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A projective characterization of a class of abelian groups
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Abstract. This paper considers the class of abelian groups that are extensions of

subgroups that are direct sums of cyclic groups by factor groups that are also of this

form. This class is shown to be the projectives with respect to a natural collection of

short exact sequences, and that the corresponding class of injectives consists of those

groups whose first Ulm subgroup is pure-injective. This class of projectives is quite

extensive, but satisfactory descriptions are given for the countable groups in the class

that are either torsion-free, or else mixed groups of torsion-free rank one. Particular

attention is paid to the behavior of the groups in these classes under localization at

some prime.
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1. Introduction

By the term “group” we will mean an abelian group. Our terminology
will, in the main, be standard, and will be consistent with that found in [2]
or [3]. We will also employ a smattering of set theory for which we refer the
reader to [1].

If G is a group, then the Z-adic topology on G uses {nG}n∈N as a
neighborhood base for 0. The closure of {0} in this topology, {0} = ∩n∈N nG,
is referred to as the (first) Ulm subgroup of G and is written G1.

If B is a subgroup of G and A = G/B, then B is pure in G iff for all
n ∈ N we have nB = B ∩ nG. The corresponding collection of pure short
exact sequences agrees with the Ulm subgroup Ext(A,B)1. A group is pure-
injective iff it is the direct sum of a divisible group and a (reduced) group
that is complete in the Z-adic topology (i.e., it is algebraically compact). A
group is pure-projective iff it is Σ-cyclic (i.e., the direct sum of a collection
of cyclic groups – we will also use Σf -cyclic to indicate a group that is
isomorphic to the direct sum of a collection of finite cyclic groups).

In this paper we will investigate a parallel collection of ideas. We define
the Z2-adic topology on the group G by using {nG1 = n(G1) : n ∈ N} as
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a neighborhood base of 0. In this topology the smallest closed subgroup of
G is {0} = ∩n∈N nG1, which is referred to as the second Ulm subgroup of G

and is written G2.
We will define a collection of short exact sequences, which we refer

to as L2-pure-exact, whose properties with respect to the Z2-adic topology
parallel the properties of the pure-exact sequences with respect to the Z-adic
topology. Specifically, we will show:

(a) A group is L2-pure-injective iff it is the direct sum of a divisible
group and a group that is complete in the Z2-adic topology. There are
enough L2-pure-injectives (Proposition 2.8 and Corollary 2.9).

(b) A group is L2-pure-projective iff it has a subgroup that is Σ-cyclic
such that the corresponding factor group is also Σ-cyclic. There are enough
L2-pure-projectives (Theorem 2.10).

Summarizing the contents of the paper, in Section 2 we construct the
class of L2-pure-exact sequences and verify properties (a) and (b). This
section could be shortened somewhat using ideas from [4]; however, the
present treatment has several advantages: It is nearly self-contained, using
nothing more than basic ideas from the theory of pure-exact sequences; and
in addition, in [4] the emphasis was on groups localized at a single prime,
whereas in this work the emphasis is on the collection of all primes.

Condition (a) actually gives a reasonably complete picture of the col-
lection of L2-pure-injectives. The remainder of this paper is a discussion of
the class of L2-pure-projectives mentioned in (b), i.e., the groups that are
extensions of Σ-cyclic subgroups by Σ-cyclic factors.

Clearly, a complete classification of these groups is not possible. For
example, even in the case of p-groups, in ([5, Proposition 3.1(b)]) it was
noted that for any separable p-group S whatsoever, there is a L2-pure-
projective p-group A such that A/pωA ∼= S⊕C, where C is Σf -cyclic (in the
terminology of that paper, A is a weak pω2-projective, or a pω2

∗ -projective).
This means that the collection of p-torsion L2-pure-projectives is at least
as complicated as the class of all separable p-groups. In particular, there
will almost certainly never be a satisfactory description of even the class of
torsion L2-pure-projectives.

However, there are things we can say. For example, in Section 3 we
concentrate on torsion-free L2-pure-projectives. We show that if A is a
torsion-free L2-pure-projective group, then it is locally free (i.e., for every

prime p, the localization Ap
def= A⊗Zp is a free Zp-module – Theorem 3.3). In
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addition, we show that the converse also holds if A has countable torsion-free
rank. Interestingly, using some basic set theory (i.e., the diamond principle,
which holds in the constructible universe, V=L), we provide an example to
show that this converse does not hold when A has uncountable torsion-free
rank (Theorem 3.6).

In Section 4 we give a complete description of the countable groups
of torsion-free rank one that are L2-pure-projective (Theorem 4.1). It is
perhaps worth noting that this result could easily be extended to any group
of torsion-free rank one whose torsion subgroup is totally projective. Finally,
several examples are constructed. For example, it is shown that there is
a countable mixed group A of torsion-free rank one that is not L2-pure-
projective, but for which each localization Ap is L2-pure-projective in the
class of local Zp-modules (Example 4.3).

2. L2-Purity

Recall that the completion of a group G in the Z-adic topology is the
inverse limit lim

←−
G/nG. In [2] this limit is denoted by Ĝ, but we will prefer

the notation L1G. So there is a natural homomorphism G → L1G whose
kernel is G1 and whose image is a pure subgroup of L1G that is dense in
the Z-adic topology on L1G. Denote the cokernel of this map by Q1G; so
Q1G is divisible.

