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On the sizes of the Jordan blocks of monodromies at infinity
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Abstract. We obtain general upper bounds of the sizes and the numbers of Jordan

blocks for the eigenvalues λ 6= 1 in the monodromies at infinity of polynomial maps.
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1. Introduction

In this paper we study the upper bounds of the sizes and the num-
bers of Jordan blocks in the monodromies at infinity of general polynomial
maps. First we recall the definition of monodromies at infinity. After two
fundamental papers [1] and [17], many authors studied the global behavior
of polynomial maps f : Cn −→ C. For a polynomial map f : Cn −→ C, it is
well-known that there exists a finite subset B ⊂ C such that the restriction

Cn \ f−1(B) −→ C \B (1.1)

of f is a locally trivial fibration. We denote by Bf the smallest subset
B ⊂ C satisfying this condition. Let CR = {x ∈ C | |x| = R} (R À 0) be
a sufficiently large circle in C such that Bf ⊂ {x ∈ C | |x| < R}. Then
by restricting the locally trivial fibration Cn \ f−1(Bf ) −→ C \ Bf to CR

we obtain a geometric monodromy automorphism Φ∞f : f−1(R) ∼−→ f−1(R)
and the linear maps

Φ∞j : Hj(f−1(R);C) ∼−→ Hj(f−1(R);C) (j = 0, 1, . . .) (1.2)

associated to it, where the orientation of CR is taken to be counter-clockwise
as usual. We call Φ∞j the (cohomological) monodromies at infinity of f . Var-
ious formulas for their eigenvalues (i.e. the semisimple parts) were obtained
by many authors. In particular, for their expressions in terms of the Newton
polyhedra at infinity of f , see Libgober-Sperber [10] and [11] etc. Also, some
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important results on the nilpotent parts of Φ∞j were obtained by Garćıa-
López-Némethi [6] and Dimca-Saito [3] etc. For example, Dimca-Saito [3]
obtained an upper bound of the sizes of Jordan blocks for the eigenvalue 1 in
Φ∞j . Recently in [12] we obtained very explicit formulas which express the
Jordan normal forms of Φ∞j in terms of the Newton polyhedra at infinity of
f (see [13] and [5] for the further developments). However they are applica-
ble only to convenient polynomials f which are non-degenerate at infinity.
By a result of Broughton [1], such polynomials are tame at infinity in the
sense of Kushnirenko [9]. In this paper, without assuming that f is tame at
infinity, we obtain a general upper bound of the sizes of Jordan blocks for
each eigenvalue λ 6= 1 in Φ∞j , which is similar to the one for the eigenvalue
1 in Dimca-Saito [3]. Moreover we also give an upper bound of the numbers
of such Jordan blocks with the maximal possible size j + 1 in Φ∞j . In the
course of our proof, the methods in their another paper [4] will be effectively
used.

2. Monodromies at infinity

In this section, we recall some basic definitions on monodromies at
infinity. Let f(x) ∈ C[x1, x2, . . . , xn] be a polynomial on Cn. Then
as we explained in Introduction, there exist a locally trivial fibration
Cn \ f−1(Bf ) −→ C \Bf and the linear maps

Φ∞j : Hj(f−1(R);C) ∼−→ Hj(f−1(R);C) (j = 0, 1, . . .) (2.1)

(R À 0) associated to it. To study the monodromies at infinity Φ∞j , we
often impose the following natural condition.

Definition 2.1 ([9]) Let ∂f : Cn −→ Cn be the map defined by ∂f(x) =
(∂1f(x), . . . , ∂nf(x)). Then we say that f is tame at infinity if the restriction
(∂f)−1(B(0; ε)) −→ B(0; ε) of ∂f to a sufficiently small ball B(0; ε) centered
at the origin 0 ∈ Cn is proper.

The following result is fundamental in the study of monodromies at
infinity.

Theorem 2.2 (Broughton [1] and Siersma-Tibăr [17]) Assume that f is
tame at infinity. Then the generic fiber f−1(c) (c ∈ C\Bf ) has the homotopy
type of the bouquet of (n− 1)-spheres. In particular, we have
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Hj(f−1(c);C) = 0 (j 6= 0, n− 1). (2.2)

By this theorem if f is tame at infinity, Φ∞n−1 is the only non-trivial
monodromy at infinity. Many authors studied tame polynomials. However,
in this paper we do not assume the tameness at infinity of f and study the
general properties of the monodromies at infinity Φ∞j .

