u\in X_{\beta}^{\alpha,l} is analytic in x\in R^{n}+iB_{\alpha}

where B_{\alpha}=\{x\in R^{n}||x|<\alpha\} .

The space \dot{X}_{\beta}^{\alpha,l} is the closed subspace of X_{\beta}^{a,l} , hence by itself a Banach
space with the norm (1. 7), consisting of such us that

(1. 8) ||\chi(|k|+|\xi|>R)u||_{\alpha,l,\beta}arrow 0 (Rarrow 0)

Here \chi(|k|+|\xi|>R) is the characteristic function of the domain |k|+|\xi|>R

in R_{k}^{n}\cross R_{\dot{\sigma}}^{n} . And we used and will use the convention that \psi(k)u expresses
\mathscr{F}_{x}^{-1}\psi(k) \^u (k, \xi) where \psi(k) may depend also on t, \xi , etc, but not o11 x. Then
we define the Banach space

Y_{\beta}^{\alpha,\gamma,l}(I)=\{u=u(t)|e^{-\gamma tIk1}u(t)\in B^{0}(I;\dot{X}_{\beta}^{a,l})\} ,
(1. 9)

|||u|||_{\alpha,\gamma,l,\beta,I}= \sup_{l\in I}||u(t)||_{\alpha-\gamma t,l,\beta} ,

where \gamma\in R, I\subset R is an interval and B^{0}(I;X) denotes the space of bounded
continuous functions defined on I with values in a Banach space X. Similarly,
C^{0}(I;X) will denote the space of X-valued continuous functions on I.

Finally we also need the Banach space

Z_{\beta,\tau}^{\alpha,\gamma,l}=B^{0}((0, \infty);Y_{\beta}^{\alpha,\gamma,l}([0, \tau])) .
(1. 10)

|||u|||_{\alpha,\gamma,\beta,l,\tau}= \sup_{\epsilon>0,l\epsilon[0,\tau]}||u^{e}(t)||_{a-\gamma t,l,\beta} ,

where \tau>0 . A time-dependent norm appears in (1. 9) and (1. 10).

Now we can state the main results of this note. Since (1. 1) is to be
solved near an absolute Maxwellian g=g(\xi) , we put
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f=g+g^{1/2}u’. f_{0}=g+g^{1/2}u_{0} ,

and state our results in terms of u and u_{0} . The equation for u to solve
will be presented in the next section. The first result is slightly stronger
than that of [11] and will be proven in the next two sections.

THEOREM 1. 1. Let g be an absolute Maxwellian and suppose

\alpha>0 , l>n , \beta>\frac{n}{2}+1

Then there exist positive numbers a_{0}, a_{1} andfor each initial data f_{0} satisfying
u_{0}\in\dot{X}_{\beta}^{\alpha,l} ||u_{0}||_{\alpha,l,\beta}<a_{0} ,

the followings hold with some positive numbers \gamma and \tau .

(i) For each \epsilon>0 , (1. 1) has a unique classical solution f=f^{\text{\’{e}}} on the
time interval [0, \tau] such that

u.\in Z_{\beta,\tau}^{\alpha,\gamma,l} , |||u^{\epsilon}|||_{\alpha,\gamma,l,\beta,\tau}\leq a_{1}||u_{0}||_{\alpha,l,\beta} ,

\frac{\partial}{\partial t}u^{e}\in C^{0}((0, \infty);Y_{\beta-i}^{\alpha,\gamma l-1}[0, \tau])

(ii) As \epsilonarrow 0 , u^{\epsilon} converges to a limit u^{0}\in Y_{\beta}^{\alpha,\gamma,l}((0, \tau]) strongly in Y_{\beta}^{\alpha,\gamma,l}

([\delta, \tau]) for any \delta>0 .
(iii) For t\in(0, \tau] , f^{\mathfrak{d}}=g+g^{1/2}u^{0} is a local Maxwellian whose hydrO-

dynamical quantities \rho , v, T solve the compressible Euler equation (1. 6) in
the classical sense.

REMARK 1. 2. f=f^{e} converges also at t=0 trivially to the initial data
f_{0} . In genera], however, the convergence is not uniform on [0, \tau] though so
is it on [\delta, \tau] , \delta>0 . And the limit f^{0}=f^{0}(t) is not necessarily continuous at
t=0. Indeed if f^{0}(+0) exists (strongly), it should be a Maxwellian as a limit
of Maxwellians f^{0}(t) , t>0 , while f^{0}(0) is the initial data f_{0} which may be
other than a Maxwellian. On the other hand the moments \langle h_{j},f^{0}(t)\rangle are
continuous on [0, \tau] in a topology induced from that of X_{0}^{\alpha,l-1} for functions
not depending on \xi . This follows readily from Theorem 1. 1 applied to (1. 5).

REMARK 1. 3. Nishida [11] proved (ii) of Theorem 1. 1 under the
additional assumption \rho(0, x)=\langle h_{0},f_{0}\rangle>0 . In this case v(0, x) and T(0, x)
are well-defined by (1. 4) and analytic in x, with \rho(0, x) . For such smooth
initial data, the uniqueness theorem is available for the Cauchy problem to
the Euler equation (1. 6) because (1. 6) is a nonlinear symmetric hyperbolic
system provided \rho>0 (see Kato [8]). Since his proof of the convergence
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relies on the compactness of \{f^{\epsilon}\} , 0<\epsilon\leq 1 , he needed this fact so as to

ensure the uniqueness of the limit of the subsequences. In our situation
\rho(0, x)\leq 0 may be allowed if a_{0} can be found large enough. Then v(0, x) ,

T(0, x) happen to be singular at those points x where \rho(0, x)=0 , and no
uniqueness theorems are known for such initial data.

As for the convergence rate, we prove the following theorem in \S 3.

THEOREM 1. 4. Under the condition of Theorem 1. 1 and for \sigma\in[0,1) ,

there are positive numbers a_{0}’(\leq a_{0}) , a_{1}’ such that if ||u_{0}||_{\alpha,\gamma,l}<a_{0}’, then for
all \epsilon>0 and t\in(0, \tau] ,

||u^{\epsilon}(t)-u^{0}(t)||_{\alpha-\gamma t,l-\sigma,\beta-\sigma} \leq a_{1}’(\frac{\epsilon}{t^{2}})^{\sigma/2}

REMARK 1. 5. It has not been able to know if we can take a_{0}’=a_{0} .
The convergence rate found here is far short for the verification of the
Hilbert expansion.

