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A construction of special Lagrangian 3-folds via

the generalized Weierstrass representation

Saki Okuhara

(Received May 7, 2012)

Abstract. We show that certain holomorphic loop algebra-valued 1-forms over Rie-

mann surfaces yield minimal Lagrangian immersions into the complex 2-dimensional

projective space via the Weierstrass type representation, hence 3-dimensional special

Lagrangian submanifolds of C3. A particular family of 1-forms on C corresponds to

solutions of the third Painlevé equation which are smooth on (0, +∞).

Key words: special Lagrangian submanifold, harmonic map, Painlevé equation.

1. Introduction

The study of special Lagrangian submanifolds related with integrable
systems arose in [13], where Joyce gave an explicit construction of special
Lagrangian submanifolds in C3 with the rich developed theory of harmonic
maps relating to integrable systems. In the present paper we provide another
construction of special Lagrangian submanifolds in C3 based on [13], using
the generalized Weierstrass representation.

We begin in Section 2 with a brief survey of harmonic maps ψ : S →
CPn of a Riemann surface S into the complex projective space CPn and
a related integrable system. Harmonic maps from a Riemann surface have
been well-studied. Each harmonic map ψ : S → CPn defines a sequence
{ψk} of harmonic maps called the harmonic sequence [4], [23]. In particular,
superconformal harmonic maps ψ : S → CPn, whose harmonic sequences
are periodic with period n + 1, correspond to solutions of the affine Toda
equations for SU(n + 1) [3].

We can apply this to special Lagrangian submanifolds in C3. Special
Lagrangian submanifolds are minimal Lagrangian submanifolds in Calabi-
Yau manifolds, originally defined in calibrated geometry [11]. A large amount
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of research on them has been motivated by the mirror symmetry conjecture
of Strominger, Yau and Zaslow [20]. Section 3 gives a review of special
Lagrangian geometry and its relationship with harmonic maps and inte-
grable systems building on [16], [19], and pointed out in [13]. A special
Lagrangian cone in Cn+1 has intersection Σ with the (2n + 1)-dimensional
sphere S2n+1 which is a minimal Legendrian submanifold of S2n+1. The
image π(Σ) of the natural projection π : S2n+1 → CPn is minimal La-
grangian, therefore a minimal Lagrangian immersion ψ : Σ → CPn is ob-
tained. The converse statement is also true locally. Adapting Section 2 to
the case of n = 2, the affine Toda equations for SU(3) derived from a minimal
Lagrangian immersion ψ : Σ → CP2 reduce to an equation called the
Tzitzéica equation.

In Section 4 we reformulate the generalized Weierstrass representation
[8], a method to construct harmonic maps ψ : S → G/K of a simply-
connected Riemann surface into a compact symmetric space through loop
groups. Every harmonic map ψ : S → G/K can be obtained from a class of
holomorphic 1-forms on S called holomorphic potentials. Here we consider
the scheme where the target space is a homogeneous space following [6].

The generalized Weierstrass representation can be applied to the frame-
work in Section 3. We give in Section 5 the condition for holomorphic
potentials to yield minimal Lagrangian immersions ψ : S → CP2, hence
special Lagrangian cones in C3.

In Section 6 we specialize to holomorphic potentials of the form

µ =
1
λ




pzk

pzk

qzl


 dz,

where k, l are nonnegative integers and p, q are nonzero complex numbers.
They produce a family of special Lagrangian cones over the entire complex
plane C and the corresponding solutions of the Tzitzéica equation are in-
variant under coordinate changes by rotation. In this situation the Tzitzéica
equation reduces to a special case where the complex constants β, γ of the
third Painlevé equation for |z|

d2y

dx2
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1
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are zero and our solutions are smooth on (0,+∞). These special solutions of
the third Painlevé equation are known [2], but their relationship to special
Lagrangian cones seems to be new.

The author is grateful to Professor Martin Guest for much support and
many suggestions. She would like to also thank Professor Yoshihiro Ohnita
and Professor Yousuke Ohyama for helpful advice.

