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K-theory for the group C∗-algebras

of certain solvable discrete groups
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Abstract. We compute the K-theory groups for the group C∗-algebras of certain

solvable discrete groups. The solvable discrete groups considered are the discrete

elementary ax + b group and the generalized discrete elementary ax + b groups and

their proper versions, and also the generalized discrete elementary Mautner groups

and products of the generalized discrete elementary ax + b groups and their proper

versions.

Key words: group C∗-algebra, K-theory, solvable discrete group.

1. Introduction

The K-theory groups for the group C∗-algebra of the discrete Heisenberg
group of rank three are computed in [1] of Anderson and Paschke. Based on
their result, the K-theory groups for the group C∗-algebra of the generalized
discrete Heisenberg group of higher rank are computed in [10].

On the other hand, the structure, i.e., composition series of closed ideals,
of the group C∗-algebras of certain solvable discrete groups is considered in
[11]. The groups contain the discrete (elementary) ax + b group and the
generalized discrete (elementary) ax+ b groups and the generalized discrete
(elementary) Mautner groups defined in [11].

In this paper we compute the K-theory groups for the group C∗-algebras
of certain solvable discrete groups. The solvable discrete groups considered
are the discrete elementary ax+b group and the generalized discrete elemen-
tary ax + b groups and their proper versions defined as their quotients, and
also the generalized discrete elementary Mautner groups and products of
the generalized discrete elementary ax + b groups and their proper versions
defined as their quotients.

For computation on K-theory groups, we use the six-term exact sequence
of the K-theory groups for extensions of C∗-algebras and the Pimsner-
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Voiculescu six-term exact sequence of the K-theory groups for crossed prod-
ucts of C∗-algebras by the group Z of integers, and also the Künneth theorem
on the K-theory groups for tensor products of C∗-algebras (see [2] and also
[13]). In particular, the torsion product in the Künneth theorem is computed
in those cases considered.

The computation process performed and the results obtained in this
paper should be useful for further study in this topic.

Furthermore, as an application, we compute the topological stable rank
and the connected stable rank for C∗-algebras (Rieffel [7]) in the case of the
group C∗-algebras of those proper solvable discrete groups. The case of the
non-proper is considered in [11].

In addition, we consider the case of inductive limits of those groups and
group C∗-algebras.

After Introduction, this paper is organized of the following sections:

2 The discrete elementary ax + b group
3 The generalized discrete elementary ax + b groups
4 The generalized discrete elementary Mautner groups
5 Products of the generalized discrete elementary ax + b groups
6 Their inductive limits

Their proper versions are also considered in the Sections 2 to 5 respec-
tively.

Notation Let C be the C∗-algebra of all complex numbers. We denote
by C(X) the C∗-algebra of all continuous functions on a compact Hausdorff
space X and by C0(X) the C∗-algebra of all continuous functions on a locally
compact Hausdorff space X vanishing at infinity. Denote by C∗(G) the full
group C∗-algebra of a discrete group G. Denote by K0(A) and K1(A) the
K0-group and the K1-group of a C∗-algebra A respectively, both of which
are abelian (see [2] or [13]).

We denote by sr(A) and csr(A) the topological stable rank and the con-
nected stable rank of a unital C∗-algebra A, respectively (see [7] of Rieffel).
If A is a non-unital C∗-algebra, then its topological and connected stable
ranks are defined to be the topological and connected stable ranks of the
unitization A+ of A.
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2. The discrete elementary ax + b group

Recall from [11] that the discrete (elementary) ax + b group is defined
to be the semi-direct product Z oα Z with the action α defined by αt(n) =
(−1)tn for t, n ∈ Z, where α1 = α is the only non-trivial automorphism of
Z. Note that there is a quotient map:

Z oα Z 3 (n, t) 7→
(

eπit n
0 1

)
∈ GL2(Z),

where the quotient group is isomorphic to Z oα Z2 with Z2 = Z/2Z, which
may be better to be called the discrete elementary ax + b group, instead, so
that we call it the proper discrete elementary ax + b group.

Proposition 2.1 Let G = ZoαZ be the discrete elementary ax+b group.
Then

K0(C∗(G)) ∼= Z, but K1(C∗(G)) ∼= Z2 × Z.

Proof. Since G is the semi-direct product ZoαZ we have C∗(G) isomorphic
to the crossed product C∗-algebra C∗(Z) oα Z with the action α (by the
same symbol) corresponding to that of G, which is defined to be the C∗-
algebra generated by the images π(C∗(Z)) and u(Z) under π a representation
(i.e., a ∗-homomorphism) of C∗(Z) and u a unitary representation of Z
both acting on the same Hilbert space associated to the (faithful) covariant
representation π × u acting on the same Hilbert space defined by

π × u(g) =
∑

s∈Z
π(g(s))us

such that usπ(g(s))u∗s = π(αt(g(s))) for g ∈ l1(Z, C∗(Z)) (or cc(Z, C∗(Z)))
the algebra of all summable (or finitely supported) C∗(Z)-valued func-
tions on Z with α-convolution product, (both of) which is dense in the
crossed product (see [6]), where the action α on C∗(Z) by Z is given by
αt(g(s)) = g(s) ◦ α−t the composition. And the crossed product is isomor-
phic to C(T)oα∧ Z by the Fourier transform, where the action α∧ = α∧1 (by
the same symbol) on the one-torus T associated to the action α∧ = α∧1 on
C(T) is the reflection on T given by α∧1 (z) = z̄ the complex conjugate for
z ∈ T.
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Indeed, check that for f ∈ C(T), we have (as in [14])

α∧t f(z) = f(ϕz ◦Ad(t))

for t ∈ Z with Ad(t)(n) = tnt−1 ∈ G, where z ∈ T is identified with the
homomorphism ϕz from Z to T defined by ϕz(n) = zn for n ∈ Z, and we
compute

ϕz ◦Ad(t)(n) = ϕz(αt(n)) = ϕz((−1)tn) = z(−1)tn = ϕz(−1)t (n)

for n ∈ Z, and hence α∧1 f(z) = f(z̄).
Using the Pimsner-Voiculescu six-term exact sequence for crossed prod-

uct C∗-algebras by Z (see [2]), we get the following diagram:

K0(C(T))
(id−α∧)∗ // K0(C(T))

i∗ // K0(C(T)oα∧ Z)

∂

²²
K1(C(T)oα∧ Z)

∂

OO

K1(C(T))
i∗oo K1(C(T))

(id−α∧)∗oo

where id means the identity map on C(T) and i means the inclusion map
from C(T) to C(T) oα∧ Z. We have K0(C(T)) ∼= Z generated by the class
[1] of the identity 1 of C(T) and K1(C(T)) ∼= Z generated by the class [z]
of the unitary z of the coordinate function z 7→ z ∈ T (cf. [13]). Then we
compute

(id− α∧)∗[1] = [id(1)]− [α∧(1)] = [1]− [1] = 0,

(id− α∧)∗[z] = [id(z)][α∧(z)]−1 = [z][z̄]−1 = [z]2.

Hence the map (id − α∧)∗ on K0 is zero but the map (id − α∧)∗ on K1

is injective and surjective onto 2Z in Z. Therefore, the map i∗ on K0 is
injective, and the map ∂ from K0 to K1 is zero because the image of this
∂ is equal to the kernel of (id − α∧)∗ on K1 by exactness of the diagram,
which is zero, so that we obtain K0(C(T)oα∧ Z) ∼= Z. Moreover, we get the
following short exact sequence:

0 → Z/2Z = Z2 → K1(C∗(G)) → Z→ 0,
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and hence K1(C∗(G)) ∼= Z2 × Z. ¤

Remark The group C∗-algebra of the discrete elementary ax+ b group is
the easiest example to have torsion in K-theory groups among the group C∗-
algebras of non-nilpotent, solvable discrete groups. On the other hand, it is
shown in [12] that the group C∗-algebras of nilpotent discrete groups without
torsion have K-theory groups torsion free. This result in the nilpotent case,
in fact, is a motivation to study the case of non-nilpotent, solvable discrete
groups in this paper.

Proposition 2.2 Let G = ZoαZ2 be the proper discrete elementary ax+b

group. Then

K0(C∗(G)) ∼= Z3, but K1(C∗(G)) ∼= Z2.

Also, the group C∗-algebra C∗(G) has the following short exact sequence:

0 → C0(R)⊗M2(C) → C∗(G) → C4 → 0,

where M2(C) is the C∗-algebra of all 2× 2 matrices over C.

Proof. We have C∗(G) ∼= C(T)oα∧ Z2 by the Fourier transform. Since the
points {±1} in T is fixed under the action α∧, we have the following short
exact sequence:

0 → C0(T \ {±1})oα∧ Z2
i // C∗(G)

q // C({±1})oα∧ Z2 → 0,

where i is the inclusion map and q is the quotient map and C({±1}) means
the C∗-algebra of all continuous functions on two points {±1}, which is
isomorphic to C2. Moreover, the quotient C∗-algebra viewed as the crossed
product C2 oα∧ Z2 is isomorphic to the direct sum ⊕2C2 ∼= C4 since the
action α∧ is trivial on C({±1}) and C∗(Z2) ∼= C({0, 1}) ∼= C2 by the Fourier
transform, and the closed ideal splits into the tensor product

C0((0, π))⊗ (C({±i})oα∧ Z2) ∼= C0(R)⊗M2(C),

where this i means
√−1 and the action α∧ of Z2 on the set {±i} is the

shift and C({±i}) means the C∗-algebra of all continuous functions on two
points {±i}, which is isomorphic to C2. Thus the six-term exact sequence
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for the short exact sequence of C∗-algebras (see [2]) becomes the following
diagram:

0
i∗ // K0(C∗(G))

q∗ // Z4

∂

²²
0

∂

OO

K1(C∗(G))
q∗oo Z

i∗oo

where K0(C4) ∼= Z4 and K1(C4) ∼= 0 and Kj(C0(R) ⊗ M2(C)) ∼=
Kj+1(M2(C)) ∼= Kj+1(C) by the Bott periodicity and the stability of K-
theory groups, where j +1 (mod 2). Note that if we denote by u the unitary
implementing the action α∧ of Z2 in the crossed product C(T)oα∧ Z2 such
that ufu∗ = α∧1 (f) for f ∈ C(T), then u2 = 1 and

K1(C∗(G)) 3 [α∧1 (z)] = [uzu∗] = [u][z][u] = [z]

where z ∈ C∗(G) corresponds to the coordinate function z 7→ z ∈ T in
C(T) and thus [z]−1 = [z], i.e., [z]2 = 1 in K1(C∗(G)). It follows from
exactness of the diagram that K1(C∗(G)) ∼= Z2, and thus the map ∂ from
K0 to K1 is surjective onto 2Z in Z. Therefore, the kernel of ∂ from K0

to K1 is isomorphic to Z3 since the group extension by Z always splits, so
that the image q∗ from K0(C∗(G)) is Z3 by exactness of the diagram and
K0(C∗(G)) ∼= Z3. ¤

Remark Note that there is the following short exact sequence:

0 → C0(R)⊗ C∗(Z oα Z2)
i // C∗(Z oα Z)

q // C∗(Z oα Z2) → 0

by viewing the extension as the mapping torus on the quotient (see [2]).
Then the six-term exact sequence of K-theory groups associated to this
extension becomes, by our computation:

Z2
i∗ // Z

q∗ // Z3

∂

²²
Z2

∂

OO

Z2 × Z
q∗oo Z3

i∗oo
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where q∗ on the first line is injective, so that i∗ on the same line is zero, and
thus ∂ from K1 to K0 is an isomorphism, and so that q∗ on the second line
is zero and i∗ on the same line is onto, and that the image under ∂ from K0

to K1, which is isomorphic to Z2 by injectiveness of q∗ on the first line, is
2Z × Z in Z3 which is mapped to zero under i∗ to make perfect sense, i.e.,
no contradiction.

Proposition 2.3 The group C∗-algebra C∗(G) of G the proper discrete
elementary ax+b group ZoαZ2 has topological stable rank one and connected
stable rank two.