Similarly, we let L2G = lim
←−

G/nG1 be the completion of G in the Z2-

adic topology. So there is a homomorphism φG : G → L2G whose kernel is
G2. We will usually identify G/G2 with its image in L2G; let Q2G be the
cokernel of this embedding. We can also identify the Z-adic completion of
G1, i.e., L1G1 = lim

←−
G1/nG1, with a subgroup of L2G. Therefore, there is

a commutative diagram

0 // G1/G2 //

²²

L1G1 //

²²

Q1G1 //

²²

0

0 // G/G2 //

²²

L2G //

²²

Q2G // 0

G/G1 // L2G/L1G1
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In this construction, it is readily verified that G1/G2 = (L1G1)∩(G/G2)
and that L2G = (L1G1) + (G/G2). This gives the following:

Lemma 2.1 If G is a group, then there are natural isomorphisms

L2G/L1G1 ∼= G/G1

Q2G = L2G/(G/G2) ∼= L1G1/(G1/G2) = Q1G1

In particular, the cokernel Q2G is divisible.

We now observe some additional consequences of the above relations.
Since

(1) G1/G2 = (G/G2)1 ⊆ (L2G)1;
(2) (L1G1)/(G1/G2) = Q1G1 is divisible; and
(3) (L2G)/(L1G1) ∼= G/G1,

it quickly follows that L1G1 = (L2G)1. We expand these notions slightly as
follows:

Proposition 2.2 If G is a group and n ∈ Z, then

(a) (G/G2) ∩ n(L2G)1 = nG1/G2;
(b) (G/G2) + n(L2G)1 = L2G;
(c) L2G/n(L2G)1 ∼= G/nG1.

Proof. Regarding (a), using the purity of G1/G2 in L1G1 we have

(G/G2) ∩ n(L2G)1 = (G/G2) ∩ n(L1G1)

= (G/G2) ∩ (L1G1) ∩ n(L1G1)

= (G1/G2) ∩ n(L1G1)

= nG1/G2.

As to (b), using the Z-adic density of G1/G2 in L1G1 we have

(G/G2) + n(L2G)1 = (G/G2) + (G1/G2) + n(L1G1)

= (G/G2) + (L1G1) = L2G.

For (c), using (a) and (b) we have
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L2G/n(L2G)1 = {(G/G2) + n(L2G)1}/n(L2G)1

∼= (G/G2)/{(G/G2) ∩ n(L2G)1}
= (G/G2)/{nG1/G2}
∼= G/nG1 ¤

The following important observation immediately follows from Proposi-
tion 2.2(c):

Corollary 2.3 For any group G, there is a natural isomorphism L2(L2G)
∼= L2G. In particular, L2G will always be complete in the Z2-adic topology.

We now use this functor to define a corresponding collection of short
exact sequences.

Proposition 2.4 Suppose E : 0 → G
ν→X → A → 0 is a short exact

sequence. Then there is a homomorphism f : X → L2G such that φG = f ◦ν
iff the induced sequence

L2E : 0 → L2G
L2ν−→L2X −→ L2A → 0

is splitting exact.

Proof. Suppose first that L2E is splitting and let σ : L2X → L2G be such
that σ ◦ (L2ν) is the identity on L2G. If we let f = σ ◦φX : X → L2G, then

f ◦ ν = σ ◦ φX ◦ ν = σ ◦ (L2ν) ◦ φG = φG,

as required.
Suppose next that f exists. It follows that there is a commutative

diagram

0 // G //

²²

X //

²²

A // 0

0 // L2G // L2G⊕A // A // 0

with splitting exact second row. For any n ∈ N, this determines another
commutative diagram
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0 // G/nG1 //

²²

X/nG1 //

²²

A // 0

0 // L2G/n(L2G)1 // L2G/n(L2G)1 ⊕A // A // 0

As the outer vertical homomorphisms are isomorphisms, so is the middle
one. Since

nX1/nG1 = n(X/nG1)1 ∼= n(L2G/n(L2G)1 ⊕A)1,

it follows that the middle vertical map determines an isomorphism

X/nX1 ∼= (X/nG1)/(nX1/nG1)

∼= (L2G/n(L2G)1 ⊕A)/n(L2G/n(L2G)1 ⊕A)1

∼= L2G/n(L2G)1 ⊕A/nA1 ∼= G/nG1 ⊕A/nA1

Taking the inverse limit gives L2X ∼= L2G⊕ L2A, as stated. ¤

As in Proposition 2.4, we say a short exact sequence 0 → G → X →
A → 0 is L2-pure iff the homomorphism f : X → L2G exists iff the sequence
represents an element of the kernel of the homomorphism

Ext(A,G) → Ext(A,L2G).

We will denote the collection of L2-pure sequences by L2 Ext(A,G).
Using the functorial nature of the completion functor L2, it is elementary

to check that push-outs and pull-backs of L2-pure sequences are themselves
L2-pure; so L2 Ext(A,G) is a bifunctor in A and G. The next statement is
an immediate consequence of this.

Proposition 2.5 Suppose A is a subgroup of B and B is a subgroup of
C.

(a) If A is L2-pure in C, then A is L2-pure in B.
(b) If B is L2-pure in C, then B/A is L2-pure in C/A.

We now observe a property of L2-purity that is analogous to a similar
property for ordinary purity.
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Corollary 2.6 If 0 → G → X → A → 0 is L2-pure, then for every n ∈ N,
the induced sequence

0 → G/nG1 → X/nX1 → A/nA1 → 0

is splitting exact.

Proof. By Proposition 2.2(c), this sequence is equivalent to

0 → (L2G)/n(L2G)1 → (L2X)/n(L2X)1 → (L2A)/n(L2A)1 → 0

which splits by Proposition 2.4. ¤

Corollary 2.7 If E is L2-pure, then it is pure in the usual sense, and G1

is pure in X1.

With a wee bit more effort, using an analogue of ([2, Proposition 56.1])
and Corollary 2.6, we could verify that L2 Ext(A,G) ⊆ Ext(A,G)2 for all
groups A and G. Unlike the case of ordinary purity, however, this contain-
ment can be proper.