2. Harmonic maps and integrable systems

2.1. Harmonic maps into homogeneous spaces
A harmonic map ψ : M → N is a smooth map of Riemannian manifolds

which is a critical point of the energy functional

E(ψ, D) =
1
2

∫

D

|dψ(x)|2vM (2.1)

for all smooth variations ψt of ψ supported in a compact domain D, where
vM is the volume form of M . The map ψ is harmonic if and only if its
tension field

τ(ψ) = tr(∇dψ) (2.2)

vanishes identically. Here ∇ denotes the connection on T ∗M ⊗ ψ−1TN

induced by the Levi-Civita connections on M and N . The equation

τ(ψ) = 0

is the Euler-Lagrange equation for the variation (2.1).
If N is a reductive homogeneous space, the associated Euler-Lagrange

equation can be written more explicitly. We recall some facts on harmonic
maps into Lie groups briefly [22]. Let G be a Lie group with its Lie algebra g

and θ the (left) Maurer-Cartan form on G, a left-invariant g-valued 1-form.
It can be verified that θ satisfies the Maurer-Cartan equation

dθ +
1
2
[θ ∧ θ] = 0, (2.3)

here [θ ∧ θ] is defined by [θ ∧ θ](X, Y ) = 2[θ(X), θ(Y )] for X, Y ∈ TgG and
g ∈ G.
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Let ψ : M → G be a smooth map of a Riemannian manifold. A g-
valued 1-form α on M , defined by α = ψ∗θ, also satisfies the Maurer-Cartan
equation

dα +
1
2
[α ∧ α] = 0, (2.4)

by pulling back (2.3). This fact shows that the connection d + α on the
trivial principal G-bundle over M is flat. Now ψ is harmonic if and only if

d∗α = 0. (2.5)

The above formulation can be extended to the case of a harmonic map
into a reductive homogeneous space (cf. [6], [24]). Let N = G/K be a
reductive homogeneous space, where G is a Lie group and K is a closed
subgroup of G. Let g be the Lie algebra of G, k the Lie algebra of K, and
the reductive decomposition g = k⊕m. The map g → TxN , defined by

ξ 7→ d

dt
(exptξ) · x

∣∣∣∣
t=0

at each x = gK ∈ N , is surjective and then induces an isomorphism
Ad(g)(m) → TxN . It easily leads to a bundle isomorphism [m] → TN

of the subbundle [m] = G×Km in the trivial bundle N × g. Its inverse map
β : TN → [m] can be considered as a g-valued 1-form on N at each x ∈ N ,
and it is again called the Maurer-Cartan 1-form on N [6]. As in the case of
G, one can show that a smooth map ψ : M → N of a Riemannian manifold
is harmonic if and only if

d∗ψ∗β = 0. (2.6)

We can also interpret the harmonicity of ψ : M → N in terms of a frame,
which is a map F : M → G satisfying π◦F = ψ. Here π : G → N = G/K is
the coset projection (or the homogeneous projection) [6]. Let ψ : M → N

be a smooth map and F : M → G a frame of ψ, and define α = F−1dF .
The reductive decomposition g = k⊕m gives a decomposition

α = α0 + α1,

where α0, α1 are respectively k-valued, m-valued 1-forms on M . Note that
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ψ∗β = Ad(F )(α1), and then it can be verified that (2.6) is equivalent to

d ∗ α1 + [α ∧ ∗α1] = 0. (2.7)

Suppose that M is a Riemann surface and α1 = α′1 + α′′1 is a decomposition
according to types TCM = T ′M ⊕ T ′′M . If

[α′1 ∧ α′′1 ] takes values only in k, (2.8)

the condition for ψ : M → N to be harmonic reduces to

dα′1 + [α0 ∧ α′1] = dα′′1 + [α0 ∧ α′′1 ] = 0,

dα0 +
1
2
[α0 ∧ α0] + [α′1 ∧ α′′1 ] = 0.

(2.9)

This reduction holds whenever N is a symmetric space since (2.8) holds.
Conversely, if M is simply-connected, α0 respectively α1 are k- respectively
m-valued 1-forms on M satisfying (2.8) and (2.9), then there exists a unique
harmonic map ψ = π◦F : M → N where F : M → G with F−1dF = α0+α1

up to the left translation of G.

2.2. Primitive maps
Suppose that G is a compact semisimple Lie group, σ : G → G is an

automorphism with order k, ζ = e2πi/k is the primitive k-th root of unity,
and K is the fixed point set of σ. Then the coset space G/K is a reductive
homogeneous space, called a k-symmetric space [15].