According to Remark 1. 3, it is necessary, in order for the initial layer

not to appear, that the initial f_{0} itself is a Maxwellian. That this is also
sufficient will be shown in \S 4, in the form of the

THEOREM 1. 6. Under the situation of Theorem 1. 1, suppose in addi-
tion,

(i) f_{0} is a local Maxwellian,
(1. 11)

(ii) u_{0}\in\dot{X}_{\beta}^{\alpha}\dotplus_{1}^{l+1}

Then u^{0} of Theorem 1. 1 belongs to Y_{\beta}^{\alpha,\gamma,l}([0, \tau]) and u^{e} converges to u^{0}

strongly there. Moreover, \rho, v, T of f^{0} are unique classical solutions to

the Cauchy problem for (1. 6) with the initial data specified by those of f_{0} .

REMARK 1. 7. Caflisch [2] proved a reverse version of the above the0-
rem in the following sense. Suppose the Cauchy problem to (1. 6) have

solutions \rho , v, T in an appropriate Sobolev space, on some time interval
[0, _{T}] . Construct the local Maxwellian f^{0} by (1. 3) from these \rho , v, T. Then
(1. 1) with f_{0}=f^{0}(0) has a unique solution f^{\epsilon} for each \epsilon>0 and

||f^{\epsilon}(t)-f^{0}(t)||\leq C\epsilon ,

on [0, \tau] . Theorem 1. 6 indicates that the Cauchy problem to (1. 6) has

indeed a solution if the initial data are specified by f_{0} satisfying the confitions
stated in Theorem 1. 6. Then \rho(0, x)\leq 0 may be permitted, though it should
be analytic. On the other hand it seems difficult to obtain Sobolev space

solutions to (1. 6) without the assumption \rho(0, x)>0 , [8].
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2. Existence of solution for \epsilon >0

In terms of u and by virtue of (1. 2), the Cauchy problem (1. 1) can be
rewritten as

\frac{\partial}{\partial t}u=-\xi\cdot\nabla_{x}u+\frac{1}{\epsilon}Lu+\frac{1}{\epsilon}\Gamma[u, u] , (t, x, \xi)\in(0, \infty)\cross R^{n}\cross R^{n} ,
(2. 1)

u|_{t=0}=u_{0} , (x, \xi)\in R^{n}\cross R^{n} ,

where we have defined the operators L, \Gamma by

Lu=2g^{-1/2}Q[g, g^{1/2}u] ,
\Gamma[u, v]=g^{-1/2}Q[g^{1/2}u, g^{1/2}v]’\wedge

Q[\cdot, .] being understood to be a bilinear symmeric operator induced from
the quadratic operator Q. L is linear and \Gamma is bilinear symmetric.

Define the linearized Boltzmann operator

(2. 2) B^{e}=- \xi\cdot\nabla_{x}+\frac{1}{\epsilon}L ,

and suppose it generates a strongly continuous semigroup (shortly a semigroup)
e^{tB^{*}} . If u=u^{e}(t) is a solution to (2. 1), then it should solve the integral
equation

(2. 3) u. (t)=e^{tB}.u_{0}+ \int_{0}^{t}e^{(t-s)B}.\frac{1}{\epsilon}\Gamma[u^{\epsilon}(s), u.(s)]ds .

It is this equation to which we apply the contraction mapping principle.

To this end, we first quote from [5], [6] some necessary properties of
L and \Gamma The operator L has the decomposition

L=-\Lambda+K ,

where \Lambda is the multiplication operator

\Lambda=\nu(\xi)\cross ,
(2. 4)

\nu(\xi)\in L_{loc}^{\infty}(R_{\xi}^{n}) , \nu_{0}\leq\nu(\xi)\leq\nu_{1}(1+|\xi|)’.

with some positive constants \nu_{0}, \nu_{1} , while K is an integral operator in \xi

having nice properties, among which we mention

(2. 5) ||Ku||_{\beta}\leq C||u||_{\beta-1} ,

where \beta\in R and ||u||_{\beta}= \sup(1+|\xi|)_{\beta}|u(\xi)| . The operator L is selfadjoint and
nonpositive in L^{2}(R_{\xi}^{n}) and has 0 as an isolated eigenvalue of multiplicity
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n+2, whose eigenspace is spanned by h_{f}g^{1/2},0\leq j\leq n+1 , h_{j} being those of
\S 1. Denote the corresponding eigenprojection by P_{0} . Then

(2. 6) P_{0}\Gamma[u, v]=0

for any u, v. Finally we note

(2. 7) ||\Lambda^{-1}\Gamma[u, v]||_{\beta}\leq C||u||_{\beta}||v||_{\beta} .
In order to simplify the notations in the below, we choose the parameter

(\alpha, \gamma, \tau, l, \beta) fixed arbitrarily in the region

\alpha, \gamma, \tau , \alpha-\gamma\tau\geq 0 , l, \beta\in R ,

unless otherwise stated, and put

\dot{X}=\dot{X}_{\beta}^{\alpha,l} , Y(I)=Y_{\beta}^{\alpha,\gamma,l}(I) , Z=Z_{\beta,\tau}^{\alpha,\gamma,l} .

|| ||=|| ||_{\alpha,l,\beta} , ||| |||=||| |||_{\alpha,\gamma,l,\beta,\tau} .

Further, || ||_{\beta} is the norm in (2. 5) and C denotes various constants \geq 0

depending only on \alpha, l, \beta , but not on \gamma, \tau .

THEOREM 2. 1. ( i) B. is a semigroup generator in \dot{X} for each \epsilon>0 .
(ii) If u_{0}\in\dot{X}, then

e^{tB}.u_{0}\in C^{0}((0, \infty)\cross[0, \infty) ; \dot{X})

as a function of (\epsilon, t)\in(0, \infty)\cross[0, \infty) .

PROOF. ( i) has been stated in [11] without proof. Here we give a
proof since it is needed to prove the continuity in \epsilon in (ii). Define the
operator

A. =- \xi\cdot\nabla_{x}+\frac{1}{\epsilon}\Lambda ,

where \nabla_{x} is taken in the distribution sense. Then \mathscr{F}_{x}A^{e}u=\hat{A}^{e}(k) \^u where

\hat{A}.(k)=-(ik\cdot\xi+\frac{1}{\epsilon}\nu(\xi))\cross

Let \hat{\dot{X}} denote the space of \hat{u}\in \mathscr{S}’(R_{k}^{n}\cross R_{\xi}^{n}) satisfying (1. 7) and (1. 8). It is
a Banach space with the norm of (1. 7) and \mathscr{F}_{x} is isometric from \dot{X} onto
\hat{\dot{X}} . Therefore if A^{e} is a generator in \dot{X} , then so is \hat{A}.(k) in X, and vice
versa. We infer that

(2. 8) e^{t\hat{A}(k)}.=e^{-(ik\cdot\xi\nu+\frac{1}{}\nu(\xi))t}.\cross
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Regard this as the definition of the operator e^{t\hat{A}(k)}
. , for a while, and write

as \psi=\psi(\epsilon, t, k, \xi) the function in its right hand side. By (2. 4), |\psi|\leq e^{-\nu_{0}l/}.,
so that