The following general result is often called the monodromy theorem.

Theorem 2.3 For λ ∈ C\{1} the sizes of Jordan blocks for the eigenvalue
λ in Φ∞j are ≤ j + 1.

3. Some properties of the nearby cycle functor

The nearby cycle functor introduced by Deligne will play an important
role in this paper. In this paper, we essentially follow the terminology in [2]
and [8]. For example, for an algebraic variety X over C, we denote by Db(X)
the derived category of bounded complexes of sheaves of CX -modules on X,
by Db

c(X) the full subcategory of Db(X) consisting of bounded complexes
of sheaves whose cohomology sheaves are constructible and by Perv(X) the
category of perverse sheaves on X. For the detail, see [2], [7], [8], [15] and
[16].

Definition 3.1 Let X be an algebraic variety over C and f : X −→ C a
non-constant regular function on X. Set X0 := {x ∈ X | f(x) = 0} ⊂ X

and let iX : X0 ↪−→ X, jX : X \X0 ↪−→ X be inclusions. Let p : C̃∗ −→ C∗

be the universal covering of C∗ = C \ {0} (C̃∗ ' C) and consider the fiber

product X̃ \X0 = (X \ X0) ×C∗ C̃∗ for which we have the commutative
diagram

X̃ \X0
//

pX

²²

C̃∗

p

²²
2

X \X0
f // C∗.

(3.1)

Then for G ∈ Db(X) we set

ψf (G) := i−1
X R(jX ◦ pX)∗(jX ◦ pX)−1G ∈ Db(X0) (3.2)
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and call it the nearby cycle of G.
Let us denote by Deck(C̃∗,C∗) ' Z the group of deck transformations

of the covering map p : C̃∗ −→ C∗. The action of a generator 1 ∈ Z of
Deck(C̃∗,C∗) ' Z on X̃ \X0 induces an automorphism Φ(G) of ψf (G)

Φ(G) : ψf (G) ∼−→ ψf (G). (3.3)

We call it the monodromy automorphism of ψf (G).

Since the nearby cycle functor ψf preserves the constructibility, we ob-
tain the functor

ψf : Db
c(X) −→ Db

c(X0). (3.4)

Moreover, since ψf [−1] preserves the perversity, we obtain the functor

ψf [−1] : Perv(X) −→ Perv(X0). (3.5)

The nearby cycle functor ψf generalizes the classical notion of Milnor
fibers. Suppose that X is a subvariety of Cm and f : X −→ C is a non-
constant regular function. Then for x ∈ X0 we can define the local Milnor
fiber Fx of f at x. We have the following fundamental result (for example
see [2, Proposition 4.2.2]).

Theorem 3.2 For any G ∈ Db
c(X), x ∈ X0 and j ∈ Z, there exists a

natural isomorphism

Hj(Fx;G) ' Hj(ψf (G))x. (3.6)

Let us recall briefly some results in [4, Section 1.4]. Let X be an
n-dimensional smooth algebraic variety and f : X −→ C a non-constant
regular function on X. Note that CX [n] is a perverse sheaf on X and
the mixed Hodge module corresponding to CX [n] is pure of weight n. Set
G := CX [n − 1] and F := ψf (G) ∈ Perv(X0). The monodromy automor-
phism Φ := Φ(G) induces the following canonical decomposition

F =
⊕

λ∈C
Fλ, (3.7)
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where we set

Fλ := Ker
[
(λ · id−Φ)N : F −→ F] ∈ Perv(X0) (3.8)

for N À 0. Note that for x ∈ X0 the stalk Hj−n+1(Fλ)x is isomorphic to the
generalized λ-eigenspace of the classical Milnor monodromy automorphism
Hj(Fx;C) ∼−→ Hj(Fx;C) by Theorem 3.2. Let Φ|Fλ

= (λ · id)× Φu be the
Jordan decomposition of Φ|Fλ

: Fλ −→ Fλ (Φu is the unipotent part) and
set

Nλ :=
1

2π
√−1

log Φu =
1

2π
√−1

N∑

i=1

(−1)i+1

i
(Φu − id)i (3.9)

for N À 0. Then Nλ is a nilpotent endomorphism of Fλ. Considering
the mixed Hodge module associated with the perverse sheaf Fλ ⊕ Fλ, the
monodromy filtration induced by Nλ gives the weight filtration W of Fλ.
Recall that Nλ is strict with respect to the filtration W for the shift −2
(see e.g. [3, Section 1.4] etc. for the details). Since the mixed Hodge
module corresponding to CX [n] is pure of weight n, we have the following
isomorphism

N i
λ : GrW

n−1+i(Fλ) ∼−→ GrW
n−1−i(Fλ) (3.10)

for any i ≥ 0 ([15, Section 5]). Let us define the primitive part
P GrW

n−1+i(Fλ) by

P GrW
n−1+i(Fλ) :=

{
Ker[N i+1

λ : GrW
n−1+i(Fλ) −→ GrW

n−3−i(Fλ)] (i ≥ 0),

0 (i < 0).