We prove the next two statements simultaneously.

Proposition 2.8 The group G is L2-pure-injective iff it splits as G ∼=
C ⊕ D, where D is divisible and C is complete in the Z2-adic topology, iff
G1 is a pure-injective group.

Corollary 2.9 If G is any group and D is a divisible subgroup containing
G2, then there is a L2-pure-injective resolution

0 → G → L2G⊕D → Q2G⊕ E → 0

where E is also divisible.

Proof. Suppose first that, as in Proposition 2.8, G splits as G ∼= C ⊕
D, where D is divisible, and C is complete in the Z2-adic topology; we
intend to show that G is L2-pure-injective. Since divisible groups are just
plain injective, there is no loss of generality in assuming that D = {0} and
G = C is reduced and complete in the Z2-adic topology. In this case φG

is an isomorphism, so for any group A, Ext(A,G) → Ext(A,L2G) is an
isomorphism. And this implies that L2 Ext(A,G) = {0}, i.e., G is L2-pure-
injective.
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Next, note that if G is any group, then the sequence in Corollary 2.9
clearly satisfies Proposition 2.4, so that it is L2-pure. Since we have just
shown that a group of the form L2G⊕D must be L2-pure-injective, we have
verified Corollary 2.9.

Finally, if G is an arbitrary L2-pure-injective, then the sequence in
Corollary 2.9 must split. But it is easy to see that if H is a group (such
as L2G ⊕D) for which H1 is pure-injective, then any summand of H also
has that property. Therefore, G1 must be a pure-injective, and so G is
L2-pure-injective. ¤

Note that there is a push-out diagram

0 // G1 //

²²

L1G1 ⊕D //

²²

Q1G1 ⊕ E //

∼=
²²

0

0 // G //

²²

L2G⊕D //

²²

Q2G⊕ E // 0

G/G1
∼= // L2G/L1G1

In other words, an L2-pure-injective resolution of G can be thought of as
just a push-out of a pure-injective resolution of G1.

The pure-injective (i.e., algebraically compact) groups can be completely
described using cardinal invariants. Therefore, in some sense, the preced-
ing discussion gives a pretty adequate description of the L2-pure-injective
groups. Of course, the Ulm factor G/G1 can be nearly anything, and we do
not have any control over the way the first Ulm subgroup and Ulm factor
fit together to form the overall group; but at least it is clear what we can
know and what we cannot.

We now turn to the main focus of our investigations, the corresponding
collection of L2-pure-projectives. We will use at several points the well-
known (and easily checked) fact that if X is a subgroup of Y such that
Y/X is Σ-cyclic, and Z is any group, then any homomorphism f : X → Z1

extends to a homomorphism Y → Z.

Theorem 2.10 For a group A, the following are equivalent :

(a) A is a L2-pure-projective;
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(b) A is an extension of a Σ-cyclic subgroup by a Σ-cyclic factor. In other
words, A has a Σ-cyclic subgroup Z such that A/Z is Σ-cyclic;

(bf ) A is an extension of a Σ-cyclic subgroup by a Σf -cyclic factor. In
other words, A has a Σ-cyclic subgroup Z such that A/Z is Σf -cyclic;

(c) A can be embedded in a group of the form Y =
⊕

i∈I Bi, where for
each i ∈ I, B1

i is cyclic and Bi/B1
i is Σf -cyclic.

There are enough L2-pure-projectives.

Proof. We will begin by showing that (b), (bf ) and (c) are equivalent.
Suppose first that (c) holds, and that A ⊆ Y is as stated; we will then prove

(bf ). It follows that Z
def= A ∩ Y 1 ⊆ ⊕

i∈I B1
i is Σ-cyclic. In addition, there

is an embedding A/Z → Y/Y 1 ∼= ⊕
i∈I Bi/B1

i , so that A/Z is Σf -cyclic.
Obviously (bf ) implies (b), so assume (b) holds and we verify (c). Let

J and K be disjoint sets such there are decompositions Z =
⊕

j∈J〈xj〉
and A/Z =

⊕
k∈K〈xk〉; let I = J ∪ K. If i ∈ I, construct a group Bi

such that B1
i = 〈xi〉 and Bi/B1

i is Σf -cyclic (such a construction is clearly
possible). Since A/Z is Σf -cyclic, the isomorphism Z → ⊕

j∈J〈xj〉 extends
to a homomorphism f : A → ⊕

j∈J Bj ⊆
⊕

i∈I Bi. If g is the composite
A → A/Z ⊆ ⊕

k∈K Bk ⊆
⊕

i∈I Bi, then it is also easy to verify that f + g :
A → Y =

⊕
i∈I Bi is the required injection.

We now suppose that (b), (bf ) and (c) holds and we prove (a). Suppose
0 → G → X → A → 0 is any L2-pure short exact sequence. By Corollary
2.9 there is a pull-back diagram

0 // G // X //

²²

A //

γ

²²

0

0 // G // L2G⊕D
τ // Q2G⊕ E // 0

Let Y =
⊕

i∈I Bi ⊇ A be as in (c). Since Q2G ⊕ E is divisible, γ extends
to a homomorphism g : Y → Q2G⊕ E. Let g1 be g restricted to Y 1. Note
that Y 1 ∼= ⊕

i∈I B1
i is Σ-cyclic. By Corollary 2.7, 0 → G1 → (L2G)1⊕D →

Q2G⊕E → 0 is pure-exact, and it follow that g1 factors as τ ◦ k1 for some
homomorphism k1 : Y 1 → (L2G)1 ⊕D.