(2. 9) ||e^{t\hat{4}^{*}(k)}\hat{u}||_{\beta}\leq e^{-\nu_{0}t/*}||\hat{u}||_{\beta} ,

and for any compact set \Omega\subset R_{k}^{n}\cross R_{\xi}^{n} ,

\psi(\epsilon, t)\in B^{0}((0, \infty)\cross[0, \infty) ; L^{\infty}(\Omega))
‘

which, together with (1. 8), proves

(2. 10) e^{t\hat{A}^{*}(k)}\hat{u}\in B^{0}((0, \infty)\cross[0, \infty) ; \hat{X})(

This continuity in t indicates that (2. 8) indeed defines a semigroup on \hat{X} .
Obviously its generator is \hat{A}.(k) restricted to the domain of the generator.
Denote this generator again as \hat{A}^{e}(k) . Hence A^{*} is a generator in \dot{X} if
endowed with the domain D(A^{6}) induced from that of \hat{A}.(k) , and satisfies
(2. 10) with an obvious modification. In addition,

(2. 11) \dot{X}_{\beta}^{\alpha l+1}\dotplus_{1}\subset D(A^{e})

In view of (2. 5), we can now redefine B^{\epsilon} as

B^{\epsilon}=A^{\epsilon}+ \frac{1}{\epsilon}Kq

,
D(B\text{\’{e}})=D(A^{*}) ,

and apply to it the well-known theorem on the bounded perturbation of
semigroups. Then (i) follows and moreover for u\in\dot{X}, there holds

e^{tB^{\epsilon}}u= \sum_{l=0}^{\infty}U_{l} , U_{l}=(e^{tA^{\epsilon}} \frac{1}{\epsilon}K*)^{l}e^{tA^{\epsilon}}u ,

where * means the convolution in t,

f(t)*g(t)= \int_{0}^{t}f(t-s)g(s)ds .

Owing to (2. 5) and (2. 10) for A^{\text{\’{e}}} , the convergence is uniform for (\epsilon, t)\in

[\delta, \infty)\cross[0, \tau] , for any \delta , \tau>0 , stongly in \dot{X}, and

U_{l}\in B^{0}([\delta, \infty)\cross[0, \tau] ; \dot{X}) ,

whence (ii) follows.

REMARK 2. 2. (1. 8) is essential for the proof of (2. 10). Thus Theorem
2. 1 is no more valid if \dot{X} is replaced by X.
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To proceed further we should write \mathscr{F}_{x}B^{e}u=B^{\text{\’{e}}}(k) \^u with

B*(k)= \hat{A}^{\text{\’{e}}}(k)+\frac{1}{\epsilon}K=-ik\cdot\xi\cross+\frac{1}{\epsilon}L ,

and appeal to the spectral analysis for B^{1}(k)(\epsilon=1) developed in [4, 12, 15, 16].
The following theorem contains some of those results restated for B\cdot(k)=

\frac{1}{\epsilon}B^{1}(\epsilon k) . This was also used in [11]. See [16] for a complete proof.

THEOREM 2. 3. There are positive numbers \kappa_{0}, \sigma_{0}, a positive integer
m(\leq n+2) and a constant C\geq 0 such that the followings hold for each
\epsilon\geq 0 .

(i) For |k|\leq\kappa_{0}/\epsilon,

e^{\iota_{\hat{B}^{*}}(k)}= \sum_{f=1}^{m}e^{\lambda(\cdot|k|)}\cdot P_{f}(\epsilon k)\underline{t}+U(\epsilon, t, k),\cdot

where

(a) \lambda_{j}(\kappa)\in C^{\infty}([-\kappa_{0}, \kappa_{0}]) , Re \lambda_{f}(\kappa)\leq 0 , with the asymptotic expansions

\lambda_{j}(\kappa)=i\lambda_{j}^{(1)}\kappa-\lambda_{j}^{(2)}\kappa^{2}+0(|\kappa|^{3}) (|\kappa|arrow 0) ,

with coefficients \lambda_{j}^{(1)}\in R and \lambda_{j}^{(2)}>0 ,

(b) P_{j}(k) are orthogonal projections on L^{2}=L^{2}(R_{\xi}^{n}) for each fixed k,
and

P_{j}(k)=P_{j}^{(0)}(\tilde{k})+|k|P_{j}^{(1)}(\tilde{k})+|k|^{2}P_{j}^{(2)}(k),\cdot \tilde{k}=k/|k|,\cdot

where P_{j}^{(0)} are also orthogonal projections on L^{2}, P_{0}= \sum P_{j}^{(0)} is the projection
in (2. 6) and

||P_{j}^{(l)}u||_{\beta}\leq C||u||_{L^{2}} , l=0,1,2 ,

and

(c) putting Q(k)=I- \sum_{j=1}^{m}P_{f}(k) , U is given by U=e^{t\hat{B}^{*}(k)}Q(\epsilon k)=Q(\epsilon k)e^{t\hat{B}(k)}
.

and has the decomposition
U=e^{t\triangleleft(k)}..Q(\epsilon k)+U_{1}(\epsilon, t, k)j

||U_{1}u||_{\beta}\leq Ce^{-\sigma_{0}t/*}(||u||_{\beta-1}+||u||_{L^{2}})

(ii) For |k|>\kappa_{0}/\epsilon,

e^{\iota_{\hat{B}^{*}}(k)}=e^{t\hat{A}(k)}.+U_{2}(\epsilon, t, k) ,

||U_{2}u||_{\beta}\leq Ce^{-\sigma_{0}l/}.(||u||_{\beta-1}+||u||_{L^{2}})
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A simple consequence of this is the

PROPOSITION 2. 4. Let \beta>\frac{n}{2} and u_{0}\in\dot{X} . Then

(i) e^{tB}‘ u_{0}\in Z ,

(ii) |||e^{tB^{\epsilon}}u_{0}|||\leq C||u_{0}||

PROOF. In view of Theorem 2. 1, it suffices to show (ii). Using TheO-
rem 2. 3 and (2. 9), we evaluate each term of the decomposition

e^{tB^{5}}= \sum_{j=1}^{m+2}E_{j}^{*}(t)’.

\mathscr{F}_{x}Ej(t)u_{0}=\chi(|k|<\kappa_{0}/\epsilon)e^{r_{j^{(\prime 1kI)}}}\cdot P_{j}(\epsilon k)\hat{u}_{0}\underline{t} , 1\leq j\leq m ,

(2. 12) \mathscr{F}_{x}E_{m+1}^{*}(t)u_{0}=\chi(|k|<\kappa_{0}/\epsilon)U(\epsilon, t, k)\hat{u}_{0} ,

\mathscr{F}_{x}E_{m+2}^{\epsilon}(t)u_{0}=\chi(|k|>\kappa_{0}/\epsilon)e^{t_{\hat{B}}(k)}.\hat{u}_{0} .