Proof. Applying the following topological stable rank formulae:

max{sr(I), sr(A/I)} ≤ sr(A) ≤ max{sr(I), sr(A/I), csr(A/I)}

for a short exact sequence 0 → I → A → A/I → 0 of C∗-algebras (Theorems
4.3, 4.4, and 4.11 of Rieffel [7]), and

sr(A⊗Mm(C)) = d(sr(A)− 1)m−1e+ 1

for a C∗-algebra A where dxe means the least integer ≥ x, to the short exact
sequence of C∗(G) obtained in Proposition 2.2 above, we obtain

max{sr(C0(R)⊗M2(C)), sr(C4)} = 1

≤ sr(C∗(G)) ≤
max{1, 1, csr(C4)} = 1,

where sr(C0(R)) = sr(C0(R)+) = sr(C(T)) = 1 ([7, Proposition 1.7]).
Using the following connected stable rank formulae:

csr(A) ≤ max{csr(I), csr(A/I)}

for the short exact sequence of C∗-algebras (Theorem 3.9 of Sheu [9]), and

csr(A⊗Mm(C)) ≤ d(csr(A)− 1)m−1e+ 1

for a C∗-algebra A ([8, Theorem 4.7]), we obtain
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csr(C∗(G)) ≤ max{csr(C0(R)⊗M2(C)), csr(C4)}
≤ max{d(csr(C0(R))− 1)2−1e+ 1, 1}
= d(2− 1)2−1e+ 1 = 2,

where csr(C0(R)) = csr(C0(R)+) = csr(C(T)) = 2 (see [9, Page 381]). On
the other hand, since K1(C∗(G)) 6= 0 as obtained in Proposition 2.2, we get
csr(C∗(G)) ≥ 2 by [3, Corollary 1.6] of Elhage Hassan. ¤

Remark Similarly, we can show that if G is the discrete elementary ax+b

group Z oα Z, then C∗(G) has topological stable rank two and connected
stable rank two, by applying those formulae to the short exact sequence of
C∗(G) viewed as the mapping torus, as mentioned in [11].

3. The generalized discrete elementary ax + b groups

Recall from [11] that the generalized discrete (elementary) ax+ b group
of rank m+1 is defined to be the semi-direct product ZmoαZ with the action
α defined by αt(n) = (−1)tn = ((−1)tnj) for t ∈ Z and n = (nj) ∈ Zm.
Note that there is a quotient map:

Zm oα Z 3 (n, t) 7→




eπit 0 n1
. . .

...
eπit nm

0 1


 ∈ GLm+1(Z),

where the quotient group is isomorphic to Zm oα Z2, which may be better
to be called the generalized discrete elementary ax + b group, instead, so
that we call it the proper generalized discrete elementary ax + b group.

Remark Recall from [10] (or [1] originally) that the Bott projection P in
M2(C(T2)) is defined as a projection-valued function from T2 to M2(C):

P (w, z) = Ad(U(w, z))
(

1 0
0 0

)

= U(w, z)
(

1 0
0 0

)
U(w, z)∗ ∈ M2(C), (w, z) ∈ T2,

where U(w, z) = Y (t, z)∗ with w = e2πit ∈ T for t ∈ [0, 1] and
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Y (t, z) = exp
(

iπt

2
K(z)

)
exp

(
iπt

2
S

)

K(z) =
(

0 z
z̄ 0

)
, S = K(1).

Moreover, the generalized Bott projection Qk in M2(C(T2k)) is defined in
[10] by a projection-valued function from T2k to M2(C):

Qk(z1, . . . , z2k)

= Ad(U1(z1, z2))Ad(U2(z3, z4)) . . .Ad(Uk(z2k−1, z2k))
(

1 0
0 0

)

where Uj(·, ·) = U(·, ·) for 1 ≤ j ≤ k. Furthermore, the unitary Vk in
M2(C(T2k+1)) obtained from the generalized Bott projection Qk and a uni-
tary generator u of C∗(G) corresponding to a generator of G = Zm oα Z is
defined in [10] by

Vk =
(

1 0
0 1

)
+ (u− 1)⊗Qk ∈ M2(C(T2k+1)).

Theorem 3.1 Let G = Zm oα Z be the generalized discrete elementary
ax + b group. Then

K0(C∗(G)) ∼= Z2m−1
, but K1(C∗(G)) ∼= (Π2m−1

Z2)× Z2m−1
.

Proof. As shown in the proof of Proposition 2.1, we have C∗(G) ∼=
C∗(Zm) oα Z ∼= C(Tm) oα∧ Z by the Fourier transform, where the ac-
tion α∧ = α∧1 on Tm by the same symbol associated to the action α∧ = α∧1
on C(Tm) is the reflection on Tm given by α∧1 (zj) = (z̄j) ∈ Tm. Using the
Pimsner-Voiculescu six-term exact sequence for crossed product C∗-algebras
by Z, we get the following diagram:

K0(C(Tm))
(id−α∧)∗ // K0(C(Tm))

i∗ // K0(C(Tm)oα∧ Z)

∂

²²
K1(C(Tm)oα∧ Z)

∂

OO

K1(C(Tm))
i∗oo K1(C(Tm))

(id−α∧)∗oo
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where id means the identity map on C(Tm) and i means the inclusion map
from C(Tm) to C(Tm)oα∧ Z. We have K0(C(Tm)) ∼= Z2m−1

generated by
the class [1] of the identity 1 of C(T) and the classes of generalized Bott
projections Qk in M2(C(T2k)) combinatoricly in M2(C(Tm)), where each
T2k is identified with a direct factor in Tm coordinate-wise and is taken
combinatoricly in Tm, and K1(C(Tm)) ∼= Z2m−1

generated by the class [zj ]
of the unitary zj of the j-th coordinate function zj 7→ zj ∈ T in C(Tm) and
the unitaries Vk ∈ M2(C(T2k+1)) combinatoricly in M2(C(Tm)) associated
to Qk and zj , where each T2k+1 is identified with a direct factor in Tm

coordinate-wise and is taken combinatoricly in Tm (see [10] or the remark
above and also [13]). Then we compute

(id− α∧)∗[1] = [id(1)]− [α∧(1)] = [1]− [1] = 0,

(id− α∧)∗[Qk] = [Qk]− [α∧(Qk)] = [Qk]− [Q∗k] = 0,

(id− α∧)∗[zj ] = [id(zj)][α∧(zj)]−1 = [zj ][z̄j ]−1 = [zj ]2,

(id− α∧)∗[Vk] = [id(Vk)][α∧(Vk)]−1 = [Vk][V ∗
k ]−1 = [Vk]2

since Qk = Q∗k. Hence the map (id − α∧)∗ on K0 is zero but the map
(id− α∧)∗ on K1 is injective and surjective to the direct product Π2m−1

2Z
in Z2m−1

. Therefore, the map i∗ on K0 is injective, and the map ∂ from K0

to K1 is zero because the image of this ∂ is equal to the kernel of (id−α∧)∗
on K1 by exactness of the diagram, which is zero, so that we obtain

K0(C(Tm)oα∧ Z) ∼= K0(C(Tm)) ∼= Z2m−1
.

Moreover, we get the following short exact sequence:

0 → Z2m−1
/Π2m−1

2Z = Π2m−1
Z2 → K1(C∗(G)) → Z2m−1 → 0,

and hence K1(C∗(G)) ∼= (Π2m−1Z2)× Z2m−1
. ¤

Proposition 3.2 Let G = Zm oα Z2 be the proper generalized discrete
elementary ax + b group. Then the group C∗-algebra C∗(G) has a finite
composition series {Ik}m+1

k=0 of closed ideals with I0 = {0} and Im+1 =
C∗(G) such that the subquotients Ik/Ik−1 for 1 ≤ k ≤ m are isomorphic to
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⊕( m
k−1)2m−1

[C0(Rm−k+1)⊗M2(C)]

and

C∗(G)/Im
∼= ⊕2m

C∗(Z2) ∼= C2m+1
.

Proof. We have C∗(G) ∼= C(Tm) oα∧ Z2 by the Fourier transform. Since
the 2m points Πm{±1} in Tm are fixed under the action α∧, we have the
following short exact sequence:

0 → C0(Tm \Πm{±1})oα∧ Z2
i // C∗(G)

q // C(Πm{±1})oα∧ Z2 → 0,

where i is the inclusion map and q is the quotient map and C(Πm{±1})
means the C∗-algebra of all continuous functions on the 2m points, which
is isomorphic to C2m

. Moreover, the quotient C∗-algebra is isomorphic to
the direct sum ⊕2mC2 ∼= C2m+1

, with C∗(Z2) ∼= C2. And the above closed
ideal, which we now denote by Im, has the following short exact sequence:

0 → Im−1
i // Im

q // C0(tm[(T \ {±1})×Πm−1{±1}])oα∧ Z2 → 0,

since the disjoint union tm[ · · · ] in the quotient is closed in Tm\Πm{±1} and
invariant under α∧, where the components (T \ {±1}) × Πm−1{±1} of the
disjoint union are taken combinatoricly from Tm \Πm{±1} coordinate-wise,
each of which is denoted by the same symbol, and the closed ideal Im−1 has
the spectrum that corresponds to the complement of the spectrum of the
quotient in the spectrum of Im, more precisely, which is the crossed product
by Z2 of the C∗-algebra of all continuous functions on the complement of the
disjoint union in Tm \Πm{±1} vanishing at infinity. Moreover, the quotient
is isomorphic to

⊕m2m−1
[C0(R)⊗ C({±i})oα∧ Z2] ∼= ⊕m2m−1

[C0(R)⊗M2(C)].

Inductively, we can construct a finite composition series of closed ideals
Ik of C∗(G) such that
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Ik/Ik−1
∼= C0(t( m

k−1)[(T \ {±1})m−k+1 ×Πk−1{±1}])oα∧ Z2

for 1 ≤ k ≤ m with I0 = {0}, where
(

m
k−1

)
means the combination, and(

m
0

)
= 1. Moreover, the subquotient Ik/Ik−1 of C∗(G) is isomorphic to the

direct sum

⊕( m
k−1)2k−1

[C0((T \ {±1})m−k+1)oα∧ Z2]

and furthermore,

C0((T \ {±1})m−k+1)oα∧ Z2
∼= C0(Rm−k+1)⊗ [C(Πm−k+1{±i})oα∧ Z2]

and then

C(Πm−k+1{±i})oα∧ Z2
∼= C2m−k+1

oα∧ Z2

∼= ⊕2m−k

M2(C)

because the space Πm−k+1{±i} is viewed as the disjoint union of orbits that
consists of two points in the space. ¤

Remark The similar composition series of C∗(G) of G the generalized
(elementary) ax+ b group ZmoαZ is given in [11], for which it is found out
that there is a mistake in counting direct sums which should be corrected
as in this proposition.

Theorem 3.3 Let G = Zm oα Z2 be the proper generalized discrete ele-
mentary ax + b group. Then

K0(C∗(G)) ∼= Z2m+1, but K1(C∗(G)) ∼= Π2m−1
Z2.

Proof. We have C∗(G) ∼= C(Tm)oα∧ Z2 by the Fourier transform. We use
the following short exact sequence:

0 → C0(R)⊗ C∗(Zm oα Z2)
i // C∗(Zm oα Z)

q // C∗(Zm oα Z2) → 0

by viewing the extension as the mapping torus on the quotient (see [2]).
Then the six-term exact sequence of K-theory groups associated to this
extension becomes, by our computation:
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K1(C∗(G))
i∗ // Z2m−1 q∗ // K0(C∗(G))

∂

²²
K1(C∗(G))

∂

OO

(Π2m−1Z2)× Z2m−1q∗oo K0(C∗(G))
i∗oo

so that, as in the case where m = 1, we have

K0(C∗(G)) ∼= Z2m × Z ∼= Z2m+1,

and K1(C∗(G)) ∼= Π2m−1Z2. Indeed, note that the map from K0(C∗(G)) to
K0(⊕2mC2) induced from the structure of C∗(G) obtained in Proposition
3.2 is injective as in the case of m = 1, and also that each factor of the form
Z oα Z2 in G plays the same role as the proper discrete elementary ax + b

group, to produce non-equivalent K-theory classes. ¤

Proposition 3.4 The group C∗-algebra C∗(G) of G the proper generalized
discrete elementary ax+b group ZmoαZ2 has the following topological stable
rank estimate:

d(bm2−1c)2−1e+ 1 ≤ sr(C∗(G)) ≤ d(b(m + 1)2−1c)2−1e+ 1

and the following connected stable rank estimate:

2 ≤ csr(C∗(G)) ≤ d(b(m + 1)2−1c)2−1e+ 1,

where bxc means the maximum integer ≤ x.
In particular, if m ≥ 2, then sr(C∗(G)) ≥ 2.