Now, since Y/Y 1 ∼= ⊕
i∈I Bi/B1

i is Σ-cyclic, it follows that k1 extends
to a homomorphism k : Y → L2G⊕D.
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Consider g − τ ◦ k : Y → Q2G ⊕ E. For every x ∈ Y 1, (g − τ ◦ k)(x)
= g1(x) − τ(k1(x)) = 0. Therefore, g − τ ◦ k induces a homomorphism
j : Y/Y 1 → Q2G ⊕ E. Since 0 → G → L2G ⊕D → Q2G ⊕ E → 0 is pure
and Y/Y 1 is Σf -cyclic, j = τ ◦ h′ for some h′ : Y/Y 1 → L2G⊕D. Let h be
the composition of h′ with the canonical homomorphism Y → Y/Y 1.

The preceding paragraph implies that g−τ ◦k = τ ◦h, so g = τ ◦(h+k).
This further implies that γ = g|A factors through τ . Hence 0 → G → X →
A → 0 must split, so that A is L2-pure-projective; so (c) implies (a).

We now verify that there are enough L2-pure-projectives. Let A be
any abelian group. Using a standard construction (see, for example, [6]),
we can find a group M such that M2 = A. Let λ1 : U → M1 → 0 be a
pure-projective resolution of M1; so U is Σ-cyclic. It follows that U can be
embedded in a group Y0 of the form described in (c) such that U = Y 1

0 , and
that λ1 can be extended to a homomorphism λ : Y0 → M .

Let Y1 be a Σ-cyclic group such that there is a pure-projective resolution
µ : Y1 → M → 0 of M . Next, let Y = Y0 ⊕ Y1 and σ : Y → M be
σ((y0, y1)) = λ(y0) + µ(y1).

Clearly, σ is surjective and we let G be its kernel. Since for all n ∈ N
we have M [n] = µ(Y1[n]) ⊆ σ(Y [n]), it follows that G is pure in Y . In
particular, G1 = G ∩ Y 1, from which it follows that there is a left exact
sequence

0 → G1 → Y 1 → M1.

However, since Y 1 = Y 1
0 = U , this is, in fact, our pure-projective resolution

of M1; so the sequence is also right exact, and even pure-exact. This shows
that for all n ∈ N there is another short exact sequence

0 → nG1 → nY 1 → nM1 → 0.

What we have just shown is that the Z2-adic topology on G is induced
by the Z2-adic topology on Y . Let R = σ−1(A) = σ−1(M2) ⊆ Y ; so R is
the closure of G ⊆ Y in the Z2-adic topology on Y . In addition, by the
implication (c) ⇒ (a), which we have already established, we can conclude
that R ⊆ Y is L2-pure-projective.

Denote the inclusion G ⊆ R by ν. Since, in the Z2-topology, G is
dense in R and L2G is complete, the inclusion φG : G ⊆ L2G extends to
a homomorphism f : R → L2G with φG = f ◦ ν; in fact this extension is
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unique if we demand that it be continuous with respect to the topology on R

induced by the Z2-topology on Y . By Proposition 2.4, we can conclude that
0 → G → R → A → 0 is L2-pure; and in fact, it is an L2-pure-projective
resolution of A. Therefore, there are enough L2-projectives.

Finally, we use the last construction to show that (a) implies (c). If A

is L2-pure-projective, it follows that 0 → G → R → A → 0 splits, so that
A ⊆ A⊕G ∼= R ⊆ Y . This completes the proof. ¤

The following two statements are elementary consequences of
Theorem 2.10.

Corollary 2.11 If A is L2-pure-projective, then any subgroup of A is also
L2-pure-projective.

Corollary 2.12 If A is L2-pure-projective, then its Ulm subgroup A1 is
Σ-cyclic.

The next result, which complements Proposition 2.5, is a general cat-
egorical consequence of the fact that L2-purity has enough injectives and
projectives:

Proposition 2.13 Suppose A is a subgroup of B and B is a subgroup of
C.

(a) If A is L2-pure in B and B is L2-pure in C, then A is L2-pure in C.
(b) If A is L2-pure in C and B/A is L2-pure in C/A, then B is L2-pure in

C.

3. Torsion-Free Groups and Localizations

If A is any group and p is a prime, let Ap = A⊗Zp be the localization of
A at p (so Zp consists of the rational numbers with denominators relatively
prime to p). It is readily verified that if G is a Zp-module and we use
{pω+nG}n<ω as a neighborhood base of 0, then we can define the concept
of L2

p-purity, and the obvious translations of the results of the last section
continue to hold.

Proposition 3.1 If A is L2-pure-projective, then for every prime p, the
localization Ap is L2

p-projective in the category of Zp-modules.

Proof. Suppose Z ⊆ A is as in Theorem 2.10(b). Then, since Zp is a flat
Z-module, we have a short exact sequence
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0 → Zp → Ap → (A/Z)p → 0.

Since, as Zp-modules, Zp and (A/Z)p are Σ-cyclic, we can conclude that Ap

is L2
p-projective, as required. ¤

Proposition 3.2 A torsion-free Zp-module Ap is L2
p-projective iff it is

free.

Proof. Certainly, if Ap is free, then it is L2
p-projective. On the other hand,

suppose Ap is L2
p-projective. We can therefore embed Ap in a module Yp =⊕

i∈I Bi as in Theorem 2.10(c). Fix an i ∈ I; since Bi is reduced and has
torsion-free rank at most 1, every torsion-free Zp-submodule of Bi is free (in
fact, cyclic). It follows from a result of Griffith (see [2, Lemma 101.4]) that
every torsion-free Zp-submodule of Y , such as Ap, is also free, completing
the proof. ¤

Suppose A is a torsion-free group. We say A is locally cyclic if for every
prime p, the localization Ap is a cyclic Zp-module. This is equivalent to
requiring that A has rank one and that the type of A is finite at all primes
(i.e., A is not p-divisible for any prime p). Similarly, we will say A is locally
free if for every prime p, the localization Ap is a free Zp-module. (This
terminology is natural, but for some authors, to say A is locally free means
that every finite rank subgroup of A is free, which is a significantly different
concept). Recall that a subgroup Z of a torsion-free group A is said to be
full-rank if A/Z is torsion.