Then (ii) follows if we take into account that for \beta>\frac{n}{2} ,

(2. 13) ||u||_{L^{2}}\leq C||u||_{\beta} .

The following elementary lemma is useful in what follows. The proof
is omitted.

Lemma 2. 5. ( i) For any a\in C, Rea<0 and \sigma\in[0,1] ,

|e^{a}-1|\leq C|a|^{\sigma}t

(ii) For any t\geq\delta\geq 0 , b>0 and \sigma\in[0,1) ,

I_{0}(t, \delta, b)\equiv\overline{\int_{0}}e^{-b(t-s)}bds\leq e^{-b\delta}t\delta ,

I_{1}(t, \sigma, b)\equiv\int_{0}^{t}e^{-b(t-s)}bs^{-\sigma}ds\leq Ct^{-\sigma}’.

I_{2}(t, \sigma, b)\equiv\int_{0}^{t}e^{-b(t-s)}b^{1\dagger\sigma(\frac{t-s}{s})\sigma}ds\leq Ct^{-\sigma}\ulcorner

All the constants C\geq 0 are independent of a, b, t .

We shall use (ii) of the above lemma putting b=\gamma|k| , \frac{\nu(\xi)}{\epsilon} and \frac{\sigma_{0}}{\epsilon} , all

of which are unbounded when |k| , |\xi|arrow\infty , \epsilonarrow 0 , and on which, never-



322 S. Ukai and K. Asano

theless, the constants C do not depend. In particular, the case b=\gamma|k| is
essential in the proof of the next proposition which reveals the reason why
the use of the time-dependent norm (1. 10) makes possible the application of
the contraction mapping principle. The importance of the case b=\nu(\xi) was
found by Grad [6].

Put Q_{0}=I-P_{0}=Q(0) and define the operator H=H. by

(2. 14) H^{*}f^{e}=e^{lB^{\epsilon}}*Q_{0} \frac{1}{\epsilon}\Lambda f^{e}(t)

PROPOSITION 2. 6. Suppose \beta>\frac{n}{2}+1 and f=f^{\epsilon}\in Z. Then,

(i) H^{\text{\’{e}}}f^{\epsilon}\in Z ,

(ii) |||H^{\iota}f.||| \leq C(1+\frac{1}{\gamma})|||f||| ,

where the constant C\geq 0 is independent of \gamma and \tau .
PROOF. We should show this for each of the operators

(2. 15) H_{J^{\epsilon}}f^{e}=E_{j}‘(t)*Q_{0} \frac{1}{\epsilon}\Lambda f^{e}(t) , 1\leq j\leq m+2

First we establish (ii). The conclusions as well as notations of Theorem
2. 3 will be used freely. Let 1\leq j\leq m . Since

(2. 16) P_{j}(\epsilon k)Q_{0}=\epsilon|k|(P_{j}^{(1)}+\epsilon|k|P_{j}^{(2)})Q_{0}

and by the aid of (2. 13) with u replaced by \Lambda f and \beta by \beta-1>\frac{n}{2} ,

|| \mathscr{F}_{x}H_{j}^{\epsilon}f.||_{\beta}\leq C(1+|k|)^{-l}\int_{0}^{l}e^{-(\alpha-rs)Ik1}|k|ds|||f.|||_{t}

(2. 17)

\leq C\zeta(t, k)\frac{1}{\gamma}I_{0}(t, 0, \gamma|k|)|||f^{e}|||_{t} ,

where ||| |||_{t}=||| |||_{\alpha,\gamma,l,\beta,t} , and \zeta(t, k)=(1+|k|)^{-l-(\alpha-rt)1k1}e . This proves (ii) for
H_{j}^{\text{\’{e}}} , 1\leq j\leq m . Similarly, we can get

||e^{t\hat{4}^{\epsilon}(k)}*Q_{0} \frac{1}{\epsilon}\Lambda\acute{f}^{\text{\’{e}}}||_{\beta}\leq C\zeta(t, k)\sup_{\xi}I_{0}(t, 0, \frac{\nu(\xi)}{\epsilon})|||f|||_{t} ,
(2. 18)

||U_{j}( \epsilon, t, k)*Q^{0}\frac{1}{\epsilon}\Lambda\hat{f}^{e}(t)||_{\beta}\leq C\zeta(t, k)I_{0}(t, 0, \frac{\sigma_{0}}{\epsilon})|||f.|||_{t} ,

whence (ii) follows for H_{m+j}. , j=1,2.
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It remains to prove (i). If \Lambda f\in Z, then by virtue of Theorem 2. 1,

(2. 19) H^{\epsilon}f^{\epsilon}\in C^{0}((0, \infty) ; Y([0, \infty]))\backslash

The former, however, is not the case on accout of (2. 4). This can be
overcome in a simple way. Note from (ii) and (1. 8) that

|||H^{\epsilon}\chi(|\xi|>R)f^{\epsilon}|||arrow 0\backslash (Rarrow\infty) ,

and from (2. 4) that since \Lambda\chi(|\xi|<R)f^{\text{\’{e}}}\in Z, (2. 19) is true if f^{e} is replaced by
\chi(|\xi|<R)f for each fixed R. Combine these two to see that (2. 19) holds
under the mere assumption f^{\text{\’{e}}}\in Z. This and (ii) show (i).

Finally we need to study the operator \Gamma The following proof shows
implicitly that Z is a Banach algebra if l>n and \beta\geq 0 .

PROPOSITION 2. 7. Suppose l>n and \beta\geq 0 , and let u, v\in Z.
(i) \Lambda^{-1}\Gamma[u, v]\in Z .
(ii) |||\Lambda^{-1}\Gamma[u, v]|||\leq C|||u||||||v|||

PROOF. Since \Gamma is bilinear symmetric and acts only on \xi ,

\mathscr{F}_{x}\Lambda^{-1}\Gamma[u, v](k)=(2\pi)^{n/2}\int_{R^{n}}\Lambda^{-1}\Gamma [\text{\^{u}}. ^{( }t, k-k’.\cdot),\hat{v}^{*}(t, k’. \cdot)]dH

Use (2. 7) to deduce

|| \mathscr{F}_{x}\Lambda^{-1}\Gamma[u, v](k)||_{\beta}\leq C\int_{R^{n}}||\hat{u}

. (t, k-H, \cdot)||_{\beta}||\hat{v}.(t, k’, \cdot)||_{\beta}dk’

\leq CI_{3}(k)|||u||||||v||| ,

where

I_{3}(k)= \int_{R^{n}}(1+|k-k’|)^{-l}(1+|k’|)^{-l}e^{-(\alpha-\gamma t)}(|k-k’I+1k’I)dk’