(3.11)

Then by (3.10) for each k we have the primitive decomposition of GrW
k (Fλ):

GrW
k (Fλ) =

⊕

i≥0

N i
λ

(
P GrW

k+2i(Fλ)
)
. (3.12)

In this paper, we will use the following geometric description of the
primitive part P GrW

n−1+i(Fλ) in [16, 3.3]. From now on, let us assume
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that X0 = f−1(0) is a strictly normal crossing divisor in X. Namely, we
assume that X0 is a normal crossing divisor whose irreducible components
D1, . . . , Dm are smooth. For 1 ≤ i ≤ m, let ai > 0 be the order of the zeros
of f along Di. For λ ∈ C, we set Rλ := {1 ≤ i ≤ m | λai = 1} ⊂ {1, . . . , m}.
Moreover, for a non-empty subset I ⊂ Rλ we set

DI :=
⋂

i∈I

Di, UI := DI \
( ⋃

i/∈Rλ

Di

)
. (3.13)

For a non-empty subset I ⊂ Rλ, let Lλ,I be a local system of rank 1 on
UI whose monodromy around the divisor Di for i /∈ Rλ is defined by the
multiplication by λ−ai(6= 1). Then we have the following decomposition of
the primitive part P GrW

n−1+k(Fλ)

P GrW
n−1+k(Fλ) '

⊕

I⊂Rλ
]I=k+1

(jI)!Lλ,I [n− 1− k], (3.14)

where jI : UI ↪−→ X0 is the natural inclusion. Note that we have an isomor-
phism

(jI)!Lλ,I [n− 1− k] ' R(jI)∗Lλ,I [n− 1− k]. (3.15)

By (3.14), for k ≥ max{]I | I ⊂ Rλ, DI 6= ∅}, we have GrW
n−1+k(Fλ) = 0

and Nk
λ = 0.

4. Main results

In this section, without assuming that f is tame at infinity, we prove
some general results on the sizes and the numbers of the Jordan blocks in
the monodromies at infinity Φ∞j of f . Let X be a smooth compactification
of Cn. Then by eliminating the points of indeterminacy of the meromorphic
extension of f to X we obtain a commutative diagram

Cn � � ι //

f

²²

X̃

g

²²
C � � j // P1

(4.1)
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such that g is a proper holomorphic map and X̃ \Cn, Y := g−1(∞) ⊂ X̃ \Cn

are strict normal crossing divisors in X̃. See e.g. Sabbah [14] and [12, Section
4] etc. Let us define an open subset Ω of X̃ by

Ω = Int(ι(Cn) t Y ) (4.2)

and set U = Ω ∩ Y . Then U (resp. the complement of Ω in X̃) is a normal
crossing divisor in Ω (resp. X̃).

Example 4.1 Let f : C2 −→ C be a polynomial of degree d and X = P2

the complex projective space of dimension 2. Denote by l∞ the line at
infinity P2\C2 ' P1 in X = P2. Assume that for any point p ∈ f−1(0)∩l∞ ⊂
l∞ there exist an integer k ≥ 1 and a (holomorphic) local coordinate system
(x, y) of X = P2 on a neighborhood of p such that p = (0, 0), l∞ = {x = 0}
and

f(x, y) =
yk − x

xd
. (4.3)

Namely we assume that Condition (∗) in [6] is satisfied. Note that p ∈
f−1(0) ∩ l∞ is a point of indeterminacy of the meromorphic extension of f

to X = P2. If k = 1, the complex curve f−1(0) = {x = y} intersects l∞
transversally and following the procedure in [11, Section 3] and [12] we can
construct a tower of blow-ups πp : X̃p −→ X of X over the point p as in the
figure below:

Figure 1.