Theorem 3.3 If A is a torsion-free group, then in the following (a) implies
(b) implies (c) implies (d).

(a) A has a full-rank free subgroup Z such that for every prime p, the p-
torsion component of A/Z is finite;

(b) there is a locally cyclic group P ⊆ Q, and an embedding of A into a
direct sum of copies of P.

(c) A is L2-pure-projective;
(d) A is locally free.

If, in addition, A has countable rank, then (d) implies (a), so that all of
these conditions are equivalent.

Proof. Suppose (a) holds, and Z ⊆ A is as stated. We may assume A ⊆
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⊕
i∈I Qei, where Z =

⊕
i∈I Zei. For each prime p, suppose the p-torsion of

A/Z is pkp-bounded. Let P ⊆ Q be generated by 1/pkp over all primes p. It
easily follows, then, that A ⊆ ⊕

i∈I Pei, as stated.
Suppose now that (b) holds. Since the collection of L2-pure-projectives

is closed under direct sums and subgroups, it suffices to show that P is L2-
pure-projective. However, if Z is any non-zero cyclic subgroup of P, then
for all primes p, the p component of P/Z will be cyclic, so that P/Z will be
Σf -cyclic. Therefore, P is L2-pure-projective, and (c) follows.

Suppose now that (c) holds. If p is an arbitrary prime, then by Proposi-
tion 3.1, Ap is a torsion-free L2

p-pure-projective. Therefore, by Proposition
3.2, (d) must hold.

Finally, suppose A has countable torsion-free rank and (d) holds; i.e.,
Ap is a free Zp-module for every prime p. We need to verify (a).

Again, let {ek : k < ω} ⊆ A be chosen so that they are a basis for
the rational vector space Q ⊗ A = QA. Next, let M0 = {0}, and for every
n ∈ N, let Mn be the pure hull of 〈ek : k < n〉 in A; in other words, Mn is
the intersection of A with the span of {ek : k < n} in QA. In addition, let
{pk : k < ω} be an enumeration of all the prime numbers.

We will find a second Q-basis {bk : k < ω} ⊆ A of QA such that for
every n ∈ N we have

(1) Q〈bk : k < n〉 = Q〈ek : k < n〉;
(2) For every k ≤ n there is a splitting of Zpk

-modules Mn+1
pk

= Mn
pk
⊕Zpk

bn.

Proceeding inductively, suppose we have constructed b0, . . . , bn−1. For
each k ≤ n, the pk-localization Mn+1

pk
is a finitely generated free Zpk

-module.
Therefore, Mn+1

pk
/Mn

pk
is isomorphic to a finitely generated Zpk

-submodule
of Q, so that it is a cyclic Zpk

-module. Therefore, Mn
pk

is a summand of
Mn+1

pk
; so there is an element ak ∈ Mn+1 such that Mn+1

pk
= Mn

pk
⊕ Zpk

ak.
Find integers x0, . . . , xn such that x0+· · ·+xn = 1 and for each i, j ≤ n,

pi|xj iff i 6= j. We set bn = x0a
0 + · · · + xnan. For each k ≤ n, in

the composite homomorphism π : Mn+1
pk → Mn+1

pk
/Mn

pk
∼= Zpk

, π(ak) is a
unit in Zpk

. Since pk - xk, it follows that π(xkak) is also a unit in Zpk
.

Now, since bn − xkak ∈ pkMn+1
pk

, we can conclude that π(bn) ≡ π(xkak)
(mod p), so that π(bn) is also a unit in Zpk

. This clearly implies (2). Since
〈b0, . . . , bn〉 ⊆ Q〈ek : k < n + 1〉 has rank n + 1, (1) must hold as well.

Let Z = 〈bk : k < ω〉, which is clearly Σ-cyclic. Since A/Z and (A/Z)pk

have the same pk-torsion, the next statement completes the proof of our
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implication.

Claim A: For every prime pk, (A/Z)pk
is finite.

In fact, by condition (2) of our construction we have

Apk
∼= Mk

pk
⊕

( ⊕

k≤n

Zpk
bn

)
.

So we can conclude that

(A/Z)pk
∼= Apk

/Zpk
∼= Mk

pk

/ ⊕

n<k

Zpk
bn.

Since Mk
pk

is a finitely generated free Zpk
-module with

⊕
n<k Zpk

bn as a free
full-rank Zpk

-submodule, the claim follows, and hence the proof is complete.
¤

We now verify that the implications in Theorem 3.3 cannot be reversed
for torsion-free groups of uncountable rank.

Example 3.4 There is a torsion-free group of uncountable rank that sat-
isfies Theorem 3.3 (b), but not (a).

Proof. Let P be any torsion-free group that is locally cyclic, but not cyclic,
and let I be any uncountable index set. It follows that A =

⊕
i∈I Pei

trivially satisfies (b). If Z ⊆ A were as in (a), then since A/Z is countable, by
a standard “back-and-forth” argument we could find a countable subgroup
X ⊆ A such that Z +X = A, X =

⊕
i∈C Pei where C ⊆ I is countable, and

X ∩ Z is also summand of Z. It would then follow that
⊕

i∈I−C

Pei ∼= A/X = (X + Z)/X ∼= Z/(X ∩ Z).