\leq C\zeta(t, k)i (l>n)

\zeta being that used in the proof of the previous proposition. The last inequality
is obtained since |k|\leq|k-k’|+|k’| and by splitting the integral over |k-H|\leq

|k’|/2 and |k-k’|\geq|H|/2 . This proves (ii). To prove (i), let V^{l} be the space
defined by (1. 10) like Z=Z_{\beta,\tau}^{\alpha,\gamma,l} but with \dot{X}_{\beta}^{\alpha,l} replaced by X_{\beta}^{\alpha,l} , and put
V=\cap V^{l’} We claim from (1. 8) that Z is a strong closure of V in V^{l} and

l’>l
from the proof of (ii) above that (i) is true if Z is replaced by V, for u, v\in V.
These two, combined again with (ii), assure (i).
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Now we are ready to proceed to the

PROOF OF THEOREM 1. 1. ( i) . Define the nonlinear map N=N^{e} by

(2. 20) N[u^{*}](t)=e^{tB^{\epsilon}}u_{0}+H\cdot\Lambda^{-1}\Gamma[u^{e}, u^{*}](t)

Since Q_{0}\Gamma=\Gamma by (2. 6) and Theorem 2. 2 (ic), the equation (2. 3) is then
equivalent to the equation u=N[u] . Thus we shall find a fixed point of
N. Combine Propositions 2. 4, 2. 6 and 2. 7 together. Then, whenever
u_{0}\in\dot{X} and u\in Z, N[u]\in Z and

|||N[u]||| \leq C_{1}||u_{0}||+C_{2}(1+\frac{1}{\gamma})|||u|||^{2} ,

(2. 21) |||N[u]-N[v]|||=|||H\Lambda^{-1}\Gamma[u-v, u+v]|||

\leq C_{2}(1+\frac{1}{\gamma})|||u-v||||||u+v|||

Since the constants C_{1} , C_{2}\geq 0 are independent of \gamma and \tau , so is a_{0}=(4C_{1}C_{2})^{-1} .
Suppose ||u_{0}||<a_{0} and choose a \gamma such that

\gamma>||u_{0}||/(a_{0}-||u_{0}||)(

If we put

\tau=\underline{\alpha}

\gamma’

.

a_{1}=(2C_{2}(1+ \frac{1}{\gamma})||u_{0}||)^{-1}\mu , \mu=1-( 1-(1+ \frac{1}{\gamma})\frac{1}{a_{0}}||u_{0}||)^{1/2} ,

then a_{1}<2C_{1} and 0<\mu<1 . Denote by Z_{0} the closed ball

Z_{0}=\{u\in Z||||u|||\leq a_{1}||u_{0}||\} ,

in the space Z, and regard this as a complete metric space with the metric
d(u, v)=|||u-v||| . Then (2. 21) implies that N[u]\in Z_{0} and d(N[u], N[v])\leq
\mu d(u, v) whenever u, v\in Z_{0} . In other words, N is a contraction map on
Z_{0} if ||u_{0}||<a_{0} , and hence has a unique fixed point u=u.(t)\in Z_{0}, which solves
(2. 3).

It remains to show that this u is also a unique classical solution to (2. 1).

Let h>0 and note from (2. 20) the identity
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\frac{1}{h}(N[u](t+h)-N[u](t))=\frac{1}{h}(e^{hB^{\text{\’{e}}}}-I)N[u](t)+

(2. 22)
+ \frac{1}{h}\int_{t}^{t+h}e^{(t+h-s)B}.Q_{0}\frac{1}{\epsilon}\Gamma[u(s), u(s)]ds\equiv v_{1}+v_{2} .

Since N[u]\in Z, N[u]\in D(B^{\epsilon}) by (2. 11) if B^{e} is considered in the space
\dot{X}_{\beta-1}^{\alpha-\gamma C,l-1} . Then v_{1}arrow B^{*}N[u](harrow 0) strongly there, for fixed \epsilon, t . Put \Gamma(t)=

\Gamma[u(t), u(t)] and write

v_{2}- \frac{1}{\epsilon}\Gamma(t)=\frac{1}{h}\int_{0}^{h}(e^{sB^{\text{\’{e}}}}-I)ds\frac{1}{\epsilon}\Gamma(t)

(2. 23)

+ \frac{1}{h}\int_{0}^{h}e^{sB^{6}}\frac{1}{\epsilon}(\Gamma(t+h-s)-\Gamma(t))d_{St}

Evaluate this by the aid of Proposition 2. 4 and

||u(t)\pm u(s)||_{\alpha-\gamma t,l-\sigma,\beta-\sigma}

(2. 24)
\leq||e^{-\gamma t1k1}u(t)\pm e^{-rs1kI}u(s)||_{\alpha,l-\sigma,\beta-\sigma}+C|t-s|^{\sigma}|||u|||-

which comes from lemma 2. 4 (i) with a=-\gamma(t-s)|k| . Since \Gamma(t)\in Y_{\beta-1’}^{\alpha,|l}

([0, \tau]) by Proposition 2. 7, then (2. 23)\rightarrow 0 strongly in \dot{X}_{\beta-1}^{a-\gamma t,l} . The case
h<0 can be dealt with similarly. All the convergences are uniform for t
on [0, \tau-\delta] when h>0 and on [\delta, \tau] when h<0 . Since u=N[u] , then (2. 22)
implies that du/dt exists satisfying

\frac{du}{dt}=B.u(t)+\frac{1}{\epsilon}\Gamma[u(t), u(t)]\in Y_{\beta-1}^{\alpha,\gamma,l-1}([0, \tau])

Since u(t) is analytic in x\in R^{n}+iB_{\alpha-\gamma t} , this indicates that u is a classical
solution to (2. 1). Its uniqueness has been proven in [1, 7] . This completes
the proof of Theorem 1. 1 (i).

3. Limit of solutions as \epsilonarrow 0

We shall again use the contraction mapping principle to obtain the
relevant limit. A suitable space is the subset W=W_{\beta,\tau}^{\alpha,\gamma,l} of Z consisting of
us having the same limit property stated in Theorem 1. 1 (ii), that is,

u=u^{e}\in W\Leftrightarrow u\in Z , \exists u^{0}\in Y((0, \tau]) ,
(3. 1)

\forall\delta>0 , ||u^{e}-u^{0}||_{Y(1\delta,\tau J)}arrow-0(\epsilonarrow 0)

Evidently W is closed in Z and so by itself a Banach space with the norm
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||| ||| . We shall show that N of (2. 20) is a contraction also in the ball
W_{0}=W\cap Z_{0} . First, the limit of N=N^{\epsilon} must be found.