Here for 1 ≤ i ≤ d the order of the pole of (the meromorphic extension of) f

along Ei ' P1 is d− i. Note that the indeterminacy of f is now eliminated
on π−1

p (p) ⊂ X̃p. If k ≥ 2, the complex curve f−1(0) = {x = yk} does
not intersect l∞ transversally at p but we can construct a tower of blow-ups
πp : X̂p −→ X of X over the point p as in the figure below:
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Figure 2.

Here for 1 ≤ i ≤ k the order of the pole of (the meromorphic extension of)
f along Ei ' P1 is i(d − 1) and the complex curve f−1(0) ⊂ X̂p intersects
Ek \ (l∞ ∪ Ek−1) transversally at q ∈ Ek. In order to eliminate the point
q of indeterminacy of f , following the procedure in [11, Section 3] and [12]
we next construct a tower of blow-ups π′q : X̃p −→ X̂p of X̂p over the point
q ∈ Ek ⊂ X̂p as in the figure below:

Figure 3.

Here for 1 ≤ i ≤ k(d − 1) the order of the pole of f along E′
i ' P1 is

k(d− 1)− i. Repeating this construction for all p ∈ f−1(0) ∩ l∞, we finally
obtain a blow-up π : X̃ −→ X of X such that the meromorphic extension g

of f to X̃ has no point of indeterminacy. We thus obtain the commutative
diagram (4.1) in this case.

Example 4.2 Let f : C2 −→ C be a polynomial and Γ∞(f) ⊂ R2
+ the

convex hull of {0} ∪ supp f in R2
+. We call Γ∞(f) the Newton polyhedron

at infinity of f . Assume that dim Γ∞(f) = 2. Note that the assumption
in Example 4.1 (i.e. Condition (∗) in [6]) is not satisfied if Γ∞(f) is not
the triangle with vertices 0 = (0, 0), (d, 0), (0, d) ∈ R2 for d = deg f . Let
Γ1, . . . ,Γr ≺ Γ∞(f) be the one-dimensional faces of Γ∞(f) such that 0 /∈ Γi.
For 1 ≤ i ≤ r denote by di ∈ Z>0 the lattice distance of the affine span
Aff(Γi) ' R of Γi from the origin 0 ∈ R2 and let Hi ' R ⊂ R2 be the
line in R2 parallel to Aff(Γi) ' R whose lattice distance from the origin
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0 ∈ R2 is di − 1 satisfying the condition Hi ∩ Γ∞(f) 6= ∅. Let Σ0 be
the dual fan of Γ∞(f) in R2 and Σ its smooth subdivision containing the
first quadrant R2

+ of R2. Then the toric variety XΣ associated to Σ is
a smooth compactification of C2. For 1 ≤ i ≤ r let ρi ∈ Σ0 be the one-
dimensional cone in Σ0 which corresponds to the face Γi ≺ Γ∞(f) and denote
by li ' P1 ⊂ XΣ the toric divisor in XΣ associated to it. In this situation we
can easily see that the order of the pole of the meromorphic extension of f

to XΣ along li is di. Moreover the set of the points of indeterminacy of f is⋃r
i=1(f−1(0) ∩ li) ⊂ XΣ. For 1 ≤ i ≤ r set f−1(0) ∩ li = {pi1, pi2, . . . , pini

}.
Assume that for any 1 ≤ i ≤ r and 1 ≤ j ≤ ni there exist an integer kij ≥ 1
and a (holomorphic) local coordinate system (x, y) of XΣ on a neighborhood
of pij such that pij = (0, 0), li = {x = 0} and

f(x, y) =
ykij − x

xdi
. (4.4)

Note that this condition is generically satisfied if supp f ∩ Hi 6= ∅ for any
1 ≤ i ≤ r. Then by constructing towers of blow-ups over the points pij

(1 ≤ i ≤ r, 1 ≤ j ≤ ni) as in Example 4.1 we obtain a blow-up π : X̃Σ −→
XΣ of XΣ such that the meromorphic extension g of f to X̃Σ has no point
of indeterminacy. Note that in this example we do not assume that f is
non-degenerate at infinity (See [12] for the non-degenerate cases).

In the above situation, the main result of Dimca-Saito [3] can be stated
as follows.