But since the right group is free and the left is not, we can conclude that
(a) does not hold. ¤

Example 3.5 There is a torsion-free group of uncountable rank that sat-
isfies Theorem 3.3 (c), but not (b).

Proof. Let {Pj : j ∈ J} be a set of torsion-free locally cyclic groups such
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that every such locally cyclic group is isomorphic to something on the list.
Next, let A =

⊕
j∈J Pjb

j . Since each Pj is L2-pure-projective, so is A.
Suppose A also satisfies (b) and that A ⊆ ⊕

i∈I Pei. If j ∈ J is chosen so
that the type of Pj is strictly greater than the type of P, then it follows that
Pjb

j ⊆ A cannot, in fact, be embedded in
⊕

i∈I Pei. This contradiction
shows that (b) cannot hold. ¤

Finally, to verify that (d) does not necessarily imply (c), we actually
employ a bit of set theory. It is plausible that this can be avoided, but even
so, the example certainly shows that it is pointless to attempt to prove that
(d) implies (c) for groups of uncountable rank.

Theorem 3.6 (V = L) Assuming the axiom of constructibility, there is a
torsion-free group that is locally free, but not L2-pure-projective.

Proof. Let A be any set of cardinality ℵ1 and {M i}i<ω1 be a filtration of A

such that for all i, M i+1 −M i is a countably infinite set. We will construct
the group A by imposing on each M i a group structure. In fact, if {e`}`<ω1

is the standard basis for V =
⊕

`<ω1
Qe`, then in our construction we will

identify A with a subgroup of V so that for all i < ω1 we have

M i = A ∩
( ⊕

`<i

Qe`

)
def= A ∩ V i.

This will follow if in our construction we make sure that for every i ≤ j < ω1

we have

M i = M j ∩ V i. (i, j)

To begin, let P be the subgroup of Q generated by 1/p for all primes p.
We are going to start with M0 = {0} and M1 = Pe0.

So suppose we have constructed M i for all i < j < ω1 and we wish to
construct M j . Certainly, if j is a limit, then the smoothness of filtrations
determines our group structure on M j . And since the equations (i, k) hold
whenever i ≤ k < j, it easily follows that each equation (i, j) also holds for
i ≤ j.

It remains to define our operation on M j ⊆ V j when j = k + 1 is
isolated. We will do so in such a way that if we restrict the projection
V j → Qek to Mj , the result is a short exact sequence
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0 → Mk → Mk+1 → Pek → 0. (k)

Before continuing, we note that whenever i ≤ j, equation (i, j) will
continue to hold: Clearly if i = j, then equation (i, j) trivially follows, and
if i < j, then i ≤ k. So, since we are assuming (i, k) holds and sequence (k)
is exact, we can conclude that

M i = Mk ∩ V i = M j ∩ V k ∩ V i = M j ∩ V i.

We now show how to define M j = Mk+1 by splitting the argument into
two cases. This is where we will employ V=L. By the diamond principle
(♦), which holds in the constructible universe, there is a collection of subsets
Li ⊆ M i for i < ω1, such that if Z ⊆ A, then there is a stationary set of
ordinals i such that Z ∩M i = Li.

Case 1: Lk is a free, full-rank subgroup of Mk such that Mk/Lk is Σf -
cyclic.
Case 2: Case 1 does not hold.

For simplicity we start with Case 2: Here we just let M j = Mk⊕Pek ⊆
V j . This clearly means that sequence (k) is (splitting) exact.

So, suppose we are in Case 1. Observe first that M1 = Pe0 ∼= P is
contained in Mk. Since M1 ∩ Lk ⊆ Lk will be cyclic and M1/(M1 ∩ Lk)
embeds in Mk/Lk, it follows that for an infinite number of primes p, the
p-torsion component of Mk/Lk is non-zero (and Σf -cyclic); let Dk be the
collection of primes where this holds.

For each prime p define an element gp ∈ V j as follows: If p ∈ Dk, let
wp ∈ Mk be chosen so that wp +Lk is an element of Mk/Lk whose p-height
is 0 (i.e., it is not divisible by p in this quotient group); and if p 6∈ Dk, let
wp = 0. We now let

gp = (1/p)(wp + ek) ∈ V k ⊕Qek = V j .

We now identify M j with

Mk + 〈gp : p is a prime〉;

so ek = pgp−wp ∈ M j . Considering the sequence (k), under the projection
V j → Qek we have gp 7→ (1/p)ek, so that the image of this map restricted
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to M j is clearly Pek. So we need to show that Mk = M j ∩ V k. Clearly
Mk ⊆ M j ∩ V k. Conversely, let u ∈ M j ∩ V k. Since u ∈ M j , there is a
v ∈ Mk, distinct primes p1, . . . , pn and integers x1, . . . , xn such that

u = v + x1gp1 + · · ·+ xngpn

= v + (x1/p1)wp1 + · · ·+ (xn/pn)wpn
+ (x1/p1 + · · ·+ xn/pn)ek.

Since u ∈ V k, we can conclude that

x1/p1 + · · ·+ xn/pn = 0,

but this readily implies that x1/p1 ∈ Z, . . . , xn/pn ∈ Z. Therefore,

u = v + (x1/p1)wp1 + · · ·+ (xn/pn)wpn
∈ Mk,

as required.
We have A = ∪j<ω1M

j . We next observe that the exact sequences (k)
guarantee that A is locally free: If p is a prime, then for all k < ω1 we will
have a short exact sequence of localizations

0 → Mk
p → Mk+1

p → Pek ⊗ Zp → 0.

But since Pek ⊗ Zp
∼= Zp is a cyclic Zp-module, all of these sequences split,

showing that Ap
∼= ⊕

k<ω1
Zp is free.