The automorphism σ : G → G induces an automorphism on the Lie
algebra g of G, which we denote again by σ. Note that the fixed point set
of σ coincides with the Lie algebra k of K. We can see that σ gives an
eigenspace decomposition of the complexification gC of g:

gC =
∑

j∈Zk

gj (2.10)

where gj is the ζj-eigenspace of σ. For the reductive decomposition g = k⊕m,
it is easy to check

g−j = ḡj , kC = g0 and mC =
∑

j∈Zk\{0}
gj .
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As K preserves gj , we have a decomposition

TC(G/K) =
⊕

j∈Zk\{0}
[gj ]

of the complexification of T (G/K). Here [gj ] is a subbundle of the trivial gC-
bundle over G/K where [gj ]gK = Ad(g)(gj). Let S be a Riemann surface,
z a complex local coordinate of S and N = G/K a k-symmetric space for
k ≥ 3. A smooth map φ : S → N is called primitive if

dφ

(
∂

∂z

)
∈ [g1],

which is equivalent to

F−1 ∂F

∂z
∈ g0 ⊕ g1 (2.11)

for a frame F : S → G of φ. We say that a map into a homogeneous
space G/H is equiharmonic if it is harmonic with respect to any G-invariant
metric on G/H. By [1], primitive maps are equiharmonic, and also project
to equiharmonic maps under any homogeneous projection.

2.3. The affine Toda equations
The affine Toda (or the Toda lattice) equations are well-known as an

integrable system related to soliton theory. The affine Toda equations for
SU(n + 1) are the following non-linear partial differential equations:

2
∂2wk

∂z∂z̄
= e2(wk+1−wk) − e2(wk−wk−1), (2.12)

where wk : U → R for k ∈ Z are smooth functions satisfying

wk+n+1 = wk,

w0 + · · ·+ wn = 0.

Here U is an open subset of a Riemann surface S and z is a complex co-
ordinate of U . More generally, they can be given for an arbitrary compact
simple Lie group although we will deal with only the case of SU(n + 1) in
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this paper.
Suppose that φ : S → SU(n + 1)/T is a smooth map of a Riemann

surface, where T is the standard maximal torus of SU(n + 1) with its Lie
algebra t. A (local) frame F : U → SU(n + 1) is said to be a Toda frame
if there exist a complex coordinate z on U and a smooth map W : U → it

such that

F−1 ∂F

∂z
=

∂W

∂z
+ Ad(expW )(B) (2.13)

where

B =




1
1

. . .
1


 ∈ su(n + 1)C.

Here W may be written as W = diag(w0, . . . , wn) with smooth functions
wk : U → R.

Toda frames can be interpreted as frames of primitive maps φ :
S → SU(n + 1)/T . Defining an automorphism ν on SU(n + 1) by ν =
Ad(diag(1, ζ, . . . , ζn)) with ζ = e2πi/n, then there is a decomposition

su(n + 1)C =
∑

j∈Zn

gj

where gj is the ζj-eigenspace of ν. Note that g0 is the complexification tC

of t. In particular, g1 is written as

g1 =








a1,n+1

a2,1
. . .

an+1,n




∣∣∣∣∣∣∣∣
a1,n+1, a2,1, . . . , an+1,n ∈ C





.

An element of g1 will be called cyclic if a1,n+1, a2,1, . . . , an+1,n are in C\{0},
and we call an element [ξ̂] of [g1] cyclic when there exists a cyclic element ξ

of g1 such that [ξ̂]gT = Ad(g)(ξ).
According to [8], under an appropriate coordinate change, a primitive

map φ : S → SU(n+1)/T gives a Toda frame F of φ around p ∈ S such that



182 S. Okuhara

dφ(∂/∂z) is cyclic at p. Moreover, the smooth functions w0, . . . , wn, which
have the form W = diag(w0, . . . , wn) in (2.13), are solutions of (2.12).

Given a solution w0, . . . , wn of (2.12) conversely, there exists a local
SU(n + 1)-valued solution F of (2.13) for W = diag(w0, . . . , wn), and φ =
π ◦ F : U → SU(n + 1)/T is primitive. Therefore, F is a Toda frame of φ.