Proof. Applying those stable rank formulae in the proof of Proposition 2.3
to the composition series {Ik}m+1

k=0 of C∗(G) obtained in Proposition 3.2,
repeatedly, we obtain

sr(C∗(G)) ≥ max
1≤k≤m

sr(C0(Rm−k+1)⊗M2(C))

= sr(C0(Rm)⊗M2(C))

= d(sr(C0(Rm))− 1)2−1e+ 1

= d(bm2−1c)2−1e+ 1,
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where sr(C(X)) = b2−1 dimXc + 1 with dimX the covering dimension of
a compact Hausdorff space X ([7, Proposition 1.7]), and sr(C0(Rm)) =
sr(C0(Rm)+) = sr(C(Sm)) with Sm the m-dimensional sphere, and also

sr(C∗(G)) ≤ max
1≤k≤m

{sr(C0(Rm−k+1)⊗M2(C)), csr(C0(Rm−k+1)⊗M2(C))}

and

csr(C0(Rm−k+1)⊗M2(C)) ≤ d(csr(C0(Rm−k+1))− 1)2−1e+ 1

= d(b(m− k + 2)2−1c)2−1e+ 1,

where csr(C(X)) ≤ b(dimX + 1)2−1c+ 1 by Nistor [5, Corollary 2.5].
Moreover, we get

2 ≤ csr(C∗(G)) ≤ max
1≤k≤m

csr(C0(Rm−k+1)⊗M2(C))

≤ max
1≤k≤m

d(b(m− k + 2)2−1c)2−1e+ 1,

where the lower bound is obtained from that K1(C∗(G)) 6= 0 by Theorem
3.3 and [3, Corollary 1.16]. ¤

Remark Similarly, we can show the similar topological stable rank and
connected stable rank estimats of C∗(G) of G the generalized discrete (ele-
mentary) ax + b group Zm oα Z, as given in [11]. But the estimates given
in [11] need to be slightly corrected as their n to be replaced with n + 1, as
m + 1 given in the statemtent.

4. The generalized discrete elementary Mautner groups

Recall from [11] that the generalized discrete (elementary) Mautner
group of rank 2m is defined to be the semi-direct product Zm oα Zm with
the action α given by

α1j
(n) = (n1, . . . , nj−1,−nj , nj+1, . . . , nm)

for n = (nj) ∈ Zm and 1j = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zm (1 at the j-th
position). The discrete (elementary) Mautner group defined in [11] is just
Z2 oα Z2 the case where m = 2 and the discrete elementary ax + b group is
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just Z oα Z the case where m = 1. Note that there is a quotient map:

Zm oα Zm 3 (n, t) 7→




eπit1 0 . . . 0 n1

0 eπit2 n2
...

. . .
...

0 eπitm nm

0 0 . . . 0 1



∈ GLm+1(Z)

for n = (n1, . . . , nm), t = (t1, . . . , tm) ∈ Zm, where the quotient group
is isomorphic to Zm oα Zm

2 . As before, we call it the proper generalized
Mautner group. The proper discrete elementary ax+b group is just ZoαZ2

the case where m = 1.
Recall from [2] that the bootstrap category is the smallest class N

of separable nuclear C∗-algebras with the following properties:

(1) N contains C.
(2) N is closed under countable inductive limits.
(3) For a short exact sequence of C∗-algebras, if non-zero two terms of the

sequence are in N , then so is the non-zero third term.
(4) N is closed under KK-equivalence (and in particular, closed under stable

isomorphism, and hence, taking tensor products with matrix algebras
over C).

In particular, N contains commutative C∗-algebras and their tensor
products with matrix algebras over C and the type I C∗-algebras which
have finite composition series of closed ideals with subquotients given by
direct sums of such tensor products.

Recall also from [2] the Künneth theorem that states that if A and
B are C∗-algebras, with A in the bootstrap category N , then there is the
following short exact sequence of groups:

0 → K∗(A)⊗K∗(B)
β // K∗(A⊗B) σ // TorZ1 (K∗(A),K∗(B)) → 0,

where K∗(·) = K0(·)⊕K1(·), and the map β has degree 0 and the map σ has
degree 1. The short exact sequence splits unnaturally. If K∗(A) or K∗(B)
is torsion free, then β is an isomorphism.

Note that Kp(A)⊗Kq(B), Kp(A⊗B)⊕Kq(A⊗B), and TorZ1 (Kp(A),
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Kq(B)) for p, q ∈ Z2 all have degree p + q (mod 2).

Lemma 4.1 The group C∗-algebras of the generalized discrete elementary
Mautner group Zm oα Zm and the proper Zm oα Zm

2 are in the bootstrap
category N .

Proof. It follows from the short exact sequence stated in Proposition 2.2
that the group C∗-algebra of the proper discrete elementary ax + b group
Z oα Z2 is in the bootstrap category N . Since the group C∗-algebra of the
discrete elementary ax + b group Z oα Z is viewed as the mapping torus
on C∗(Z oα Z2) as in Remark after Proposition 2.2, it also follows that
C∗(Z oα Z) is in N .

Since ZmoαZm is isomorphic to Πm(ZoαZ) the m-fold direct product
of the discrete elementary ax + b group Z oα Z, we have

C∗(Zm oα Zm) ∼= ⊗mC∗(Z oα Z)

the m-fold tensor product of the group C∗-algebra of Z oα Z. Therefore,
it follows that C∗(Zm oα Zm) is in N . Indeed, C∗(Zm oα Zm) has a finite
composition series of closed ideals with subquotients in N , by using the
structure of C∗(Z oα Z) in N shown above.

Similarly, one can show that C∗(Zm oα Zm
2 ) is in N since Zm oα Zm

2 is
isomorphic to Πm(Z oα Z2). Indeed, see Proposition 4.4 below. ¤

Theorem 4.2 Let G = Zm oα Zm be the generalized discrete elementary
Mautner group. Then

K0(C∗(G)) ∼= Zs(m) ⊕ Zt(m)
2 ,

K1(C∗(G)) ∼= Zu(m) ⊕ Zv(m)
2 ,

where the indexes s(m), t(m), u(m), v(m) ∈ N with s(1) = 1, t(1) = 0,
u(1) = 1, and v(1) = 1 are determined inductively by

s(m + 1) = s(m) + u(m),

t(m + 1) = 2 t(m) + u(m) + 2 v(m),

u(m + 1) = s(m) + u(m),

v(m + 1) = 2 t(m) + s(m) + 2 v(m)
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(m ≥ 1). In other words, letting Gm = Zm oα Zm, we have

rankZKj(C∗(Gm+1)) = rankZK0(C∗(Gm)) + rankZK1(C∗(Gm)),

rankZ2K0(C∗(Gm+1)) = rankZK1(C∗(Gm))

+ 2 rankZ2K0(C∗(Gm)) + 2 rankZ2K1(C∗(Gm)),

rankZ2K1(C∗(Gm+1)) = rankZK0(C∗(Gm))

+ 2 rankZ2K0(C∗(Gm)) + 2 rankZ2K1(C∗(Gm))

(j = 0, 1), where rankZ(·) and rankZ2(·) mean the free rank and the torsion
rank with respect to Z and Z2 respectively.

In particular,

K0(C∗(G2)) ∼= Z2 ⊕ Z3
2, K1(C∗(G2)) ∼= Z2 ⊕ Z3

2,

and also

K0(C∗(G3)) ∼= Z4 ⊕ Z14
2 , K1(C∗(G3)) ∼= Z4 ⊕ Z14

2 .

In addition, it follows from the inductive equations above that

K0(C∗(Gm)) ∼= K1(C∗(Gm))

if m ≥ 2.
Moreover, it does follow that if m ≥ 2, then

Kj(C∗(Gm)) ∼= Z2m−1 ⊕ Z22m−2−2m−2

2

for j = 0, 1.

Remark The statement is somewhat long, but we would like to reveal
the process to achieve the last general complicated formula, probably, from
which it would be difficult to see the process. As a note, it is the ingenious
referee who suggested that the last general formula would hold and encour-
aged the author to prove it as well as such formulae in Theorems 4.3, 5.2,
and 5.3 given below.

Proof. Since G ∼= Πm(Z oα Z) the m-fold direct product of the discrete
ax + b group Z oα Z, we have
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C∗(G) ∼= ⊗mC∗(Z oα Z)

the m-fold tensor product of the group C∗-algebra of Z oα Z.
We first consider the case where m = 2. Let H = ZoαZ. The Künneth

theorem (see [2]) implies that since C∗(H) is in N by Lemma 4.1, we have
the following short exact sequence of abelian groups:

0 → K∗(C∗(H))⊗K∗(C∗(H))

β−→ K∗(C∗(H)⊗ C∗(H)) σ−→ TorZ1 (K∗(C∗(H)),K∗(C∗(H))) → 0

where K∗(·) = K0(·) ⊕ K1(·) and the map β has degree 0 and the map σ

has degree 1 and the short exact sequence splits unnaturally. As obtained
in Proposition 2.1, we have

K∗(C∗(H)) = K0(C∗(H))⊕K1(C∗(H)) ∼= Z⊕ (Z× Z2).

By using several facts in homology theory as in [4], we compute the torsion
product as follows:

TorZ1 (K∗(C∗(H)),K∗(C∗(H)))

∼= TorZ1 (Z⊕ (Z× Z2),K∗(C∗(H)))

∼= TorZ1 (Z,K∗(C∗(H)))⊕ TorZ1 (Z,K∗(C∗(H)))⊕ TorZ1 (Z2,K∗(C∗(H)))

∼= 0⊕ 0⊕ TorZ1 (Z2,Z2 × Z2)

∼= Z2

where note that this consequence comes from the pair (K1(C∗(H)),
K1(C∗(H))), so that the torsion product is in K1(C∗(H ×H)).

Therefore, it follows that

K∗(C∗(H)⊗ C∗(H)) ∼= [K∗(C∗(H))⊗K∗(C∗(H))]⊕ Z2

(unnaturally). Moreover, we obtain

K0(C∗(H ×H))

∼= (K0(C∗(H))⊗K0(C∗(H)))⊕ (K1(C∗(H))⊗K1(C∗(H)))
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∼= (Z⊗ Z)⊕ [(Z× Z2)⊗ (Z× Z2)]

∼= Z⊕ [Z⊕ Z2 ⊕ Z2 ⊕ Z2]

= (⊕2Z)⊕ (⊕3Z2)

where note that (1⊗1)+(1⊗1) = 2⊗1 = 1⊗2 in Z⊗Z, and (1⊗1)+(1⊗1) =
2⊗ 1 = 1⊗ 2 = 0 in Z⊗ Z2 and Z2 ⊗ Z2. Furthermore,

K1(C∗(H ×H))/Z2

∼= (K0(C∗(H))⊗K1(C∗(H)))⊕ (K1(C∗(H))⊗K0(C∗(H)))

∼= ⊕2(Z⊗ (Z× Z2))

∼= ⊕2(Z⊕ Z2)

∼= (⊕2Z)⊕ (⊕2Z2).

Hence we get K1(C∗(H ×H)) ∼= Z2 × Z3
2.