To complete the proof, we need to show that A fails to be L2-pure-
projective. Assuming otherwise, by Theorem 2.10(bf ) A has a Σ-cyclic
subgroup Z such that A/Z is Σf -cyclic; so Z is a free, full-rank subgroup
of A. Since {M i}i<ω1 is a filtration of A, there is a closed and unbounded
subset C ⊆ ω1, such that for every k ∈ C, (Mk + Z)/Z is a summand of
A/Z.

By the diamond principle (♦), there is a k ∈ C such that Z ∩Mk = Lk.
Since

Mk/Lk = Mk/(Mk ∩ Z) ∼= (Mk + Z)/Z ⊆ A/Z,

Lk is a free full-rank subgroup of Mk and Mk/Lk is Σf -cyclic.
So j = k + 1 must be in the above Case 1 of the construction of A.

We will obtain a contradiction that proves A is not L2-pure-projective by
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showing that our construction in that Case ensures that (Mk+Z)/Z cannot,
in fact, be a summand of A/Z.

Since A/Z is torsion, mek ∈ Z for some non-zero integer m. Looking
back at the notation of Case 1, since the set of primes Dk is infinite and m

has at most a finite number of prime divisors, there is a p ∈ Dk relatively
prime to m. Consider the element wp + Lk in that argument, which was
assumed to be an element of Mk/Lk of p-height 0. Since m is relatively
prime to p, mwp + Lk ∈ Mk/Lk ∼= (Mk + Z)/Z will also have p-height 0.
However, in A/Z we have

pmgp + Z = pm(1/p)(wp + ek) + Z = mwp + mek + Z = mwp + Z.

This means that, in fact, mwp + Z has a greater p-height in A/Z than in
(Mk +Z)/Z. So (Mk +Z)/Z cannot actually be a summand of A/Z, which
gives our contradiction and completes the proof. ¤

4. Countable Groups of Torsion-Free Rank One

If p is a prime, A is a group and x ∈ A, we will use the notation |x|p for
the p-height of x in A.

Theorem 4.1 Suppose A is a countable group of torsion-free rank one.
Then A is L2-pure-projective iff (a) A2 = {0}, (b) there is a (non-torsion)
element x ∈ A such that |pkx|p ≤ ω + k for all primes p and all k < ω.

Proof. Suppose first that A2 = {0} and we can find such an element x; let
X = 〈x〉. Observe that A/X is torsion, and we begin by showing that it
suffices to assume that A/X is a p-group: If Tp/X is the p-torsion component
of A/X, then there is a decomposition A/X =

⊕
p(Tp/X). Since all heights

computed in Tp are no larger than when computed in A, (a) and (b) also
holds in Tp. Suppose for each prime p we can find a Σf -cyclic subgroup
Yp ⊆ Tp such that X ∩ Yp = {0} and Tp/(X ⊕ Yp) is Σf -cyclic. It easily

follows that there is an (internal) direct sum Z
def= X⊕ (

⊕
p Yp) ⊆ A, so that

Z is Σ-cyclic, and that

A/Z ∼=
⊕

p

{Tp/(X ⊕ Yp)}

is Σf -cyclic. So there is no loss of generality in assuming that A/X is, in
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fact, a p-group for some prime p. This clearly also means that A can have
no q-torsion for any prime q 6= p.

Next, we verify that pω2A = {0}: Suppose a ∈ pω2A. If a has infinite
order, then ma = npkx for some m,n, k with (n, p) = 1. This gives the
following contradiction:

ω2 ≤ |a|p ≤ |ma|p = |npkx|p = |pkx|p ≤ ω + k

Therefore, the order of a must be a power of p. But this would then imply
that a ∈ qω2 for all primes q 6= p; and so a ∈ A2 = {0}. Hence pω2A = {0}.

We now claim that X is a summand of Z
def= X+pωA. First, observe that

X ∩ pωA is either {0} or an infinite cyclic subgroup of pωA; in particular,
X ∩ pωA is nice in pωA (see, for example, [2, Lemma 104.1]). Because
pω(pωA) = pω2A = {0}, we can conclude that

pωA/(X ∩ pωA) ∼= (X + pωA)/X = Z/X (⊆ A/X)

is a countable p-group with no elements of infinite p-height. Therefore, this
quotient is Σf -cyclic, and in particular, a totally projective p-group.

Since we are assuming that |pkx|p ≤ ω + k for all k, we can conclude
the identity map on

pωA ∩X (⊆ pωA) → pωA ∩X (⊆ X)

does not decrease heights (computed in pωA and X, respectively). There-
fore, (as pωA ∩X is nice in pωA and pωA/(pωA ∩X) is totally projective)
this identity map extends to a homomorphism φ : pωA → X (see [2, Corol-
lary 81.4]). Since we can extend φ to a homomorphism Z = X + pωA → X

by letting it be the identity on X, we can conclude that X is actually a
summand of Z. Say Z = X⊕Y ; so Y ∼= Z/X is Σf -cyclic and Z is Σ-cyclic.

We now want to show that A/Z is also Σf -cyclic. Note that it is the
homomorphic image of A/X, so it is a p-group. In addition, A/pωA has no
elements of infinite p-height, and it has Z/pωA = (X + pωA)/pω ∼= X/(X ∩
pωA) as a cyclic, and therefore nice, subgroup. So A/Z ∼= (A/pωA)/(Z/pωA)
will be a countable p-group with no elements of infinite p-height, i.e., A/Z

is Σf -cyclic.
So one direction is complete. We now consider the converse. Note that

(a) certainly holds whenever A is any L2-pure-projective. Regarding (b),
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suppose Z is a Σ-cyclic subgroup of A and A/Z is Σf -cyclic. Let 〈u〉 be an
infinite cyclic summand of Z.