2.4. The harmonic sequences
Solutions of (2.12) can be also constructed from harmonic sequences [3].

Let S be a connected Riemann surface, z a local complex coordinate on S

and ψ : S → CPn a harmonic map.
Now suppose that L0 is a complex line subbundle of the trivial bundle

S × Cn+1 determined by ψ : S → CPn, where a section s of L is said to
be holomorphic if ∂s/∂z̄ is orthogonal to L with respect to the standard
Hermitian inner product 〈 , 〉 on Cn+1. By the bundle maps (1, 0)- and
(0, 1)-part of dψ, we can obtain a sequence {Lk} of complex line subbundles
Lk of S × Cn+1 in which any two adjacent elements are orthogonal, and
correspondingly, a sequence {ψk} of harmonic maps ψk : S → CPn with
ψ0 = ψ, which we call the harmonic sequence associated to ψ [4], [23].

The harmonic sequence can be locally represented as follows. Let f0 be
a nowhere zero holomorphic local section of L0, then there exists a sequence
of meromorphic local sections fk of Lk such that

〈fk, fl〉 = 0,

∂fk

∂z
= fk+1 +

∂

∂z
(log |fk|2)fk and

∂fk

∂z̄
= − |fk|2

|fk−1|2
fk−1.

(2.14)

From the construction, it follows that adjacent elements fk and fk+1 are
orthogonal for all k ∈ Z. We also point out that the sequence {fk} is unique
up to multiplication by nonzero holomorphic functions.

A harmonic map ψ : S → CPn will be called superminimal or (complex)
isotropic if its harmonic sequence is finite. Such maps are well-understood
as they arise from holomorphic maps. It is known that every harmonic map
ψ : S → CPn is superminimal if S = S2 [9].

We shall consider the orthogonality of the harmonic sequence. Maps
ψk, ψl : S → CPn are said to be orthogonal when the determined lines in
Cn+1 are orthogonal at each point of S. It is shown in [4] that if some
k consecutive elements in the harmonic sequence are mutually orthogonal
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then every k consecutive elements in the sequence are mutually orthogonal.
A harmonic map ψ : S → CPn is called k-orthogonal if some (therefore,

every) k consecutive maps in the harmonic sequence are mutually orthogo-
nal. Any harmonic map ψ : S → CPn is 2-orthogonal, and ψ is conformal
if and only if ψ is 3-orthogonal. For dimensional reasons, ψ is at most
(n + 1)-orthogonal. Now we will introduce

Definition 2.1 A harmonic map ψ : S → CPn is superconformal if ψ is
(n + 1)-orthogonal, and not superminimal.

The harmonic sequence for a superconformal harmonic map ψ : S →
CPn has periodicity with period n + 1. Note that every harmonic map
ψ : S → CP1 is either superminimal or superconformal, and so is every
conformal map ψ : S → CP2; besides, a superconformal harmonic map
ψ : S → CPn for n ≥ 2 is conformal, so that an immersion.

Suppose that ψ : S → CPn is superconformal and {Lk} is the corre-
sponding sequence of complex line subbundles. Then, it is proved in [3] that
the lift Φ : S → SU(n + 1)/T defined by

Φ = (L0, . . . Ln)

is primitive, and conversely, a primitive map φ : S → SU(n + 1)/T with a
cyclic element dψ(∂/∂z) projects to a superconformal map ψ = π ◦ φ : S →
CPn, whose lift Φ equals φ.

We can see that ψ also gives solutions of (2.12) rather explicitly. Let
z be a complex coordinate on a simply-connected open subset U of S, and
{fk} a sequence which satisfies (2.14) over U with ψ = [f0]. As the harmonic
sequence of ψ is periodic, we can equip {fk} with the periodicity fk+n+1 = fk

for any k ∈ Z, by appropriate coordinate changes. Then it turns out that
the functions w0, . . . , wn defined by ewk = |fk| satisfy (2.12).

3. Special Lagrangian submanifolds in C3 and harmonic maps

3.1. Special Lagrangian submanifolds
We say that (M, J, ω, Ω) is a Calabi-Yau manifold if (M, J, ω) is an n-

dimensional (n ≥ 2) Kähler manifold with a Kähler form ω, and Ω is a
nonzero holomorphic n-form on M satisfying
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ωn

n!
= (−1)n(n−1)/2

(
i

2

)n

Ω ∧ Ω̄.