Repeating the same argument for C∗(Π3H) ∼= C∗(H ×H)⊗C∗(H), we
compute

TorZ1 (K∗(C∗(H ×H)),K∗(C∗(H)))

∼= TorZ1 ((Z2 × Z3
2)⊕ (Z2 × Z3

2),Z⊕ (Z× Z2))

∼= (⊕3TorZ1 (Z2,Z⊕ (Z× Z2))⊕ (⊕3TorZ1 (Z2,Z⊕ (Z× Z2))

∼= (⊕3Z2)⊕ (⊕3Z2)

where the first summand corresponds to the pair (K0(C∗(H × H)),
K1(C∗(H))) and the second summand corresponds to the pair (K1(C∗(H
×H)),K1(C∗(H))). Therefore, we obtain

K0(C∗(Π3H))/Z3
2
∼= [(Z2 ⊕ Z3

2)⊗ Z]⊕ [(Z2 ⊕ Z3
2)⊗ (Z× Z2)]

∼= (Z2 ⊕ Z3
2)⊕ (Z2 ⊕ Z3

2)⊕ (Z2
2 ⊕ Z3

2)

∼= Z4 ⊕ Z11
2 ,

and thus, K0(C∗(Π3H)) ∼= Z4 ⊕ Z14
2 , and also
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K1(C∗(Π3H))/Z3
2
∼= [(Z2 ⊕ Z3

2)⊗ (Z× Z2)]⊕ [(Z2 ⊕ Z3
2)⊗ Z]

∼= (Z2 ⊕ Z3
2)⊕ (Z2

2 ⊕ Z3
2)⊕ (Z2 ⊕ Z3

2)

∼= Z4 ⊕ Z11
2

and hence, K1(C∗(Π3H)) ∼= Z4 ⊕ Z14
2 .

By induction, for G = Zm oα Zm, we may assume that

K0(C∗(G)) ∼= Zs(m) ⊕ Zt(m)
2 , K1(C∗(G)) ∼= Zu(m) ⊕ Zv(m)

2 ,

for some s(m), t(m), u(m), v(m) ∈ N. Then

TorZ1 (K∗(C∗(G)),K∗(C∗(H))) = Zt(m)
2 ⊕ Zv(m)

2 ,

where the first summand corresponds to the pair (K0(C∗(G)),K1(C∗(H)))
and the second summand corresponds to the pair (K1(C∗(G)),K1(C∗(H))).
Therefore, we have

K0(C∗(G×H))/Zt(m)
2

∼= [(Zs(m) ⊕ Zt(m)
2 )⊗ Z]⊕ [(Zu(m) ⊕ Zv(m)

2 )⊗ (Z× Z2)]

∼= Zs(m)+u(m) ⊕ Zt(m)+u(m)+2 v(m)
2 ,

and also

K1(C∗(G×H))/Zv(m)
2

∼= [(Zu(m) ⊕ Zv(m)
2 )⊗ Z]⊕ [(Zs(m) ⊕ Zt(m)

2 )⊗ (Z× Z2)]

∼= Zs(m)+u(m) ⊕ Z2 t(m)+s(m)+v(m)
2 ,

Hence we get

K0(C∗(Zm+1 oα Zm+1)) ∼= Zs(m)+u(m) ⊕ Z2 t(m)+u(m)+2 v(m)
2 ,

K1(C∗(Zm+1 oα Zm+1)) ∼= Zs(m)+u(m) ⊕ Z2 t(m)+s(m)+2 v(m)
2 .

It then follows that
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s(m + 1) = u(m + 1) = s(m) + u(m) for m ≥ 1 and

t(m + 1) = v(m + 1) = 2 t(m) + s(m) + 2 v(m) for m ≥ 1

since s(1) = u(1) = 1. Therefore, we obtain that K0(C∗(Zm oα Zm)) ∼=
K1(C∗(Zm oα Zm)) for m ≥ 2.

Moreover, since s(1) = u(1) = 1, it follows from the first inductive
equation that s(m) = u(m) = 2m−1 for m ≥ 1. It then follows from the
second inductive equation that t(m+1) = 4 t(m)+2m−1 for m ≥ 2. Dividing
both sides by the power 2(m+1)−1 of 2 yields the following:

t(m + 1)
2(m+1)−1

= 2 ·
(

t(m)
2m−1

)
+

1
2
.

Put b(m) = t(m)/2m−1 for m ≥ 2. Then b(m + 1) = 2 b(m) + 1/2. This
equation is transposed to the following: b(m + 1) + 1/2 = 2(b(m) + 1/2).
Therefore, the general term is given by b(m) + 1/2 = 2m−2(b(2) + 1/2) with

b(2) =
t(2)
2

=
2 t(1) + u(1) + 2 v(1)

2
=

3
2
.

Thus, we obtain t(m) = 22m−2 − 2m−2 for m ≥ 2. ¤

Theorem 4.3 Let G = Zm oα Zm
2 be the proper generalized discrete ele-

mentary Mautner group. Then

K0(C∗(G)) ∼= Zs(m) ⊕ Zt(m)
2 ,

K1(C∗(G)) ∼= Zv(m)
2 ,

where the indexes s(m), t(m), v(m) ∈ N with s(1) = 3, t(1) = 0, and v(1) =
1 are determined inductively by

s(m + 1) = 3 s(m),

t(m + 1) = 4 t(m) + v(m),

v(m + 1) = s(m) + t(m) + 4 v(m)

(m ≥ 1). In other words, letting Gm = Zm oα Zm
2 , we have
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rankZK0(C∗(Gm+1)) = 3 rankZK0(C∗(Gm)),

rankZ2K0(C∗(Gm+1)) = 4 rankZ2K0(C∗(Gm)) + rankZ2K1(C∗(Gm)),

rankZ2K1(C∗(Gm+1)) = rankZK0(C∗(Gm))

+ rankZ2K0(C∗(Gm)) + 4 rankZ2K1(C∗(Gm)).

In particular,

K0(C∗(G2)) ∼= Z9 ⊕ Z2, K1(C∗(G2)) ∼= Z7
2,

and also

K0(C∗(G3)) ∼= Z27 ⊕ Z11
2 , K1(C∗(G3)) ∼= Z38

2 .

Moreover, it does follow that if m ≥ 2, then

K0(C∗(Gm)) ∼= Z3m ⊕ Z2−2[5m−(2m+3)3m−1]
2 ,

K1(C∗(Gm)) ∼= Z2−2[5m+(2m−3)3m−1]
2

and this also holds for the case m = 1, where Z0
2 is assumed to be trivial.

Proof. Since G ∼= Πm(Z oα Z2) the m-fold direct product of the proper
discrete ax + b group Z oα Z2, we have

C∗(G) ∼= ⊗mC∗(Z oα Z2)

the m-fold tensor product of the group C∗-algebra of Z oα Z2.
We first consider the case where m = 2. Let H = ZoαZ2. The Künneth

theorem (see [2]) implies that since C∗(H) is in N by Lemma 4.1, we have
the following short exact sequence of abelian groups:

0 → K∗(C∗(H))⊗K∗(C∗(H))

β−→ K∗(C∗(H)⊗ C∗(H)) σ−→ TorZ1 (K∗(C∗(H)),K∗(C∗(H))) → 0

where K∗(·) = K0(·) ⊕ K1(·) and the map β has degree 0 and the map σ

has degree 1 and the short exact sequence splits unnaturally. As obtained
in Proposition 2.2, we have
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K∗(C∗(H)) = K0(C∗(H))⊕K1(C∗(H)) ∼= Z3 ⊕ Z2.

By using several facts in homology theory, we compute the torsion product
as follows:

TorZ1 (K∗(C∗(H)),K∗(C∗(H)))

∼= TorZ1 (Z3 ⊕ Z2,K∗(C∗(H)))

∼= [⊕3TorZ1 (Z,K∗(C∗(H)))]⊕ TorZ1 (Z2,K∗(C∗(H)))

∼= [⊕30]⊕ TorZ1 (Z2,Z3 × Z2)

∼= Z2

where note that this consequence comes from the pair (K1(C∗(H)),
K1(C∗(H))), so that the torsion product is in K1(C∗(H ×H)).

Therefore, it follows that

K∗(C∗(H)⊗ C∗(H)) ∼= [K∗(C∗(H))⊗K∗(C∗(H))]⊕ Z2

(unnaturally). Moreover, we obtain

K0(C∗(H ×H))

∼= (K0(C∗(H))⊗K0(C∗(H)))⊕ (K1(C∗(H))⊗K1(C∗(H)))

∼= (Z3 ⊗ Z3)⊕ (Z2 ⊗ Z2)

= (⊕9Z)⊕ Z2.

Furthermore,

K1(C∗(H ×H))/Z2

∼= (K0(C∗(H))⊗K1(C∗(H)))⊕ (K1(C∗(H))⊗K0(C∗(H)))

∼= ⊕2(Z3 ⊗ Z2)

∼= ⊕2(⊕3Z2)

∼= ⊕6Z2
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and hence, K1(C∗(H ×H)) ∼= Z7
2.

Repeating the same argument for C∗(Π3H) ∼= C∗(H ×H)⊗C∗(H), we
compute

TorZ1 (K∗(C∗(H ×H)),K∗(C∗(H)))

∼= TorZ1 ((Z9 × Z2)⊕ Z7
2,Z3 ⊕ Z2)

∼= (TorZ1 (Z2,Z3 ⊕ Z2))⊕ (⊕7TorZ1 (Z2,Z3 ⊕ Z2))

∼= (Z2)⊕ (⊕7Z2)

where the first summand corresponds to the pair (K0(C∗(H × H)),
K1(C∗(H))) and the second summand corresponds to the pair (K1(C∗(H×
H)),K1(C∗(H))). Therefore, we obtain

K0(C∗(Π3H))/Z2
∼= [(Z9 ⊕ Z2)⊗ Z3]⊕ [Z7

2 ⊗ Z2]

∼= (Z27 ⊕ Z3
2)⊕ Z7

2

∼= Z27 ⊕ Z10
2 ,

and thus, K0(C∗(Π3H)) ∼= Z27 ⊕ Z11
2 , and also

K1(C∗(Π3H))/Z7
2
∼= [(Z9 ⊕ Z2)⊗ Z2]⊕ [Z7

2 ⊗ Z3]

∼= (Z9
2 ⊕ Z2)⊕ Z21

2

∼= Z31
2

and hence, K1(C∗(Π3H)) ∼= Z38
2 .

By induction, for G = Zm oα Zm
2 , we may assume that

K0(C∗(G)) ∼= Zs(m) ⊕ Zt(m)
2 , K1(C∗(G)) ∼= Zv(m)

2 ,

for some s(m), t(m), v(m) ∈ N. Then

TorZ1 (K∗(C∗(G)),K∗(C∗(H))) = Zt(m)
2 ⊕ Zv(m)

2 ,

where the first summand corresponds to the pair (K0(C∗(G)),K1(C∗(H)))
and the second summand corresponds to the pair (K1(C∗(G)),K1(C∗(H))).
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Therefore, we have

K0(C∗(G×H))/Zt(m)
2

∼= [(Zs(m) ⊕ Zt(m)
2 )⊗ Z3]⊕ [Zv(m)

2 ⊗ Z2]

∼= Z3 s(m) ⊕ Z3 t(m)+v(m)
2 ,

and also

K1(C∗(G×H))/Zv(m)
2

∼= [Zv(m)
2 ⊗ Z3]⊕ [(Zs(m) ⊕ Zt(m)

2 )⊗ Z2]

∼= Zs(m)+t(m)+3 v(m)
2 ,

Hence we get

K0(C∗(Zm+1 oα Zm+1
2 )) ∼= Z3 s(m) ⊕ Z4 t(m)+v(m)

2 ,

K1(C∗(Zm+1 oα Zm+1
2 )) ∼= Zs(m)+t(m)+4 v(m)

2 .

Moreover, it follows from the inductive equation s(m + 1) = 3 s(m)
(m ≥ 1) with s(1) = 3 that s(m) = 3m (m ≥ 1). The indexes t(m + 1) and
v(m + 1) are viewed as the vector X(m + 1) in the following equation with
matrix multiplication:

X(m + 1) ≡
(

t(m + 1)
v(m + 1)

)
=

(
4 1
1 4

)(
t(m)
v(m)

)
+

(
0

s(m)

)

≡ MX(m) + Y (m)

(m ≥ 1). Inductively, it follows that

X(m) = MX(m− 1) + Y (m− 1)

= M(MX(m− 2) + Y (m− 2)) + Y (m− 1)

= M2X(m− 2) + MY (m− 2) + Y (m− 1)
= · · · · · · · · ·
= Mm−1X(1) + Mm−2Y (1) + · · ·+ MY (m− 2) + Y (m− 1).

Since the matrices D =
(

4 0
0 4

)
and F =

(
0 1
1 0

)
commute, we compute the

matrix product Mm by binary expansion:
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Mm = (D + F )m

= Dm +
(

m

1

)
Dm−1F + · · ·+

(
m

k

)
Dm−kF k + · · ·+

(
m

m

)
Fm.