Claim A: The set

P = {p is a prime such that |pku|p > ω + k for some k < ω}

is finite.
Assume otherwise. For every p ∈ P, choose k < ω and wp ∈ pωA such

pk+1wp = pku. Observe that wp+Z will be a p-torsion element of A/Z (since
pk+1(wp + Z) = 0). In addition, it has infinite p-height (since wp ∈ pωA).
Since A/Z is Σf -cyclic, this means that wp + Z = 0, i.e., wp ∈ Z.

We can conclude that W = 〈u,wp : p ∈ P〉 is a subgroup of Z; so in
particular, W is Σ-cyclic. Therefore, if S is the torsion subgroup of W , then
W/S is cyclic. However, it is easily seen that W/S is actually isomorphic
to the subgroup of Q generated by 1/p for all p ∈ P (using the assignment
wp 7→ 1/p). Since the latter group fails to be cyclic (because P is infinite),
we have our contradiction, and Claim A follows.

Claim B: If p ∈ P, then the p-height sequence of u has only a finite
number of gaps.

To see this we first note that the localization Ap must be L2
p-pure-

projective. Since p ∈ P, for some k < ω, pku is an element of the Ulm
subgroup A1

p. And since A1
p is a Σ-cyclic Zp-module, the p-height sequence

of pku ∈ A1
p can only have finitely many gaps, as stated.

So by Claim A we may write P = {p1, . . . , pm}. By Claim B, for each
n ≤ m, there is a jn < ω such that the pn-height sequence of pjn

n u has no
gaps. Let |pjn

n u|pn
= ω + `n (so `n > jn) and let

s = pj1
1 · · · pjm

m and t = p`1
1 · · · p`m

m .

Since for each n ≤ m, |su|pn
= ω + `n, by the Chinese Remainder Theorem

we can find an x ∈ A such that su = tx, where |x|pn
= ω for each n ≤ m.

It follows that for every p ∈ P, the p-height sequence of x is simply
(ω, ω + 1, ω + 2, . . . ); while for every p 6∈ P, the p-height sequences of x and
u agree. In particular, this implies that |pkx|p ≤ ω + k for all primes p and
all k < ω, as required. ¤
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The following example shows that the obvious generalization of Theorem
4.1 to countable groups of higher torsion-free ranks does not, in fact, hold.

Example 4.2 There is a countable group A of torsion-free rank 2 such
that (a) A2 = {0}, (b) for all (non-torsion) elements x ∈ A, all primes p and
all k ∈ ω, we have |pkx|p ≤ ω + k, but A is not L2-pure-projective.

Proof. If q is some fixed prime and U = 〈u1〉 ⊕ 〈u2〉 is any free, rank 2
subgroup of the q-adic integers Jq, then let A be defined by the condition
that A/U is the q-torsion subgroup of Jq/U . It follows that A is q-pure
in Jq, so that A/qA embeds in Jq/qJq

∼= Z/(q). This implies that Aq is
not a free Zq-module. So A is not locally free, which means that it is not
L2-pure-projective.

We claim that pωA = {0} for all primes p. If p = q, then this follow since
qωJq = {0}. Suppose then that p 6= q. If P is the rank one subgroup of Q
generated by 1/qn for all n ∈ N, it readily follows that there is an embedding

A ⊆ Pu1 ⊕ Pu2
def= H. Since pωH = {0}, it follows that pωA = {0}, as

claimed.
In particular, it immediately follows from the last paragraph that con-

ditions (a) and (b) are fulfilled, completing the construction. ¤

By Theorem 3.3, the converse of Proposition 3.1 holds for countable
torsion-free groups. On the other hand, the next example shows that it
does not hold for countable mixed groups.

Example 4.3 There is a countable group A such that for any prime p,
the localization Ap is L2

p-projective in the category of local Zp-modules, but
A is not L2-pure-projective.

Proof. Let P be the subgroup of the rational numbers generated by {1/p : p

is a prime}. Construct a group A such that A1 = P and A/P is Σf -cyclic.
Since P is locally cyclic, for any prime p, Pp and (A/P)p are Σ-cyclic Zp-
modules; so Ap is L2

p-projective. On the other hand, since A1 = P is not
Σ-cyclic, A fails to be L2-pure-projective. ¤

We next show that the analogue of Proposition 3.1 for L2-pure-injective
groups does not hold.

Example 4.4 There is an L2-pure-injective group G and a prime p such
that the localization Gp is not L2

p-pure-injective.
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Proof. Let G be any group such that pωG ∼= Z and G/pωG is a direct
sum of cyclic p-groups. Let T be the p-torsion subgroup of G. Observe
that G/T is isomorphic to the subgroup of Q generated by 1/pn for all
n ∈ N. Therefore, if q 6= p is another prime, then qω(G/T ) = {0}; so qωG

agrees with the p-torsion subgroup of G. This implies that G1 = 0; and in
particular, G is discrete, and hence complete, in the Z2-adic topology.

On the other hand, pωGp
∼= Zp. Therefore, Gp is not complete in the

Z2
p-adic topology, so that it is not L2

p-pure-injective. ¤

We finish by showing that the converse of the last example fails as well.

Example 4.5 There is a group G that is not L2-pure-injective, but whose
localization Gp is L2

p-pure-injective for every prime p.

Proof. For every prime p, let Hp be any p-group such that pωHp is cyclic
of order p. If G =

⊕
p Hp, then for every prime p, Gp

∼= Hp. Since
pωHp is clearly complete in the p-adic topology, Gp will be L2

p-pure-injective.
However, since G1 =

⊕
p Z/(p) is not complete in the Z-adic topology, G is

not L2-pure-injective. ¤
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