This is one of the definitions of Calabi-Yau manifolds. Note that Ω is
uniquely determined up to multiplication by U(1) (in the sense of the above
definition). Further, it is known that a Calabi-Yau manifold is Ricci-flat,
and has its holonomy in SU(n). Here is the simplest example of Calabi-Yau
manifolds, which we will deal with in the present paper.

Example 3.1 Let (Cn, J) be the n-dimensional complex Euclidean space
with the standard complex structure J , ω a Kähler form and Ω a holomor-
phic n-form on Cn defined by

ω =
i

2

n∑

j=1

dzj ∧ dz̄j and Ω = dz1 ∧ · · · ∧ dzn,

where (z1, . . . zn) is the standard coordinate system in Cn. Then,
(M, J, ω, Ω) is a Calabi-Yau manifold.

Definition 3.2 Let (M, J, ω, Ω) be an n-dimensional Calabi-Yau mani-
fold. A real n-dimensional oriented submanifold N of M is called a special
Lagrangian submanifold if

ReΩ|N = volN , (3.1)

where volN is the induced volume form on N .

The condition (3.1) is equivalent to

ω|N = 0 and Im Ω|N = 0,

so special Lagrangian submanifolds can be considered as Lagrangian sub-
manifolds with the additional condition ImΩ|N = 0. They are also minimal
submanifolds; more generally, calibrated submanifolds [11]. For calibrated
geometry, see [11], [14]. A good summary of special Lagrangian geometry
may be found in [10].

3.2. Special Lagrangian cones and harmonic maps
We shall take immersed submanifolds into account henceforth. A singu-

lar submanifold C in Cn will be called a (real) cone if 0 ∈ C and tC = C for
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any t ∈ R+. When C is a linear subspace of Cn, which we call a trivial cone,
it is nonsingular. Otherwise, each cone has a singular point at the origin.

Let C be a special Lagrangian cone in Cn+1. Then the intersection
Σ = C∩S2n+1 with S2n+1 turns out to be a minimal Legendrian submanifold
in S2n+1. Conversely, given a minimal Legendrian submanifold Σ of S2n+1,
we have a special Lagrangian cone

C(Σ) = {tx | x ∈ Σ, t ∈ R+} ∪ {0}

in Cn+1 (cf. [12]).
Suppose π : S2n+1 → CPn is the natural projection. Then every min-

imal Legendrian submanifold of S2n+1 is mapped by π onto a minimal
Lagrangian submanifold of CPn. The converse is also true, at least locally
(cf. [17]).

We shall describe the above framework for n = 2 in terms of harmonic
maps. Consider a special Lagrangian cone C in C3. Now Σ can be regarded
as a 2-dimensional oriented submanifold with the induced metric and ori-
entation, and hence a Riemann surface. Let f : Σ → S5 be the inclusion
map. Clearly f is conformal and minimal, therefore a harmonic map from a
Riemann surface. Furthermore, the composition map ψ = π ◦ f : Σ → CP2

is a minimal Lagrangian immersion. Note that we may take an arbitrary
complex local coordinate system of Σ by the fact that the condition (3.1) to
be harmonic is invariant under conformal changes, then we obtain a mini-
mal Lagrangian immersion ψ : Σ → CP2 from a Riemann surface Σ. The
converse discussion enables us to construct a special Lagrangian cone in C3

from such a map.
We shall give a comment about trivial special Lagrangian cones. Sup-

pose that C is a trivial special Lagrangian cone in C3. Its intersection Σ
with S5 can be identified with S2, so that the induced minimal Lagrangian
immersion ψ : Σ → CP2 is superminimal by the fact in Section 2.4. Con-
versely, if a minimal immersion ψ : S → CP2 from a Riemann surface S

is superminimal Lagrangian, the special Lagrangian cone coming from a
lift f : S → S5 of ψ can be identified with a real 3-dimensional subspace.
This is because ψ is conformal then its harmonic sequence has exactly 3
elements, the maximum possible length. Note that the harmonic sequence
of ψ : S → CPn has length n + 1 if and only if ψ is linearly full (that is,
if its image is in no proper complex projective subspace of CPn). Then
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it turns out from [4, Theorem 3.6] that ψ(S) is contained in RP2, hence
C(S) is equivalent to R3. Recall that each conformal map ψ : S → CP2

is either superminimal or superconformal, then we deduce that a special
Lagrangian cone C in C3 is nontrivial if and only if the corresponding min-
imal Lagrangian immersion ψ : S → CP2 is superconformal.