Since F 2 is the identity matrix, if m is even, then Mm =

(
4m +

(
m
2

)
4m−2 + · · ·+ (

m
m

)
40

(
m
1

)
4m−1 +

(
m
3

)
4m−3 + · · ·+ (

m
m−1

)
4

(
m
1

)
4m−1 +

(
m
3

)
4m−3 + · · ·+ (

m
m−1

)
4 4m +

(
m
2

)
4m−2 + · · ·+ (

m
m

)
40

)

=
(

2−1(5m + 3m) 2−1(5m − 3m)
2−1(5m − 3m) 2−1(5m + 3m)

)

where we use binary expansion of 5m = (4 + 1)m and 3m = (4 − 1)m.
Similarly, if m is odd, then Mm =

(
4m +

(
m
2

)
4m−2 + · · ·+ (

m
m−1

)
4

(
m
1

)
4m−1 +

(
m
3

)
4m−3 + · · ·+ (

m
m

)
40

(
m
1

)
4m−1 +

(
m
3

)
4m−3 + · · ·+ (

m
m

)
40 4m +

(
m
2

)
4m−2 + · · ·+ (

m
m−1

)
4

)

=
(

2−1(5m + 3m) 2−1(5m − 3m)
2−1(5m − 3m) 2−1(5m + 3m)

)
.

Note that as suggested by the referee, one may use linear algebra theory
to compute the product Mm to be diagonalized as Jordan normal form by
an invertible matrix. Indeed, the eigenvalues λ of the 2 × 2 matrix M

are given by 3 and 5 by computing the determinant
∣∣ 4−λ 1

1 4−λ

∣∣ = 0, and
the corresponding eigenvectors are given by

(
1
−1

)
and

(
1
1

)
respectively. It

follows that

P−1MP ≡ 1
2

(
1 −1
1 1

)
M

(
1 1
−1 1

)
=

(
3 0
0 5

)
,

i.e., M is diagonalizable, and hence, we have

Mm = P

(
3m 0
0 5m

)
P−1 =

1
2

(
5m + 3m 5m − 3m

5m − 3m 5m + 3m

)
.

Therefore, we obtain that for m ≥ 2,
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t(m) = 2−1(5m−1 − 3m−1) + 2−1(5m−2 − 3m−2)3 + · · ·+ 2−1(5− 3)3m−2

= 2−1
m−1∑

k=1

(5m−k − 3m−k)3k−1,

= 2−1
m−1∑

k=1

3k−15m−k − 2−1
m−1∑

k=1

3m−1

= 2−1
m−1∑

k=1

3k−15m−k − 2−1(m− 1)3m−1,

and

v(m) = 2−1(5m−1 + 3m−1) + 2−1(5m−2 + 3m−2)3

+ · · ·+ 2−1(5 + 3)3m−2 + 3m−1

= 2−1
m−1∑

k=1

(5m−k + 3m−k)3k−1 + 3m−1

= 2−1
m−1∑

k=1

3k−15m−k + 2−1
m−1∑

k=1

3m−1 + 3m−1

= 2−1
m−1∑

k=1

3k−15m−k + 2−1(m− 1)3m−1 + 3m−1

= 2−1
m−1∑

k=1

3k−15m−k + 2−1(m + 1)3m−1.

Furthermore, we now put Sm =
∑m−1

k=1 3k−15m−k. Then we have

Sm − 3
5

Sm = 305m−1 − 3m−150.

Hence, Sm = (5/2)(5m−1 − 3m−1). Therefore, we get

t(m) = 2−25(5m−1 − 3m−1)− 2−1(m− 1)3m−1

= 2−2[5m − (2m + 3)3m−1],
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v(m) = 2−25(5m−1 − 3m−1) + 2−1(m + 1)3m−1

= 2−2[5m + (2m− 3)3m−1]. ¤

Proposition 4.4 The group C∗-algebra C∗(G) of G the proper general-
ized discrete elementary Mautner group Zmoα Zm

2 has a composition series
{Ij}2m

j=1 of closed ideals such that I0 = {0} and I2m = C∗(G) and

Ij/Ij−1
∼= L1j

⊗ · · · ⊗ Llj ⊗ · · · ⊗ Lmj

combinatoricly, for some lj = 1, 2 and lj−1 ≤ lj with (1j , . . . , mj) totally
ordered properly in the sense as

(1, 1, . . . , 1) ≤ (2, 1, . . . , 1) ≤ (1, 2, . . . , 1) ≤
≤ (2, 2, 1, . . . , 1) ≤ (1, 1, 2, . . . , 1) ≤ . . . · · · ≤ (2, 2, . . . , 2),

and

L1 = C0(R)⊗M2(C), and L2 = C4.

Proof. This is obtained from that C∗(G) ∼= ⊗mC∗(Zoα Z2) and the short
exact sequence of C∗(Z oα Z2) obtained in Proposition 2.2. Indeed, the
closed ideals Ij are defined inductively as in the following:

I1 = L1 ⊗ L1 ⊗ · · · ⊗ L1,

I2 = C∗(Z oα Z2)⊗ L1 ⊗ · · · ⊗ L1,

I3 is generated by I2 and L1 ⊗ C∗(Z oα Z2)⊗ L1 ⊗ · · · ⊗ L1;

I4 = C∗(Z oα Z2)⊗ C∗(Z oα Z2)⊗ L1 ⊗ · · · ⊗ L1,

I5 is generated by I4 and L1 ⊗ L1 ⊗ C∗(Z oα Z2) ⊗ L1 ⊗ · · · ⊗ L1; and
similarly, . . . , and finally, I2m−1 is generated by

C∗(Z oα Z2)⊗ C∗(Z oα Z2)⊗ · · · ⊗ C∗(Z oα Z2)⊗ L1,

L1 ⊗ C∗(Z oα Z2)⊗ · · · ⊗ C∗(Z oα Z2),

C∗(Z oα Z2)⊗ L1 ⊗ C∗(Z oα Z2)⊗ · · · ⊗ C∗(Z oα Z2),
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. . . . . . . . . . . . , and
C∗(Z oα Z2)⊗ · · · ⊗ C∗(Z oα Z2)⊗ L1 ⊗ C∗(Z oα Z2). ¤

Proposition 4.5 The group C∗-algebra C∗(G) of G the proper generalized
discrete elementary Mautner group ZmoαZm

2 (m ≥ 2) has topological stable
rank two and connected stable rank two.

Proof. Using the stable rank formulae as used in Propositions 2.3 and 3.4
to the composition series obtained in Proposition 4.4, we estimate

sr(C∗(G)) ≥ max
1≤k≤m

sr(⊗k(C0(R)⊗M2(C)))

= max
1≤k≤m

sr(C0(Rk)⊗M2k(C)))

= max
1≤k≤m

d(sr(C0(Rk))− 1)2−ke+ 1

= max
1≤k≤m

d(bk/2c)2−ke+ 1

and each component in the last maximum is equal to

{dl/22le+ 1 = 2 if k = 2l,

dl/22l+1e+ 1 = 2 if k = 2l + 1 6= 1

and is equal to 1 if k = 1. Also, we estimate

sr(C∗(G)) ≤ max
1≤k≤m

{sr(⊗k(C0(R)⊗M2(C))), csr(⊗k(C0(R)⊗M2(C)))}

≤ max
1≤k≤m

{2, csr(C0(Rk)⊗M2k(C))}

≤ max
1≤k≤m

{2, d(csr(C0(Rk))− 1)/2ke+ 1}

≤ max
1≤k≤m

{2, d(b(k + 1)/2c)/2ke+ 1}

and each component in the last maximum is equal to

{dl/22le+ 1 = 2 if k = 2l,

d(l + 1)/22l+1e+ 1 = 2 if k = 2l + 1.
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Moreover, we obtain

csr(C∗(G)) ≤ max
1≤k≤m

csr(⊗k(C0(R)⊗M2(C))) ≤ 2.

Since we have K1(C∗(G)) 6= 0 by Theorem 4.3, we obtain csr(C∗(G)) ≥ 2.
¤

Remark it is shown in [11] that if G is the (non-proper) generalized
discrete (elementary) Mautner group Zm oα Zm, then

bm/2c ≤ sr(C∗(G)) ≤ b(m + 1)/2c+ 1

and csr(C∗(G)) ≤ b(m + 1)/2c + 1 by the same way as given in the proof
above. In addition, we obtain csr(C∗(G)) ≥ 2 since K1(C∗(G)) 6= 0 as shown
in Theorem 4.2. Consequently, we find out the difference in the topological
stable rank for C∗(G) of G the proper and the non-proper G, to have the
topological stable rank lower or higher. Possibly, we can find out the same
thing in the connected stable rank. As a fact, it is shown by [7, Corollary
4. 10] that

csr(A) ≤ sr(A) + 1

for a C∗-algebra A, but what we need to show that thing is a sort of reverse
inequality if any.

5. Products of the generalized discrete elementary ax+b groups

Lemma 5.1 The group C∗-algebras of finite direct products Πl(Zmoα Z)
of the generalized discrete elementary ax + b group Zm oα Z and those of
the proper Zm oα Z2 are in the bootstrap category N .

Proof. It follows from the finite composition series of closed ideals of the
group C∗-algebra of the proper generalized discrete elementary ax+b group
Zm oα Z2 stated in Proposition 3.2 that C∗(Zm oα Z2) is in the bootstrap
category N . Since the group C∗-algebra of the generalized discrete elemen-
tary ax+b group ZmoαZ is viewed as the mapping torus on C∗(ZmoαZ2)
as in Remark after Proposition 2.2, it also follows that C∗(Zm oα Z) is in
N .

Since we have
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C∗(Πl(Zm oα Z)) ∼= ⊗lC∗(Zm oα Z)

the l-fold tensor product of the group C∗-algebra of ZmoαZ, it follows that
C∗(Πl(Zm oα Z)) is in N , indeed, which has a finite composition series of
closed ideals with subquotients in N , by using the structure of C∗(ZmoαZ)
in N shown above.

Similarly, one can show that C∗(Πl(Zm oα Z2)) is in N . Indeed, see
Proposition 5.4 below. ¤

Theorem 5.2 Let G = Πl(Zm oα Z) be a finite direct product of the
generalized discrete elementary ax + b group Zm oα Z. Then

K0(C∗(G)) ∼= Zs(l) ⊕ Zt(l)
2 ,

K1(C∗(G)) ∼= Zu(l) ⊕ Zv(l)
2 ,

where the indexes s(l), t(l), u(l), v(l) ∈ N with s(1) = 2m−1, t(1) = 0, u(1) =
2m−1, and v(1) = 2m−1 are determined inductively by

s(l + 1) = 2m−1(s(l) + u(l)),

t(l + 1) = 2m−1(2 t(l) + u(l) + 2 v(l)),

u(l + 1) = 2m−1(s(l) + u(l)),

v(l + 1) = 2m−1(2 t(l) + s(l) + 2 v(l))

(m ≥ 1). In other words, letting Gl = Πl(Zm oα Z), we have

rankZKj(C∗(Gl+1)) = 2m−1[rankZK0(C∗(Gl)) + rankZK1(C∗(Gl))],

rankZ2K0(C∗(Gl+1)) = 2m−1[rankZK1(C∗(Gl))

+ 2 rankZ2K0(C∗(Gl)) + 2 rankZ2K1(C∗(Gl))],

rankZ2K1(C∗(Gl+1)) = 2m−1[rankZK0(C∗(Gl))

+ 2 rankZ2K0(C∗(Gl)) + 2 rankZ2K1(C∗(Gl))]

(j = 0, 1).
In particular,
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K0(C∗(G2)) ∼= Z22m−1 ⊕ Z22m−23
2 , K1(C∗(G2)) ∼= Z22m−1 ⊕ Z22m−23

2 ,

and also

K0(C∗(G3)) ∼= Z23m−1 ⊕ Z23m−27
2 , K1(C∗(G3)) ∼= Z23m−1 ⊕ Z23m−27

2 .

In addition, it follows from the inductive equations above that

K0(C∗(Gl)) ∼= K1(C∗(Gl))

if l ≥ 2.
Moreover, it does follow that for l ≥ 2,

Kj(C∗(Gl)) ∼= Z2lm−1 ⊕ Z2(m+1)l−2−2lm−2

2

for j = 0, 1.