In the below we assume \beta>\frac{n}{2}+1 , \sigma\in[0,1) , and need the norm

[u]_{\epsilon,\sigma}=
0 \leq s\leq\tau\sup_{0\leq\epsilon’<\text{\’{e}}},(\frac{s^{2}}{\epsilon’})^{\sigma/2}||u.(\prime s)||_{\alpha-\gamma S,l-\sigma,\beta-\sigma}

Define the operators E^{0}(t) , E_{j}^{0}(t) , 1\leq j\leq m by E^{0}= \sum E_{j}^{0} with

\mathscr{F}_{x}E_{j}^{0}(t)u_{0}=e^{i\lambda^{(}j^{0)}Ik|t}P_{j}^{(0)}\hat{u}_{0}(k, \cdot)

PROPOSITION 3. 1. Suppose u_{0}\in X. Then,

(i) e^{tB}.u_{0}\in W with the limit E^{0}(t)u_{0} .
(ii) [(e^{tB^{\epsilon}}-E^{0}(t))u_{0}]_{\epsilon,\sigma}\leq C||u_{0}||

PROOF. Put || ||_{t,\sigma}=|| ||_{\alpha-\gamma t} , l-\sigma,\beta-\sigma and u’=\chi(|k|>R)u_{0}. Then we get

||e^{tB^{\epsilon}}u’||_{t,\sigma}\leq C||u’||_{0,\sigma}\leq C(1+R)^{-\sigma}||u_{0}||\wedge
,

by Proposition 2. 4, and similarly for E^{0}(t)u’ Put u’=\chi(|k|<R)u_{0} and let
R<\kappa_{0}/\epsilon . If |k|<R , then

|e^{i\lambda_{j^{(1\cdot 1k1)t/*}}}-e^{i\lambda j ^{Iklt}}(0)|\leq C\epsilon R^{2-\sigma}|k|^{\sigma}

(3. 2)
||(P_{j}(\epsilon|k|)-P_{j}^{(0)})\hat{u}_{0}||_{\beta}\leq C\epsilon R^{1-\sigma}|k|^{\sigma}||\hat{u}_{0}||_{\beta} .

Therefore, with Ej(t) of (2. 12), we get for 1\leq j\leq m ,

||(E_{j}^{\epsilon}(t)-E_{j}^{0}(t))u’||_{t,\sigma}\leq C\epsilon R^{2-\sigma}||u_{0}||

Further ||E_{m+1}^{\epsilon}(t)u_{0}||_{t,\sigma} can be majorized by Theorem 2. 2 (ic) by Ce^{-\mu t/e}||u_{0}||

with \mu=\min(\nu_{0}, \sigma_{0})=\sigma_{0} , and E_{m+2}.\sim u’=0 by our choice of R. In the above
estimates, we first put \sigma=0 , R=\kappa_{0}\epsilon^{-1/4} to prove (i) by the aid of (1. 8) (note

that E_{j}^{0}(t)u_{0}\in Y([0, \tau])) , and then put R=\kappa_{0}\epsilon^{-1/2} to prove (ii).

Define the operators H_{j}^{0},1\leq j\leq m by

\mathscr{F}_{x}H_{j}^{0}v(t)=(e^{i\lambda^{(0)}IkIt}j|k|P^{(1)}(\tilde{k})*Q_{0}\Lambda\hat{v}(t)) ,

where * means, as before, the convolution in t .

Lemma 3. 2. For f=f^{\text{\’{e}}}\in W with the limit f^{0} and for 1\leq j\leq m,

(i) H_{j}^{0}f^{\epsilon}\in W with the limit H_{j}^{0}f^{0} ,

(ii) [H_{j}^{0}(f^{\text{\’{e}}}-fl)]_{e,\sigma}\leq C[f.-f^{0}].,\sigma .

PROOF. For \delta>0 , define the operators A_{j}^{\delta} , j=1,2.by
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H_{j}^{0}v= \int_{\delta}’+\int_{0}^{C\tilde{l}}\equiv A_{1}^{\delta}v+A_{2}^{[mathring]_{0}}vt

Similarly to (2. 17), we get for t\geq\delta ,

(3. 3) ||A_{1}^{\delta}v||,,0\leq C\gamma||v||_{Y([\delta,l])}

Repeat the argument for Proposition 2. 6 (i) to conclude A_{1}^{\delta}f^{0}\in Y([\delta, \tau]) .
Note that |k|e^{-\gamma(t-s)|k|}\leq C/(t-s) , t>s , and deduce ||A_{2}^{\delta}v||_{t,\sigma}\leq C\delta(t-\delta)^{-1}|||v||| .
Hence for any fixed \delta_{0}>0 ,

||A_{2}^{0}v||_{Y(\mathfrak{c}\delta_{0’}\tau J)}arrow 0(\deltaarrow 0)

Putting v=f^{0} , we now have H^{0}f^{0}\in Y((0, \tau]) , and putting v=f^{\epsilon}-f^{0}, we can
conclude (i). (ii) can be found similarly to (2. 17), with I_{0}(t, 0, \gamma|k|) replaced
by I_{1}(t, \sigma, \gamma|k|)\epsilon^{\sigma} .

In the following three lemmas, we put f_{R}^{\epsilon}=\chi(|k|+|\xi|<R)f^{e} for f=f^{\epsilon}\in W

and assume R<\kappa_{0}/\epsilon . All the constants C\geq 0 do not depend on R as well
as \gamma , \epsilon , \tau and f.

Lemma 3. 3. Recall H_{j}^{\epsilon} of (2. 15). For 1\leq j\leq m,

[(H_{j}^{\epsilon}-H_{j}^{0})f_{R}^{*}]_{\text{\’{e}},\sigma}\leq C\epsilon^{1-\sigma/2}R^{2-\sigma}|||f|||

PROOF. Note that (P_{j}(\epsilon|k|)-\epsilon|k|P_{j}^{(1)}(\tilde{k}))Q_{0}=\epsilon^{2}|k|^{2}P_{j}^{(2)} and use (3. 2) to
obtain

||\mathscr{F}_{x}(Hj-H_{j}^{0})f_{R}^{\epsilon}||_{\beta}\leq C\zeta(t, k)I_{0}(t, 0, \gamma|k|)\epsilon R^{2-\sigma}|k|^{\sigma}|||f||| ,

whence the lemma follows.

For the study of H_{m+1}^{\epsilon} , we need the auxisiliary operator

\tilde{H}_{m+1}.f^{\epsilon}=(e^{tL/\text{\’{e}}}Q_{0}\frac{1}{\epsilon}\Lambda)*f^{\epsilon}(t)1

Since the operator L has 0 as an isolated eigenvalue, L^{-1} does not exist but
L^{-1}Q_{0} does. Put

H_{m+1}^{0}=-L^{-1}Q_{0}\Lambda

Since L^{-1}Q_{0}\Lambda=Q_{0}-L^{-1}Q_{0}K and by (2. 5) ,

(3. 4) H_{m+1}^{0} is bounded on Y^{1}((0, \tau]) .