3.3. Superconformal minimal Lagrangian maps into CP2

Suppose ψ : S → CP2 is a harmonic map of a Riemann surface S. Then
there exist the harmonic sequence {ψk} of ψ and a sequence {fk} of local
sections of the corresponding sequence of bundles {Lk}. Let z = x + iy

be a local complex coordinate on an open subset U of S, 〈 , 〉 the standard
Hermitian inner product on C3, and ω the Fubini-Study form on CP2. The
induced form ψ∗kω on S is written as

ψ∗kω =
( |fk|2
|fk−1|2 −

|fk+1|2
|fk|2

)
dx ∧ dy,

which shows that each ψk has Lagrangian image if only if

|fk|
|fk−1| =

|fk+1|
|fk| . (3.2)

Let C be a nontrivial special Lagrangian cone in C3. As in Section
3.2, we have a superconformal Lagrangian immersion ψ : S → CP2 from a
Riemann surface S and a minimal Legendrian immersion f : S → S5. Then

〈
f,

∂f

∂x

〉
= 0 and

〈
f,

∂f

∂y

〉
= 0

because f is perpendicular to the tangent space of S5, and

ω

(
f,

∂f

∂x

)
= 0 and ω

(
f,

∂f

∂y

)
= 0

since C is a Lagrangian submanifold of C3. Then

〈
f,

∂f

∂z̄

〉
= 0, (3.3)
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so that f is a holomorphic section of the line bundle L0 coming from ψ0 = ψ.
Now there is a sequence {fk}k∈Z with f0 = f defined by (2.14) satisfying

|f0| ≡ 1, (3.4)

and

1
|f−1| = |f1| (3.5)

by (3.2) and (3.4). More specifically, we have

∣∣∣∣
∂f

∂z

∣∣∣∣ =
∣∣∣∣
∂f

∂z̄

∣∣∣∣ (3.6)

from (2.14) and (3.5). Note that (3.6) is equivalent to

ω

(
∂f

∂x
,
∂f

∂y

)
= 0, (3.7)

the other condition for C to be Lagrangian.
Therefore, we have seen that superconformal minimal maps ψ : S →

CP2 coming from special Lagrangian cones in C3 are locally characterised
by its lifts f : S → S5 satisfying (3.3) and (3.7).

3.4. Primitive maps for special Lagrangian cones in C3

We shall now describe the relationship between special Lagrangian cones
in C3 and certain primitive maps [17, Proposition 2]. Let ψ : S → CP2 be
superconformal, {ψk} with ψ0 = ψ the harmonic sequence of ψ, {Lk} the
corresponding sequence of complex line bundles, and {fk} the associated
sequence of local sections on an open subset U of S satisfying (2.14). As
mentioned before, {fk} is unique up to multiplication by nowhere zero holo-
morphic functions on U . We may assume

fk+3 = fk (3.8)

for any k ∈ Z by a suitable holomorphic coordinate change and |f0| ≡ 1
from now on.

Define the family
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F = {(p, V ) ∈ S5 ×Gr2(C3) | p ∈ V }. (3.9)

Here Gr2(C3) is the complex Grassmann manifold of complex 2-planes in
C3. It is easy to see that SU(3) acts on F transitively, and the isotropy
subgroup of V ∈ F is of the form

{diag(1, eiθ, e−iθ) | θ ∈ [0, 2π]},

which we denote by K. Then F is isomorphic to SU(3)/K, and therefore
identifying F with SU(3)/K allows us to define a map Ψ : U → SU(3)/K by

Ψ(z) = (f0(z), V (z)) (3.10)

for {fk}. Here V (z) is a complex 2-dimensional subspace in C3 containing
L1(z) and L2(z), the fibres of L1 and L2 over U , where z is some complex
coordinate on U . We can also consider SU(3)/K as a homogeneous space
determined by an automorphism σ = ξ ◦ ν of SU(3), where ν and ξ are
automorphisms of SU(3) defined by

ν(g) = Ad(T1)(g) and ξ(g) = T2(g−1)tT2
−1

for g ∈ SU(3). Here T1 = diag(1, ζ3, ζ
2
3 ) for ζ3 = e2πi/3 and

T2 =




1
1

1


 .