Proof. Since G ∼= Πl(Zm oα Z), we have

C∗(G) ∼= ⊗lC∗(Zm oα Z)

the l-fold tensor product of the group C∗-algebra of Zm oα Z.
We first consider the case where l = 2. Let H = ZmoαZ. The Künneth

theorem (see [2]) implies that since C∗(H) is in N by Lemma 5.1, we have
the following short exact sequence of abelian groups:

0 → K∗(C∗(H))⊗K∗(C∗(H))

β−→ K∗(C∗(H)⊗ C∗(H)) σ−→ TorZ1 (K∗(C∗(H)),K∗(C∗(H))) → 0

where K∗(·) = K0(·) ⊕ K1(·) and the map β has degree 0 and the map σ

has degree 1 and the short exact sequence splits unnaturally. As obtained
in Theorem 3.1, we have

K∗(C∗(H)) = K0(C∗(H))⊕K1(C∗(H)) ∼= Z2m−1 ⊕ (Z2m−1 × Z2m−1

2 ).

By using several facts in homology theory as in [4], we compute the torsion
product as follows:
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TorZ1 (K∗(C∗(H)),K∗(C∗(H)))

∼= TorZ1 (Z2m−1 ⊕ (Z2m−1 × Z2m−1

2 ),K∗(C∗(H)))

∼= [⊕2m

TorZ1 (Z,K∗(C∗(H)))]⊕ [⊕2m−1
TorZ1 (Z2,K∗(C∗(H)))]

∼= ⊕2m−1
TorZ1 (Z2,Z2m−1 ⊕ (Z2m−1 × Z2m−1

2 ))

∼= ⊕2m−1
(⊕2m−1

Z2)

∼= ⊕22m−2
Z2

where note that this consequence comes from the pair (K1(C∗(H)),
K1(C∗(H))), so that the torsion product is in K1(C∗(H ×H)).

Therefore, it follows that

K∗(C∗(H)⊗ C∗(H)) ∼= [K∗(C∗(H))⊗K∗(C∗(H))]⊕ (⊕22m−2
Z2)

(unnaturally). Moreover, we obtain

K0(C∗(H ×H))

∼= (K0(C∗(H))⊗K0(C∗(H)))⊕ (K1(C∗(H))⊗K1(C∗(H)))

∼= (Z2m−1 ⊗ Z2m−1
)⊕ ((Z2m−1 × Z2m−1

2 )⊗ (Z2m−1 × Z2m−1

2 ))

∼= (⊕22m−2
Z)⊕ (⊕22m−2

Z)⊕ (⊕3(⊕22m−2
Z2))

∼= (⊕22m−1
Z)⊕ (⊕22m−23Z2).

Furthermore,

K1(C∗(H ×H))/(⊕22m−2
Z2)

∼= (K0(C∗(H))⊗K1(C∗(H)))⊕ (K1(C∗(H))⊗K0(C∗(H)))

∼= ⊕2(Z2m−1 ⊗ (Z2m−1 × Z2m−1

2 ))

∼= ⊕2(Z22m−2 ⊕ Z22m−2

2 )

∼= (⊕22m−1
Z)⊕ (⊕22m−1

Z2)
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and hence, K1(C∗(H ×H)) ∼= Z22m−1 ⊕ Z22m−23
2 .

Repeating the same argument for C∗(Π3H) ∼= C∗(H ×H)⊗C∗(H), we
compute

TorZ1 (K∗(C∗(H ×H)),K∗(C∗(H)))

∼= TorZ1 ((Z22m−1 × Z22m−23
2 )⊕ (Z22m−1 × Z22m−23

2 ),K∗(C∗(H)))

∼= [⊕22m−23TorZ1 (Z2,Z2m−1 ⊕ (Z2m−1 × Z2m−1

2 ))]

⊕ [⊕22m−23TorZ1 (Z2,Z2m−1 ⊕ (Z2m−1 × Z2m−1

2 ))]

∼= [⊕22m−23(⊕2m−1
Z2)]⊕ [⊕22m−23(⊕2m−1

Z2)]

∼= [⊕23m−33Z2]⊕ [⊕23m−33Z2]

where the first summand corresponds to the pair (K0(C∗(H × H)),
K1(C∗(H))) and the second summand corresponds to the pair (K1(C∗(H×
H)),K1(C∗(H))). Therefore, we obtain

K0(C∗(Π3H))/Z23m−33
2

∼= [(Z22m−1 ⊕ Z22m−23
2 )⊗ Z2m−1

]

⊕ [(Z22m−1 ⊕ Z22m−23
2 )⊗ (Z2m−1 × Z2m−1

2 )]

∼= [Z23m−2 ⊕ Z23m−33
2 ]⊕ [Z23m−2 ⊕ Z23m−2

2 ⊕ Z23m−33
2 ⊕ Z23m−33

2 ]

∼= Z23m−1 ⊕ Z23m−311
2 ,

and thus, K0(C∗(Π3H)) ∼= Z23m−1 ⊕ Z23m−27
2 , and also

K1(C∗(Π3H))/Z23m−33
2

∼= [(Z22m−1 ⊕ Z22m−23
2 )⊗ (Z2m−1 × Z2m−1

2 )]

⊕ [(Z22m−1 ⊕ Z22m−23
2 )⊗ Z2m−1

]

∼= [Z23m−2 ⊕ Z23m−2

2 ⊕ Z23m−33
2 ⊕ Z23m−33

2 ]⊕ [Z23m−2 ⊕ Z23m−33
2 ]

∼= Z23m−1 ⊕ Z23m−311
2 ,
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and thus, K1(C∗(Π3H)) ∼= Z23m−1 ⊕ Z23m−27
2 .

By induction, for G = Πl(Zm oα Z), we may assume that

K0(C∗(G)) ∼= Zs(l) ⊕ Zt(l)
2 , K1(C∗(G)) ∼= Zu(l) ⊕ Zv(l)

2 ,

for some s(l), t(l), u(l), v(l) ∈ N. Then

TorZ1 (K∗(C∗(G)),K∗(C∗(H))) = Z2m−1t(l)
2 ⊕ Z2m−1v(l)

2 ,

where the first summand corresponds to the pair (K0(C∗(G)),K1(C∗(H)))
and the second summand corresponds to the pair (K1(C∗(G)),K1(C∗(H))).
Therefore,

K0(C∗(G×H))/Z2m−1t(l)
2

∼= [(Zs(l) ⊕ Zt(l)
2 )⊗ Z2m−1

]⊕ [(Zu(l) ⊕ Zv(l)
2 )⊗ (Z2m−1 × Z2m−1

2 )]

∼= Z2m−1(s(l)+u(l)) ⊕ Z2m−1(t(l)+u(l)+2 v(l))
2 ,

and

K1(C∗(G×H))/Z2m−1v(l)
2

∼= [(Zu(l) ⊕ Zv(l)
2 )⊗ Z2m−1

]⊕ [(Zs(l) ⊕ Zt(l)
2 )⊗ (Z2m−1 × Z2m−1

2 )]

∼= Z2m−1(s(l)+u(l)) ⊕ Z2m−1(2 t(l)+s(l)+v(l))
2 .

Hence we get

K0(C∗(Πl+1(Zm oα Z))) ∼= Z2m−1(s(l)+u(l)) ⊕ Z2m−1(2 t(l)+u(l)+2 v(l))
2 ,

K1(C∗(Πl+1(Zm oα Z))) ∼= Z2m−1(s(l)+u(l)) ⊕ Z2m−1(2 t(l)+s(l)+2 v(l))
2 .

It then follows that

s(l + 1) = u(l + 1) = 2m−1(s(l) + u(l)) for l ≥ 1 and

t(l + 1) = v(l + 1) = 2m−1(2 t(l) + s(l) + 2 v(l)) for l ≥ 1
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since s(1) = u(1) = 2m−1. Therefore, we obtain that K0(C∗(Πl(Zm oα

Z))) ∼= K1(C∗(Πl(Zm oα Z))) for l ≥ 2.
Moreover, it follows from the first inductive equation that s(l) = u(l) =

2lm−1 for l ≥ 1. It then follows from the second inductive equation that
t(l + 1) = 2m−1(4 t(l) + 2lm−1) for l ≥ 2. Dividing both sides by the power
2(l+1)m−1 of 2 yields the following:

t(l + 1)
2(l+1)m−1

= 2 ·
(

t(l)
2lm−1

)
+

1
2
.

Now put c(l) = t(l)/2lm−1 for l ≥ 2. Then c(l + 1) = 2 c(l) + 1/2. This
equation is transposed to the following: c(l+1)+1/2 = 2(c(l)+1/2). Thus,
the general term is given by c(l) + 1/2 = 2l−2(c(2) + 1/2) with

c(2) =
t(2)

22m−1
=

2m−1(2 t(1) + u(1) + 2 v(1))
22m−1

=
3
2
.

Hence c(l) = 2l−1 − 1/2. Therefore, we get t(l) = v(l) = 2(m+1)l−2 − 2lm−2

for l ≥ 2. ¤

Theorem 5.3 Let G = Πl(Zm oα Z2) be a finite direct product of the
proper generalized discrete elementary ax + b group. Then

K0(C∗(G)) ∼= Zs(l) ⊕ Zt(l)
2 ,

K1(C∗(G)) ∼= Zv(l)
2 ,

where the indexes s(l), t(l), v(l) ∈ N with s(1) = 2m + 1, t(1) = 0, and
v(1) = 2m−1 are determined inductively by

s(l + 1) = (2m + 1)s(l),

t(l + 1) = (2m−13 + 1)t(l) + 2m−1v(l),

v(l + 1) = (2m−13 + 1)v(l) + 2m−1(s(l) + t(l))

(l ≥ 1). In other words, letting Gl = Πl(Zm oα Z), we have

rankZK0(C∗(Gl+1)) = (2m + 1) rankZK0(C∗(Gl)),
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rankZ2K0(C∗(Gl+1)) = (2m−13 + 1) rankZ2K0(C∗(Gl))

+ 2m−1 rankZ2K1(C∗(Gl)),

rankZ2K1(C∗(Gl+1)) = (2m−13 + 1) rankZ2K1(C∗(Gl))

+ 2m−1[rankZK0(C∗(Gl)) + rankZ2K0(C∗(Gl))].

In particular,

K0(C∗(G2)) ∼= Z22m+2m+1+1 ⊕ Z22m−2

2 , K1(C∗(G2)) ∼= Z22m−25+2m

2 ,

and also

K0(C∗(G3)) ∼= Z23m+22m3+2m3+1 ⊕ Z23m+22m−23
2 ,

K1(C∗(G3)) ∼= Z23m−15+22m−215+2m−13
2 .

Moreover, it does follow that if l ≥ 2,

K0(C∗(Gl)) ∼= Z(2m+1)l ⊕ Z2−2[(2m+1+1)l−(2m+1)l−1(2m(l+1)+1)]
2 ,

K1(C∗(Gl)) ∼= Z2−2[(2m+1+1)l+(2m+1)l−1(2m(l−1)−1)]
2

and this also holds for the case where l = 1.

Proof. Since G ∼= Πl(Zm oα Z2), we have

C∗(G) ∼= ⊗lC∗(Zm oα Z2)

the l-fold tensor product of the group C∗-algebra of Zm oα Z2.
We first consider the case where l = 2. Let H = Zm oα Z2. The

Künneth theorem (see [2]) implies that since C∗(H) is in N by Lemma 5.1,
we have the following short exact sequence of abelian groups:

0 → K∗(C∗(H))⊗K∗(C∗(H))

β−→ K∗(C∗(H)⊗ C∗(H)) σ−→ TorZ1 (K∗(C∗(H)),K∗(C∗(H))) → 0

where K∗(·) = K0(·) ⊕ K1(·) and the map β has degree 0 and the map σ
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has degree 1 and the short exact sequence splits unnaturally. As obtained
in Theorem 3.3, we have

K∗(C∗(H)) = K0(C∗(H))⊕K1(C∗(H)) ∼= Z2m+1 ⊕ Z2m−1

2 .