LEMMA 3. 4. ( i) |||k\cdot\xi|^{\kappa}\tilde{H}_{m+1}^{*}f_{R}^{\epsilon}||_{l,\sigma}\leq CR^{2(\kappa-\sigma)}|||f||| , 0\leq\sigma, \kappa\leq 1 .
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(ii) ||( \tilde{H}_{m+1}^{\epsilon}-H_{m+1}^{0})f_{R}^{\epsilon}||_{t,\sigma}\leq C\{(e^{-\mu^{\frac{\delta}{\text{\’{e}}}}}+\delta R^{1-\sigma})|||f|||+(\frac{\epsilon}{t})^{\sigma}[[f^{\epsilon}]]_{t,\delta,\sigma}) ,

for t\geq\delta\geq 0 , where || ||_{l,\sigma} is as in the proof of Proposition 3. 1, \mu=\min

(\nu_{0}, \sigma_{0}) and

[[v]]_{t,\delta,\sigma}=’- 0^{Q}\sup_{\leq s<\prime}(_{\overline{t}-s}.\sigma)^{\sigma}||e^{-\gamma s1kI}v(s)-e^{-\gamma tIk1}v(t)||_{a,l-\sigma,\beta-\sigma} .

PROOF. By Theorem 2. 3 (ic), e^{lL/\epsilon}Q_{0}=U(\epsilon, t, 0) . Then (i) comes from
(2. 18) since k\cdot\xi commutes with e^{l\hat{A}^{\epsilon}(k)} and k with U_{1} . Make the decomp0-
sition

\tilde{H}_{m+}^{\text{\’{e}}}f_{R}^{\epsilon}=\int_{0}^{t-\delta}+\underline{\int^{t}}t\delta\equiv w_{1}+w_{2} ,

and use (2. 18) with I_{0}(t, \delta, \cdot) in place of I_{0}(t, 0, \cdot) to deduce

(3. 5) ||w_{1}||_{l,\sigma}\leq Ce^{-\mu\delta/e}|||f|||

Next, write

w_{2}=t \underline{\int^{c_{\delta}}}e^{\frac{t-s}{}L}.Q_{0}\frac{1}{\epsilon}\Lambda(f_{R}^{\epsilon}(s)-f_{R}^{\epsilon}(t))ds+\int_{0}^{\delta’\epsilon}’ e^{sL}Q_{0}\Lambda f_{\dot{R}}(t)ds

\equiv w_{3}+w_{41}

Again by (2. 18), this time with I_{2}(t, \sigma, \cdot) , and by an inequality similar to
(2. 24) obtained from Lemma 2. 4 (i) with \sigma=1 ,

||w_{3}||_{t,\sigma} \leq C((\frac{\epsilon}{t})^{\sigma}[[f^{\epsilon}]]_{t,\delta,\sigma}+\delta R^{1-\sigma}|||f|||) .

Finally we put

w_{4}= \int_{0}^{\infty}-\int_{\epsilon\delta/}^{\infty}\equiv w_{f}+w_{6} .

The Laplace transform of a semigroup is the resolvent of its generator.
Then w_{f}=H_{m+l}^{0}f_{R}^{e} . And it is easy to see that (3. 5) is true also for w_{6} .
Combining w_{j}’s yields (ii).

Lemma 3. 5. [(H_{m+1}.-\tilde{H}_{m+1}^{\epsilon})f_{\dot{R}}]_{e,\sigma}\leq C\epsilon^{1-\sigma/2}R^{2-2\sigma}|||f|||

PROOF. Notice from the perturbation theory of semigroups that

e^{tB^{\epsilon}}u=(I+e^{tB^{\epsilon}} (-ik\cdot\xi)*) e^{tL/} . \^u

holds in \dot{X}_{\beta-1}^{\alpha,l-1} if u\in\dot{X}_{\beta}^{a,l} . Therefore
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(H_{m+1}-\tilde{H}_{m+1})f_{R}^{\epsilon}=\{(Q(\epsilon k)-I)Q_{0}+U*(-ik\cdot\xi)\}\tilde{H}_{m+1}^{\epsilon}f_{R}^{\epsilon} ,

where U=\mathscr{F}_{x}^{-1}U(\epsilon, t, k)\mathscr{F}_{x} . By (2. 16),

|||U*f_{R}^{\epsilon}|||\leq C\epsilon|||f|||

This and Lemma 3. 4 (i), together with (2. 16), prove the lemma.

PROPOSITION 3. 6. Recall H\’e of (2. 14) and put

H^{0}= \sum_{j=1}^{m+1}H_{j}^{0}

Let f^{\epsilon}\in W with the limit f^{0} .
(i) H^{\epsilon}f^{\epsilon}\in W with the limit H^{0}f^{0} .
(ii) [Hf-H^{0}f^{0}]_{\text{\’{e}},\sigma}\leq C(|||f|||+[f^{\text{\’{e}}}-f^{0}]_{\epsilon,\sigma}+[[f]]_{t,\tau,\sigma)\iota}

PROOF. By virtue of Lemma 3. 2 (i) and (3. 4), H^{0}f^{0}\in Y((0, \tau]) . Let f_{\dot{R}}

be as above and \tilde{f}_{\dot{R}}=f-f_{R}^{\epsilon}=\chi(|k|+|\xi|>R)f^{e} . Write

H^{\epsilon}f^{\epsilon}-H^{0}f^{0}=(H^{\text{\’{e}}}-H^{0})f_{R}^{\text{\’{e}}}+(H^{\epsilon}-H^{0}) \tilde{f}_{R}^{\epsilon}+H^{0}(f^{*}-f^{0})\equiv\sum_{j=1}^{3}w_{j} .

Combining Lemmas 3. 3, 3. 4 (ii) and 3. 5 yields

||w_{1}||_{t,\sigma} \leq C((\frac{\epsilon}{\gamma}R^{2-\sigma}+\delta R^{1-\sigma}+e^{-\mu^{\frac{\delta}{*}}})|||f|||+(\frac{\epsilon}{t})^{\sigma}[[f]]_{t,\delta,\sigma}) .

By Proposition 2. 6 (ii) and (3. 3) (with \delta=0),

||w_{2}||_{t,\sigma}\leq C||\tilde{f}_{R}^{\epsilon}||_{t,\sigma}\leq C(1+R)^{-\sigma}|||f|||

Put \sigma=0 , R=\kappa_{0\overline{\Leftrightarrow}}^{-1/4} and \delta=\epsilon^{1/2}, and recall (1. 8). Note from (3. 1) that for
f^{6}\in W with the limit f^{0}, if we put f^{\text{\’{e}}=0}=f^{0}, then,

(3. 6) e^{-\gamma tIk1}f^{e}(t)\in B^{0}([0, \infty)\cross[\delta_{0}, \tau];\dot{X}_{\beta}^{\alpha,l})

for any \delta_{0}>0 . Consequently w_{1}+w_{2}arrow 0(\epsilonarrow 0) strongly in Y([\delta_{0}, \tau]) . The
same is true for w_{3} due to Lemma 3. 2 (i). Thus (i) follows. Put R=\kappa_{0}\epsilon^{-1/2}

and \delta=\epsilon^{1/2}t in the above and recall Lemma 3. 2 (ii) to obtain (ii) of the lemma.