This framework can be explained from a twistorial viewpoint. For the detail,
see [17].

As in section 2.2, there is an eigenvalue decomposition

su(3)C = sl(3,C) =
∑

j∈Z5

ĝj

where ĝj is the (−ζ3)j-eigenspace of σ. In particular, we have

ĝ0 =








0
α

−α




∣∣∣∣∣∣
α ∈ C



 and ĝ1 =








α
α

β




∣∣∣∣∣∣
α, β ∈ C



 .
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Suppose Ψ is primitive. Then

dΨ
(

∂

∂z

)
∈ [ĝ1],

which is equivalent to

F−1 ∂F

∂z
∈ ĝ0 ⊕ ĝ1 (3.11)

for a frame F of Ψ. Note that a frame F : U → SU(3) of Ψ may be written
as

F = (f0, F1, F2),

where

F1 = λ1
f1

|f1| and F2 = λ2
f2

|f2|

for some function λj : U → C with |λj | ≡ 1 for j = 1, 2. A straightforward
calculation shows that the condition for F to satisfy (3.11) is

〈
f0,

∂F2

∂z

〉
=

〈
F1,

∂f0

∂z

〉
, (3.12)

while
〈

F1,
∂F1

∂z

〉
+

〈
F2,

∂F2

∂z

〉
= 0

is the necessary condition to be a frame. Further, (3.12) can be rewritten as

λ2

|f2| = λ̄1|f1|

and by |λ1| = |λ2| = 1,

1
|f2| = |f1|.

Hence ψ is a minimal Lagrangian immersion by (3.2), so we deduce
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Proposition 3.3 Let ψ : S → CP2 be superconformal. If the map Ψ :
U → SU(3)/K defined by (3.10) is primitive, then ψ is a minimal Lagrangian
immersion.

Conversely, suppose that ψ has Lagrangian image. By (2.14), we see
that

∂

∂z̄
det(f0, f1, f2) = 0

for {fk}, so that D = det(f0, f1, f2)−1/3 is a holomorphic function on U .
On the other hand,

|det(f0, f1, f2)| =
∣∣∣∣det

(
f0,

f1

|f1| ,
f2

|f2|
)∣∣∣∣ = 1

by |f0| ≡ 1 and (3.2), hence |D| ≡ 1. Thus, we can replace fk by

f̂k = Dfk.

Define Ψ = (f̂0, L1, L2) and write a frame F̂ of Ψ as

F̂ = (f̂0, F̂1, F̂2)

where

F̂1 = λ̂1
f̂1

|f̂1|
and F̂2 = λ̂2

f̂2

|f̂2|

for some function λ̂j on U for j = 1, 2. From |f̂0| ≡ 1 and (3.2), we have

1 = detF̂ = λ̂1λ̂2|f̂1|
−1|f̂2|

−1
det(f̂0, f̂1, f̂2)

= λ̂1λ̂2D
3det(f0, f1, f2)

= λ̂1λ̂2, (3.13)

and then (3.12) holds for F̂ . We summarize

Proposition 3.4 Let ψ : S → CP2 be a superconformal minimal La-
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grangian immersion. Then there exists some {fk} which defines Ψ : U →
SU(3)/K to be primitive.

3.5. Special Lagrangian cones in C3 and the Tzitzéica equation
In Section 2.4 we have shown that a superconformal map ψ : S → CP2

gives solutions of (2.12). For a holomorphic section f0 of L0 such that
|f0| ≡ 1, (2.12) reduces to

∂2w

∂z∂z̄
= e−2w − ew, (3.14)

which is called the Tzitzéica equation [21]. It is also known as the Bullough-
Dodd equation [5].

4. The generalized Weierstrass representation

4.1. Loop groups
A loop group is a space of maps from S1 into a Lie group, to which both

algebraic and analytic techniques can be applied. In this section we shall
provide several loop groups for the generalized Weierstrass representation.
More information can be found in [18].

Suppose that G is a compact semisimple Lie group with its Lie algebra
g, σ is an automorphism of G with order k, K is the σ-fixed subgroup of
G. Let σ again denote the automorphism on g induced by σ. Then the
Lie algebra k of K is the fixed subalgebra by σ. Recall that there is the
reductive splitting g = k⊕m.