By using several facts in homology theory as in [4], we compute the torsion
product as follows:

TorZ1 (K∗(C∗(H)),K∗(C∗(H)))

∼= TorZ1 (Z2m+1 ⊕ Z2m−1

2 ,K∗(C∗(H)))

∼= [⊕2m+1TorZ1 (Z,K∗(C∗(H)))]⊕ [⊕2m−1
TorZ1 (Z2,K∗(C∗(H)))]

∼= ⊕2m−1
TorZ1 (Z2,Z2m+1 ⊕ Z2m−1

2 )

∼= ⊕2m−1
(⊕2m−1

Z2)

∼= ⊕22m−2
Z2

where note that this consequence comes from the pair (K1(C∗(H)),
K1(C∗(H))), so that the torsion product is in K1(C∗(H ×H)).

Therefore, it follows that

K∗(C∗(H)⊗ C∗(H)) ∼= [K∗(C∗(H))⊗K∗(C∗(H))]⊕ (⊕22m−2
Z2)

(unnaturally). Moreover, we obtain

K0(C∗(H ×H))

∼= (K0(C∗(H))⊗K0(C∗(H)))⊕ (K1(C∗(H))⊗K1(C∗(H)))

∼= (Z2m+1 ⊗ Z2m+1)⊕ (Z2m−1

2 ⊗ Z2m−1

2 )

∼= (⊕22m+2m+1+1Z)⊕ (⊕22m−2
Z2).

Furthermore,

K1(C∗(H ×H))/(⊕22m−2
Z2)

∼= (K0(C∗(H))⊗K1(C∗(H)))⊕ (K1(C∗(H))⊗K0(C∗(H)))
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∼= ⊕2(Z2m+1 ⊗ Z2m−1

2 )

∼= ⊕2(Z22m−1+2m−1

2 )

∼= ⊕22m+2m

Z2

and hence, K1(C∗(H ×H)) ∼= Z22m−25+2m

2 .
Repeating the same argument for C∗(Π3H) ∼= C∗(H ×H)⊗C∗(H), we

compute

TorZ1 (K∗(C∗(H ×H)),K∗(C∗(H)))

∼= TorZ1 ((Z22m+2m+1+1 × Z22m−2

2 )⊕ Z22m−25+2m

2 ),K∗(C∗(H)))

∼= [⊕22m−2
TorZ1 (Z2,Z2m+1 ⊕ Z2m−1

2 )]

⊕ [⊕22m−25+2m

TorZ1 (Z2,Z2m+1 ⊕ Z2m−1

2 )]

∼= [⊕22m−2
(⊕2m−1

Z2)]⊕ [⊕22m−25+2m

(⊕2m−1
Z2)]

∼= [⊕23m−3
Z2]⊕ [⊕23m−35+22m−1

Z2]

where the first summand corresponds to the pair (K0(C∗(H × H)),
K1(C∗(H))) and the second summand corresponds to the pair (K1(C∗(H×
H)),K1(C∗(H))). Therefore, we obtain

K0(C∗(Π3H))/Z23m−3

2

∼= [(Z22m+2m+1+1 ⊕ Z22m−2

2 )⊗ Z2m+1]⊕ [Z22m−25+2m

2 ⊗ Z2m−1

2 ]

∼= [Z23m+22m3+2m3+1 ⊕ Z23m−2+22m−2

2 ]⊕ [Z23m−35+22m−1

2 ]

∼= Z23m+22m3+2m3+1 ⊕ Z23m−37+22m−23
2

and thus, K0(C∗(Π3H)) ∼= Z23m+22m3+2m3+1 ⊕ Z23m+22m−23
2 , and also

K1(C∗(Π3H))/Z23m−35+22m−1

2

∼= [(Z22m+2m+1+1 ⊕ Z22m−2

2 )⊗ Z2m−1

2 ]⊕ [Z22m−25+2m

2 ⊗ Z2m+1]

∼= [Z23m−1+22m+2m−1

2 ⊕ Z23m−3

2 ]⊕ [Z23m−25+22m−29+2m

2 ]

∼= Z23m−315+22m−213+2m−13
2
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and hence, K1(C∗(Π3H)) ∼= Z23m−15+22m−213+2m−13
2 .

By induction, for G = Πl(Zm oα Z2) with l ≥ 2, we may assume that

K0(C∗(G)) ∼= Zs(l) ⊕ Zt(l)
2 , K1(C∗(G)) ∼= Zv(l)

2 ,

for some s(l), t(l), v(l) ∈ N. Then

TorZ1 (K∗(C∗(G)),K∗(C∗(H))) = Z2m−1t(l)
2 ⊕ Z2m−1v(l)

2 ,

where the first summand corresponds to the pair (K0(C∗(G)),K1(C∗(H)))
and the second summand corresponds to the pair (K1(C∗(G)),K1(C∗(H))).
Therefore, we have

K0(C∗(G×H))/Z2m−1t(l)
2

∼= [(Zs(l) ⊕ Zt(l)
2 )⊗ Z2m+1]⊕ [Zv(l)

2 ⊗ Z2m−1

2 ]

∼= Z(2m+1)s(l) ⊕ Z(2m+1)t(l)+2m−1v(l)
2 ,

and also

K1(C∗(G×H))/Z2m−1v(l)
2

∼= [Zv(l)
2 ⊗ Z2m+1]⊕ [(Zs(l) ⊕ Zt(l)

2 )⊗ Z2m−1

2 ]

∼= Z(2m+1)v(l)+2m−1(s(l)+t(l))
2 .

Hence we get

K0(C∗(Πl+1(Zm oα Z))) ∼= Z(2m+1)s(l) ⊕ Z(2m−13+1)t(l)+2m−1v(l)
2 ,

K1(C∗(Πl+1(Zm oα Z))) ∼= Z(2m−13+1)v(l)+2m−1(s(l)+t(l))
2 .

Moreover, it follows from the inductive equation s(l + 1) = (2m + 1)s(l)
for l ≥ 1 with s(1) = 2m + 1 that s(l) = (2m + 1)l for l ≥ 1. The indexes
t(l+1) and v(l+1) are viewed as the vector X(l+1) in the following equation
with matrix multiplication:
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X(l + 1) ≡
(

t(l + 1)
v(l + 1)

)

=
(

2m−13 + 1 2m−1

2m−1 2m−13 + 1

)(
t(l)
v(l)

)
+

(
0

2m−1(2m + 1)l

)

≡ MX(l) + Y (l)

(l ≥ 1). Inductively, it follows that

X(l) = MX(l − 1) + Y (l − 1)

= M(MX(l − 2) + Y (l − 2)) + Y (l − 1)

= M2X(l − 2) + MY (l − 2) + Y (l − 1)

= · · · · · · · · ·
= M l−1X(1) + M l−2Y (1) + · · ·+ MY (l − 2) + Y (l − 1).

Since the matrices D =
(

2m−13+1 0
0 2m−13+1

)
, F =

(
0 2m−1

2m−1 0

)
commute, we

compute the matrix product M l by binary expansion:

M l = (D + F )l

= Dl +
(

l

1

)
Dl−1F + · · ·+

(
l

k

)
Dl−kF k + · · ·+

(
l

l

)
F l.

Since we have

Dk =
(

(2m−13 + 1)k 0
0 (2m−13 + 1)k

)

and

F k =





(
2km−k 0

0 2km−k

)
if k is even,

(
0 2km−k

2km−k 0

)
if k is odd,

if l is even, then the components (M l)ij of M l (i = 1, 2, j = 1, 2) are given
by
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(M l)11 = (M l)22

= (2m−13 + 1)l +
(

l

2

)
(2m−13 + 1)l−222m−2 + · · ·+

(
l

l

)
2lm−l

=
1
2
[(2m−13 + 1 + 2m−1)l + (2m−13 + 1− 2m−1)l]

=
1
2
[(2m+1 + 1)l + (2m + 1)l],

(M l)12 = (M l)21

=
(

l

1

)
(2m−13 + 1)l−12m−1 +

(
l

3

)
(2m−13 + 1)l−323m−3

+ · · ·+
(

l

l − 1

)
(2m−13 + 1)2(l−1)m−l+1

=
1
2
[(2m−13 + 1 + 2m−1)l − (2m−13 + 1− 2m−1)l]

=
1
2
[(2m+1 + 1)l − (2m + 1)l].

Similarly, if l is odd, then the components (M l)ij of M l (i = 1, 2, j = 1, 2)
are given by

(M l)11 = (M l)22

= (2m−13 + 1)l +
(

l

2

)
(2m−13 + 1)l−222m−2

+ · · ·+
(

l

l − 1

)
(2m−13 + 1)2(l−1)m−l+1

=
1
2
[(2m−13 + 1 + 2m−1)l + (2m−13 + 1− 2m−1)l]

=
1
2
[(2m+1 + 1)l + (2m + 1)l],
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(M l)12 = (M l)21

=
(

l

1

)
(2m−13 + 1)l−12m−1 +

(
l

3

)
(2m−13 + 1)l−323m−3

+ · · ·+
(

l

l

)
2lm−l

=
1
2
[(2m−13 + 1 + 2m−1)l − (2m−13 + 1− 2m−1)l]

=
1
2
[(2m+1 + 1)l − (2m + 1)l].

Note that as suggested by the referee, one may use linear algebra
theory to compute the product M l to be diagonalized as Jordan normal
form by an invertible matrix. Indeed, the eigenvalues λ of the 2 × 2 ma-
trix M are given by 2m + 1 and 2m+1 + 1 by computing the determinant∣∣ 2m−13+1−λ 2m−1

2m−1 2m−13+1−λ

∣∣ = 0, and the corresponding eigenvectors are given
by

(
1
−1

)
and

(
1
1

)
respectively. It follows that

P−1MP ≡ 1
2

(
1 −1
1 1

)
M

(
1 1
−1 1

)
=

(
2m + 1 0

0 2m+1 + 1

)
,

i.e., M is diagonalizable, and hence, we have

M l = P

(
(2m + 1)l 0

0 (2m+1 + 1)l

)
P−1

=
1
2

(
(2m+1 + 1)l + (2m + 1)l (2m+1 + 1)l − (2m + 1)l

(2m+1 + 1)l − (2m + 1)l (2m+1 + 1)l + (2m + 1)l

)
.

Therefore, we obtain that for l ≥ 2,

t(l) = 2m−2[(2m+1 + 1)l−1 − (2m + 1)l−1]

+ 2m−2[(2m+1 + 1)l−2 − (2m + 1)l−2](2m + 1)

+ · · ·+ 2m−2[(2m+1 + 1)− (2m + 1)](2m + 1)l−2

= 2m−2[(2m+1 + 1)l−1 − (2m + 1)l−1]

+ 2m−2
l−2∑

k=1

[(2m+1 + 1)l−1−k − (2m + 1)l−1−k](2m + 1)k
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= 2m−2[(2m+1 + 1)l−1 − (2m + 1)l−1]

+ 2m−2
l−2∑

k=1

(2m+1 + 1)l−1−k(2m + 1)k − 2m−2(l − 2)(2m + 1)l−1

and

v(l) = 2m−2[(2m+1 + 1)l−1 + (2m + 1)l−1]

+ 2m−2[(2m+1 + 1)l−2 + (2m + 1)l−2](2m + 1)

+ · · ·+ 2m−2[(2m+1 + 1) + (2m + 1)](2m + 1)l−2 + 2m−1(2m + 1)l−1

= 2m−2[(2m+1 + 1)l−1 + (2m + 1)l−1] + 2m−1(2m + 1)l−1

+ 2m−2
l−2∑

k=1

[(2m+1 + 1)l−1−k + (2m + 1)l−1−k](2m + 1)k

= 2m−2[(2m+1 + 1)l−1 + (2m + 1)l−1] + 2m−1(2m + 1)l−1

+ 2m−2
l−2∑

k=1

(2m+1 + 1)l−1−k(2m + 1)k + 2m−2(l − 2)(2m + 1)l−1.

Furthermore, we now put

Sl =
l−2∑

k=1

(2m+1 + 1)l−1−k(2m + 1)k.

Then we have

Sl − 2m + 1
2m+1 + 1

Sl = (2m+1 + 1)l−2(2m + 1)− (2m + 1)l−1.