PROOF OF THEOREM 1. 1 (ii) (iii). Proposition 2. 7 implies that \Lambda^{-1}\Gamma[u, u]

\in W if u\in W. Owing to Propositions 3. 1 (i) and 3. 6 (i), therefore, N maps
W into itself, and so N is a contraction in W\cap Z_{0} as well as in Z_{0} . Then
u^{\epsilon} of Theorem 1. 1 (i) is in W, proving Theorem 1. 1 (ii). Its limit u^{0} satisfies,
for t\in(0, \tau] ,

u^{0}=N^{0}u^{0}\equiv E^{0}(t)u_{0}+H^{0}\Lambda^{-1}\Gamma[u^{0}, u^{0}] .
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We note Q_{0}E^{0}(t)=0 and Q_{0}H_{j}^{0}=0(1\leq j\leq m) . Indeed Q_{0}P_{j}^{(0)}=0 and by
P_{j}(k)^{2}=P_{j}(k) , P_{j}^{(1)}Q_{0}=P_{j}^{(0)}P_{j}^{(1)}Q_{0} . Hence Q_{0}u^{0}=Q_{0}H_{m+1}^{0}\Lambda^{-1}\Gamma[u^{0}, u^{0}] , or what
is the same thing since L=Q_{0}L=-LQ_{0} and by (2. 6),

(3. 7) Lu^{0}=-\Gamma[u^{0}, u^{0}]

This is equivalent to (1. 2) if we put f^{0}=g+g^{1/2}u^{0}, proving Theorem 1. 1 (iii).

PROOF OF THEOREM 1. 4. Introduce the norm

[[f]]=|||f|||+ \sup_{0<\epsilon\leq 1}\{[f.-f^{b}]_{e,\sigma}+[[f.]]_{\tau,\tau,\sigma}\}

By virtue of Propositions 2. 7, 3. 1 (ii) and 3. 7 (ii), we readily see that (2. 21)

remains true in this norm, with different constants C_{1}, C_{2} if there hold

[[e^{tB^{\epsilon}}u_{0}]]_{t,t,\sigma}\leq C||u_{0}|| ,

[[H^{*}f.]]_{t,t,\sigma}\leq C(|||f|||+[[f.]]_{t,t,\sigma})

These were proved in Propositions 2. 2 and 4. 1 of [11] for the case \gamma=0 .
For \gamma>0 , it suffice to take account of (2. 24). Now the proof of Theorem
1. 1 (i) can be repeated to see that N is again a contraction in a closed ball
\{f\in Z|[[f]]\leq a_{1}’\} provided ||u_{0}|| is small. This completes the proof of the
theorem.

4. Initial layer of the solution

Introduce the space

V\equiv V_{\beta,\tau}^{\alpha,\gamma,l}=B^{0}([0, \infty) ; Y[0, \tau])

V may be regarded as a subspace of W and so it is a Banach space with
the norm ||| ||| . The following characterization of V comes readily from
(1. 10) and (3. 6).

Lemma 4. 1. Let u=u.(t)\in W with the limit u^{0}=u^{0}(t) . Suppose
\exists u_{0}\in\dot{X} , ||e^{-\gamma tIk1}u.(t)-u_{0}||arrow 0 (\epsilon, tarrow 0, \epsilon, t>0)

Then u\in V if u.(t) is extended to \epsilon=0 by u^{0}(t) for t>0 and by u_{0} for t=0.

Given a u_{0}\in\dot{X} , V(u_{0}) denotes a closed subset of V defined as

V(u_{0})=\{u^{\text{\’{e}}}(t)\in V|u^{0}(0)=u_{0}\}

The proof of Theorem 1. 6 is based on the
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PROPOSITION 4. 2. Suppose u_{0}\in\dot{X} fulfill the condition (1. 11) Then N
of (2. 20) maps V(u_{0}) into itself

t c

PROOF. By (1. 11) (i) \xi\cdot\nabla_{x}u_{0}, Lu_{-}\in\dot{X} as well as
u_{0}\in D(B^{e})J^{\cdot}

Since
de^{tB^{\epsilon}}/dt=e^{tB^{\text{\’{e}}}}B. holds on D(B^{e}) , we have

e^{lB}.u_{0}=u_{0}+ \int_{0}^{t}e^{sB^{\text{\’{e}}}} (- \xi\cdot\nabla_{x})u_{0}ds+\int_{0}^{t}e^{(t-s)B}.\frac{1}{\epsilon}Lu_{0}ds

\equiv u_{0}+wi+w_{2}^{\epsilon} .
Owing to Proposition 2. 4 and by the aid of Lemma 4. 1 (u_{0}=0) , wi\in V with

||wi||_{t,0}\leq Ct||u_{0}||_{\alpha,\gamma+1,l+1} .
On the other hand, (1. ll)(i) means that (3.7) holds for u_{0}, so Lu_{0}=-
Q_{0}\Gamma[u_{0}, u_{0}] due to (2. 6). Hence w_{2}^{\epsilon}=-H\cdot\Lambda^{-1}\Gamma[u_{0}, u_{0}] and

N\’e [u^{e}]=u_{0}+w_{1}^{*}+H.\Lambda^{-1}\Gamma[u^{e}-u_{0}, u.+u_{0}]

Use Propositions 2. 6, 2. 7 and (2. 24) to deduce
||e^{-\gamma t1k1}N.[u^{*}](t)-u_{0}||

\leq||(e^{-\gamma t1kI}-1)u_{0}||+||w_{1}^{*}||_{t,0}+

+C(|||u|||+||u_{0}||) \sup_{0\leq s\leq t}||u^{*}(s)-u_{0}||_{\iota,0}

\leq C(1+||u_{0}||+|||u|||)(t||u_{0}||_{\alpha,l+1,\beta+1}+

+ \sup_{0\leq s\leq t}||e^{-rsIkI}u^{e}(s)-u_{0}||)

If u\in V(u_{0}) , the last member tends to 0 with \epsilon , t . Then the proposition
follows from Lemma 4. 1.

PROOF OF THEOREM 1. 6. It is now clear that N is a contraction on
V(u_{0})\cap Z_{0} , so that u^{*} of Theorem 1. 1 (i) is in V(u_{0}) , which is what was
desired.
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