Theorem 4.3 ([3, Theorem 0.1]) Let F1, F2, . . . , Fl be the irreducible com-
ponents of X̃ \ Cn contained in X̃ \ Ω. Assume that for generic complex
numbers c ∈ C the closures f−1(c) of f−1(c) in X̃ are smooth and intersect⋂

i∈I Fi for any I ⊂ {1, 2, . . . , l} transversally. By taking such a complex
number c ∈ C we set

K = max
p∈( eX\Ω)∩f−1(c)

(]{Fi | p ∈ Fi}). (4.5)

Then the size of the Jordan blocks for the eigenvalue 1 of the monodromies
at infinity Φ∞j : Hj(f−1(R);C) ∼−→ Hj(f−1(R);C) (R À 0, j = 0, 1, . . .) is
bounded by K.
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By using Saito’s mixed Hodge modules in a different way, we can prove
a similar result also for the eigenvalues λ ∈ C \ {1} of Φ∞j as follows. Recall
that the size of the Jordan blocks for such eigenvalues in Φ∞j is bounded
by j + 1 by the monodromy theorem. Let E1, E2, . . . , Ek be the irreducible
components of the normal crossing divisor U = Ω ∩ Y in Ω ⊂ X̃ and for
1 ≤ i ≤ k let bi > 0 be the order of the poles of f along Ei. For a subset
I ⊂ {1, . . . , k} we set EI =

⋂
i∈I Ei. For simplicity, assume that EI is

connected for any I ⊂ {1, . . . , k}. For λ ∈ C we set

Rλ = {1 ≤ i ≤ k | λbi = 1} ⊂ {1, . . . , k}. (4.6)

Theorem 4.4 Assume that λ ∈ C \ {1}.
( i ) We set

Kλ = max
p∈U

(
]{Ei | p ∈ Ei and λbi = 1}). (4.7)

Then for any 0 ≤ j ≤ n − 1 the size of the Jordan blocks for the
eigenvalue λ in Φ∞j is bounded by Kλ.

(ii) For 0 ≤ j ≤ n− 1, we set

S(λ)j = {I ⊂ Rλ | ]I = j + 1, EI 6= ∅
and EI ∩ Ei = ∅ for any i /∈ Rλ}. (4.8)

Then the number of the Jordan blocks for the eigenvalue λ with the
maximal possible size j + 1 in Φ∞j is bounded by ]S(λ)j.

Corollary 4.5 We set

S(λ) = {I ⊂ Rλ | ]I = n and EI 6= ∅}. (4.9)

Then the number of the Jordan blocks for λ ∈ C \ {1} with the maximal
possible size n in Φ∞n−1 is bounded by ]S(λ).

Example 4.6 Let us consider the situation in Example 4.2 and use the
notations there. Assume that Γi ∩ Γi+1 6= ∅ for any 1 ≤ i ≤ r− 1. Then we
have li ∩ li+1 6= ∅ if and only if the two one-dimensional cones ρi and ρi+1

are adjacent in the smooth fan Σ. In this situation, by our construction of
the blow-up π : X̃Σ −→ XΣ in Example 4.2, the integer Kλ in Theorem 4.4
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(i) for λ ∈ C \ {1} is ≤ 1 if the following two conditions are satisfied:

(a) For any kij (1 ≤ i ≤ r, 1 ≤ j ≤ ni) such that kij ≥ 2 we have λdi−1 6= 1
and we do not have λdi = λkij(di−1) = 1.

(b) For any 1 ≤ i ≤ r− 1 such that ρi and ρi+1 are adjacent in Σ we do not
have λdi = λdi+1 = 1.

Proof of Theorem 4.4. Set g̃ = 1/f . Then for R À 0 we can easily prove
the isomorphisms

Hj(f−1(R);C) ' Hj(Y ;ψeg(Rι∗CCn)) ' Hj(U ;ψeg(C eX)). (4.10)

Now let us consider the nearby cycle perverse sheaf F = ψeg(C eX [n − 1]) ∈
Db

c(Y ) on the normal crossing divisor Y and its monodromy automorphism

Φ := Φ(C eX [n− 1]) : F ∼−→ F . (4.11)

Then for R À 0 we have a commutative diagram

Hj(f−1(R);C)
Φ∞j //

o
Hj(f−1(R);C)

o

Hj−n+1(U ;F) Φ // Hj−n+1(U ;F).