Hence,

Sl =
2m+1 + 1

2m
[(2m+1 + 1)l−2(2m + 1)− (2m + 1)l−1]

= (2m+1 + 1)l−1 2m + 1
2m

− 2m+1 + 1
2m

(2m + 1)l−1.
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Therefore, we finally get

t(l) = 2m−2[(2m+1 + 1)l−1 − (2m + 1)l−1]

+ (2m+1 + 1)l−1

(
2m + 1

22

)
− 2m+1 + 1

22
(2m + 1)l−1

− 2m−2(l − 2)(2m + 1)l−1

= (2m+1 + 1)l−1 2m+1 + 1
22

− (2m + 1)l−1 2m(l + 1) + 1
22

= 2−2[(2m+1 + 1)l − (2m + 1)l−1(2m(l + 1) + 1)],

v(l) = 2m−2[(2m+1 + 1)l−1 + (2m + 1)l−1] + 2m−1(2m + 1)l−1

+ (2m+1 + 1)l−1

(
2m + 1

22

)
− 2m+1 + 1

22
(2m + 1)l−1

+ 2m−2(l − 2)(2m + 1)l−1

= (2m+1 + 1)l−1 2m+1 + 1
22

+ (2m + 1)l−1 2m(l − 1)− 1
22

= 2−2[(2m+1 + 1)l + (2m + 1)l−1(2m(l − 1)− 1)]. ¤

Proposition 5.4 The group C∗-algebra C∗(G) of G = Πl(Zm oα Z2)
a finite product of the proper generalized discrete elementary ax + b group
Zm oα Z2 has a composition series {Ij}(m+1)l

j=1 of closed ideals such that
I0 = {0} and I(m+1)l = C∗(G) and

Ij/Ij−1
∼= L1j

⊗ · · · ⊗ Lsj
⊗ · · · ⊗ Llj

combinatoricly, for some 1 ≤ sj ≤ m + 1 and sj−1 ≤ sj with (1j , . . . , lj)
totally ordered properly as in Proposition 4.4, and

Lk = ⊕( m
k−1)2m−1

[C0(Rm−k+1)⊗M2(C)] for 1 ≤ k ≤ m,

Lm+1 = C2m+1
.

Proof. This is obtained from that C∗(G) ∼= ⊗lC∗(Zm oα Z2) and the
composition series {I′k}m+1

k=0 of C∗(Zm oα Z2) obtained in Proposition 3.2.
Indeed, the closed ideals Ij are defined inductively as in the following:
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I1 = L1 ⊗ L1 ⊗ · · · ⊗ L1 = I′1 ⊗ I′1 ⊗ · · · ⊗ I′1,

I2 = I′2 ⊗ I′1 ⊗ · · · ⊗ I′1,

I3 is generated by I2 and I′1 ⊗ I′2 ⊗ I′1 ⊗ · · · ⊗ I′1;

I4 = I′2 ⊗ I′2 ⊗ I′1 · · · ⊗ I′1,

I5 is generated by I4 and I′1 ⊗ I′1 ⊗ I′2 ⊗ I′1 · · · ⊗ I′1; and similarly, . . . , and
finally, I(m+1)l−1 is generated by

C∗(Zm oα Z2)⊗ C∗(Zm oα Z2)⊗ · · · ⊗ C∗(Zm oα Z2)⊗ I′m,

I′m ⊗ C∗(Zm oα Z2)⊗ · · · ⊗ C∗(Zm oα Z2),

C∗(Zm oα Z2)⊗ I′m ⊗ C∗(Zm oα Z2)⊗ · · · ⊗ C∗(Zm oα Z2),

. . . . . . . . . . . . and

C∗(Zm oα Z2)⊗ · · · ⊗ C∗(Zm oα Z2)⊗ I′m ⊗ C∗(Zm oα Z2). ¤

Proposition 5.5 The group C∗-algebra C∗(G) of G = Πl(Zm oα Z2)
a finite product of the proper generalized discrete elementary ax + b group
Zm oα Z2 has the following topological stable rank estimate:

d(bm/2c)/2e+ 1 ≤ sr(C∗(G)) ≤ d(b(m + 1)/2c)/2e+ 1.

and the following connected stable rank estimate:

2 ≤ csr(C∗(G)) ≤ d(b(m + 1)/2c)/2e+ 1.

Proof. Applying the stable rank formulae as used in Propositions 2.3 and
3.4 to the composition series of C∗(G) obtained in Proposition 5.4, we esti-
mate it by reducing to the following maximum:

sr(C∗(G)) ≥ max
1≤k≤l

sr(⊗k(C0(Rm)⊗M2(C)))

= max
1≤k≤l

sr(C0(Rkm)⊗M2k(C)))

= max
1≤k≤l

d(sr(C0(Rkm))− 1)2−ke+ 1
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= max
1≤k≤l

d(bkm/2c)2−ke+ 1

and note that if k = 2l even, then

lm

22l
− (l + 1)m

22(l+1)
=

3
4
· lm

22l
− 1

4
· m

22l
> 0

and if k = 2l + 1 odd and m is even, then

(2l + 1)(m/2)
22l+1

− (2(l + 1) + 1)(m/2)
22(l+1)+1

=
3
4
· (2l + 1)(m/2)

22l+1
− 1

4
· m

22l+1
> 0

and if k = 2l + 1 odd and m is odd, then

((2l + 1)m− 1)/2
22l+1

− ((2(l + 1) + 1)m− 1)/2
22(l+1)+1

=
3
8
· (2l + 1)m− 1

22l+1
− 1

8
· 2m

22l+1
> 0

and therefore, the maximum is equal to

d(bm/2c)2−1e+ 1

in the case where k = 1.
Also, we estimate it by reducing to the following maximum:

sr(C∗(G)) ≤ max
1≤k≤l

{sr(⊗k(C0(Rm)⊗M2(C))), csr(⊗k(C0(Rm)⊗M2(C)))}

≤ max
1≤k≤l

{d(bm/2c)2−1e+ 1, csr(C0(Rkm)⊗M2k(C))}

≤ max
1≤k≤l

{d(bm/2c)2−1e+ 1, d(csr(C0(Rkm))− 1)/2ke+ 1}

≤ max
1≤k≤l

{d(bm/2c)2−1e+ 1, d(b(km + 1)/2c)/2ke+ 1}

and the similar computation as above shows that the maximum is equal to

d(b(m + 1)/2c)/2e+ 1.
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Moreover, we obtain

csr(C∗(G)) ≤ max
1≤k≤l

csr(⊗k(C0(Rm)⊗M2(C)))

≤ d(b(m + 1)/2c)/2e+ 1.

Since we have K1(C∗(G)) 6= 0 by Theorem 5.3, we obtain csr(C∗(G)) ≥ 2.
¤

Remark If G = Πl(Zm oα Z) is a finite product of the (non-proper)
generalized discrete elementary ax + b group Zm oα Z, then we can obtain
the similar composition series of C∗(G) ∼= ⊗lC∗(Zm oα Z) as given in the
case of Πl(ZmoαZ2), by using the finite composition series of C∗(ZmoαZ2)
obtained in Proposition 3.2 and viewing C∗(ZmoαZ) as the mapping torus
over C∗(Zm oα Z2). Consequently, we can deduce that

d(b(m + 1)/2c)/2e+ 1 ≤ sr(C∗(G)) ≤ d(b(m + 2)/2c)/2e+ 1.

and

2 ≤ csr(C∗(G)) ≤ d(b(m + 2)/2c)/2e+ 1.

by the same way as given in the proof above. These estimates give correc-
tions to the case where l = 1 given in [11].

In both the proper and non-proper cases, it is worth noting that those
stable ranks do not depend on the multiple l, i.e., a sort of stability of the
stable ranks in taking tensor products, in those cases.

6. Their inductive limits

Corollary 6.1 Let G = lim−→Πm(Z oα Z) be the inductive limit (i.e., the
direct sum) of finite products of the discrete elementary ax+ b group ZoαZ
under the canonical inclusions. Then

K0(C∗(G)) ∼= K1(C∗(G))

∼= lim−→(Z2m−1 ⊕ Z22m−2−2m−2

2 )

Proof. Use the result on the K-theory groups for the generalized discrete
elementary Mautner groups ZmoαZm ∼= Πm(ZoαZ) in Theorem 4.2. Note
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that C∗(G) is an inductive limit of the group C∗-algebras C∗(Πm(Zoα Z))
and

Kj(C∗(G)) = Kj(lim−→C∗(Πm(Z oα Z)))

∼= lim−→Kj(C∗(Πm(Z oα Z)))

for j = 0, 1, by continuity of K-theory (see [13]). ¤

Corollary 6.2 Let G = lim−→Πm(Z oα Z2) be the inductive limit of finite
products of the proper discrete elementary ax + b group Z oα Z2 under the
canonical inclusions. Then

K0(C∗(G)) ∼= lim−→(Z3m ⊕ Z2−2[5m−(2m+3)3m−1]
2 ),

K1(C∗(G)) ∼= lim−→Z2−2[5m+(2m−3)3m−1]
2 .

Proof. Use the result on the K-theory groups for the proper generalized
discrete Mautner groups Zm oα Zm

2
∼= Πm(Z oα Z2) in Theorem 4.3. The

rest of the proof is the same as that of Corollary 6.1. ¤

Corollary 6.3 Let G = lim−→Πl(Zm oα Z) be the inductive limit of finite
products of the generalized discrete elementary ax + b group Zmoα Z under
the canonical inclusions. Then

K0(C∗(G)) ∼= K1(C∗(G))

∼= lim−→(Z2lm−1 ⊕ Z2(m+1)l−2−2lm−2

2 ).

Proof. Use the result on the K-theory groups for finite products of the
generalized discrete elementary ax+ b groups ZmoαZ in Theorem 5.2. The
rest of the proof is the same as that of Corollary 6.1. ¤

Corollary 6.4 Let G = lim−→Πl(Zm oα Z2) be the inductive limit of finite
products of the proper generalized discrete elementary ax+b group ZmoαZ2

under the canonical inclusions. Then

K0(C∗(G)) ∼= lim−→(Z(2m+1)l ⊕ Z2−2[(2m+1+1)l−(2m+1)l−1(2m(l+1)+1)]
2 ),

K1(C∗(G)) ∼= lim−→Z2−2[(2m+1+1)l+(2m+1)l−1(2m(l−1)−1)]
2
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Proof. Use the result on the K-theory groups for finite products of the
proper generalized discrete elementary ax + b groups Zmoα Z2 in Theorem
5.3. The rest of the proof is the same as that of Corollary 6.1. ¤

Remark It is shown in [12] that the K-theory groups K0 and K1 of the
group C∗-algebras of finitely generated, discrete nilpotent groups without
torsion (and even their inductive limits) are isomorphic. But now we can
know the difference between the nilpotent case considered in [12] and the
non-nilpotent, solvable case as revealed concretely above. This is also the
main purpose to exhibit those concrete examples.

Corollary 6.5 Let G = lim−→Πm(Z oα Z2) be the inductive limit of finite
products of the proper discrete elementary ax + b group Z oα Z2 under the
canonical inclusions. Then

sr(C∗(G)) ≤ 2, and csr(C∗(G)) = 2.

Proof. By [7] and [5] we have

sr(C∗(G)) ≤ lim inf sr(C∗(Πm(Z oα Z2))) = 2,

csr(C∗(G)) ≤ lim inf sr(C∗(Πm(Z oα Z2))) = 2

by our result Proposition 4.5 on the stable ranks for C∗(Zm oα Zm
2 ). Since

K1(C∗(G)) 6= 0 by Corollary 6.2, we have csr(C∗(G)) ≥ 2. ¤

Remark It is very likely that sr(C∗(G)) = 2, but this would be another
task to check this. What we need to show it would be a sort of reverse
inequality for the stable ranks of inductive limits if any. Or another K-
theory obstruction (possibly Fredholm index, already known, or not it) to
have stable rank more than one.

Corollary 6.6 Let G = lim−→Πl(Zm oα Z2) be the inductive limit of finite
products of the proper generalized discrete elementary ax+b group ZmoαZ2

under the canonical inclusions. Then

sr(C∗(G)) ≤ d(b(m + 1)/2c)/2e+ 1.

and

2 ≤ csr(C∗(G)) ≤ d(b(m + 1)/2c)/2e+ 1.



K-theory for the C*-algebras of solvable discrete groups 259

Proof. The proof is the same as above by using Proposition 5.5 and Corol-
lary 6.4. ¤
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