(4.12)

Moreover there exists a canonical decomposition

F =
⊕

λ∈C
Fλ, (4.13)

where we set Fλ = Ker[(λ · id−Φ)N : F −→ F ] for N À 0. Therefore,
for the given λ ∈ C \ {1} the generalized eigenspace for the eigenvalue
λ in Φ∞j : Hj(f−1(R);C) ∼−→ Hj(f−1(R);C) (R À 0) is isomorphic to
Hj−n+1(U ;Fλ). Now let Φ|Fλ

= (λ · id)×Φu be the Jordan decomposition
of Φ|Fλ

: Fλ −→ Fλ (Φu is the unipotent part) and set

Nλ =
1

2π
√−1

log Φu =
1

2π
√−1

N∑

i=1

(−1)i+1

i
(Φu − id)i (4.14)
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for N À 0. Then Nλ is a nilpotent endomorphism of the perverse sheaf Fλ

and there exists an automorphism Mλ : Fλ −→ Fλ such that

Φu − id = NλMλ = MλNλ. (4.15)

This implies that if (Nλ)i = 0 for some i ≥ 1 then (λ · id−Φ|Fλ
)i =

λi(id−Φu)i = 0 and the size of the Jordan blocks for the eigenvalue λ in
Φ∞j : Hj(f−1(R);C) ∼−→ Hj(f−1(R);C) is ≤ i. Let W be the weight filtra-
tion of the mixed Hodge module associated with the perverse sheaf Fλ⊕Fλ.
Then the assertion (i) follows from the geometric description of the primitive
decomposition (3.12) of the graded module GrW (Fλ) in Section 3. Finally
let us prove (ii). By the above argument, the number of the Jordan blocks
for the eigenvalue λ with the maximal possible size j + 1 in Φ∞j is equal to

dim
(

Im
[
Hj−n+1(U ;Fλ)

Nj
λ−→ Hj−n+1(U ;Fλ)

])
. (4.16)

Let G be the subobject Im N j
λ of Fλ in the category of perverse sheaves on

Y . Then we have a commutative diagram

Hj−n+1(U ;Fλ)

))SSSSSSSSS

Nj
λ // Hj−n+1(U ;Fλ)

Hj−n+1(U ;G),

55kkkkkkkkk
(4.17)

and the number (4.16) is bounded by dimHj−n+1(U ;G). Let us set G′ = G∩
Wn−j−1Fλ and G′′ = G∩Wn−j−2Fλ. Then by the structure of the primitive
decomposition (3.12) of GrW (Fλ) we have dim supp(G/G′) ≤ n− j − 2 and
dim suppG′′ ≤ n− j − 2. Here we used the strictness of Nλ with respect to
the filtration W for the shift −2. Hence we obtain

Hi(U ;G/G′) = Hi(U ;G′′) = 0 for any i < j − n + 2. (4.18)

Then by the exact sequence of perverse sheaves

0 −→ G′ −→ G −→ G/G′ −→ 0 (4.19)

we obtain an isomorphism
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Hj−n+1(U ;G′) ' Hj−n+1(U ;G). (4.20)

Moreover it follows from the exact sequence of perverse sheaves

0 −→ G′′ −→ G′ −→ G′/G′′ ' GrW
n−j−1 Fλ −→ 0 (4.21)

that we have

dimHj−n+1(U ;G′) ≤ dimHj−n+1(U ; GrW
n−j−1 Fλ). (4.22)

For I ⊂ Rλ such that ]I = j + 1, set UI = EI \
( ⋃

i/∈Rλ
Ei

)
. Then by the

geometric description of the primitive decomposition (3.12) of GrW (Fλ) in
Section 3 we can easily see that

dimHj−n+1(U ; GrW
n−j−1 Fλ) ≤ dim

( ⊕

I⊂Rλ
]I=j+1

Γ (UI ;Lλ,I)
)

, (4.23)

where Lλ,I is a local system of rank one on UI whose monodromy around
the divisor Ei (i /∈ Rλ) is given by the multiplication by λ−bi(6= 1). If
EI intersects Ei for some i 6∈ Rλ we have Γ (UI ;Lλ,I) = 0. Therefore the
assertion (ii) follows. This completes the proof. ¤

Remark 4.7 By Theorem 4.4 (ii) for 0 ≤ j ≤ n − 2 and λ ∈ C \ {1}
there are not so many Jordan blocks for the eigenvalue λ with the maximal
possible size j + 1 in Φ∞j in general. This implies that the generalized λ-
eigenspaces of the monodromies at infinity Φ∞j (0 ≤ j ≤ n − 2) are much
simpler than that of the top one Φ∞n−1. For similar results in the case of
local Milnor monodromies, see Dimca-Saito [4].
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