The loop group

(ΛGC)σ =
{
g : S1 → GC | g(ζλ) = σg(λ) for all λ ∈ S1

}

is called the (free) twisted loop group. Here GC is the complexification of G

and ζ = e2πi/k is the primitive k-th root of unity. Its Lie algebra, called the
twisted loop algebra, is given by

(ΛgC)σ =
{
X : S1 → gC | X(ζλ) = σX(λ) for all λ ∈ S1

}

with the Sobolev Hs-topology for s > 1/2. Let D = {λ ∈ C | |λ| < 1} and
let H be a subgroup of KC with Lie algebra h. We also define subgroups
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(ΛG)σ =
{
g ∈ (ΛGC)σ | g(λ) ∈ G for all λ ∈ S1

}

(Λ+
HGC)σ =

{
g ∈ (ΛGC)σ | g extends holomorphically to D and g(0) ∈ H

}

Here we omit H if it equals KC. For X ∈ (ΛgC)σ, there is a Fourier decom-
position

X =
∑

j∈Z
λjXj for Xj ∈ gj

where gj is the ζj-eigenspace of σ. It enables us to represent the Lie algebras
of (ΛG)σ and (Λ+

HG)σ as

(Λg)σ =
{
X ∈ (ΛgC)σ | Xj = X̄j for all j ∈ Z}

(Λ+
h gC)σ =

{
X ∈ (ΛgC)σ | Xj = 0 for j > 0 and X0 ∈ h

}

where the conjugation is with respect to the real form g.
Suppose that GC = G · Ĥ is an Iwasawa decomposition of GC, where

Ĥ is a suitable solvable subgroup. Then, there is the following loop group
decomposition [18]

ΛGC = ΛG× Λ+
bHGC.

For an Iwasawa decomposition KC = K ·H, where H is a solvable subgroup
of KC with kC = k⊕ h, the twisted loop group decomposition

(ΛGC)σ = (ΛG)σ · (Λ+
HGC)σ (4.1)

and its Lie algebra decomposition

(ΛgC)σ = (Λg)σ · (Λ+
h gC)σ (4.2)

has been established in [8].

4.2. Harmonic maps via loops
Harmonic maps into a homogeneous space in Section 2.1 can be de-

scribed in terms of loop groups, by introducing an S1-parameter [8], [22].
This parameter is often called a spectral parameter.
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Suppose that S is a simply-connected Riemann surface and α = α0 +α1

is the g-valued 1-form on S given in Section 2.1. Consider the Λg-valued
1-form

Aλ = λ−1α1
′ + α0 + λα1

′′ (4.3)

on S. Comparing coefficients of λ, we can show that Aλ satisfies

dAλ +
1
2
[Aλ ∧Aλ] = 0 (4.4)

for all λ ∈ S1 with if (2.8) and (2.9) hold. Conversely, if (2.8) and (4.4)
hold, there exists a map Fλ : S → G satisfying

F−1
λ dFλ = Aλ,

and then ψλ = π ◦ Fλ : S → G/K is harmonic for each λ ∈ S1. Introducing
a twisted loop group (ΛG)σ can simplify the above discussion. It is easy to
check that (2.8) is deduced from any (Λg)σ-valued 1-form

A = λ−1α1
′ + α0 + λα1

′′. (4.5)

Therefore, there exists a map F : S → (ΛG)σ with

F−1dF = A (4.6)

so that ψ = π ◦ F1 : S → G/K is harmonic, where F (z)(λ) = Fλ(z).
Conversely, if ψ : S → G/K is a harmonic map preserving (2.8), we can find
a map F : S → (ΛG)σ with (4.5) and (4.6) such that π ◦ F1 = ψ, which we
call an extended lift of ψ.

4.3. The generalized Weierstrass representation
Suppose S is C or its simply-connected open subset with a complex

coordinate z. Recall that there is an eigenspace decomposition (2.10) of gC

and define

Λ−1,∞ =
{
X ∈ (ΛgC)σ | λX extends holomorphically to |λ| < 1

}
,

which is a closed subspace of (ΛgC)σ. Note that (Λ+
HG)σ acts on Λ−1,∞ by

the adjoint action. Using a Fourier series decomposition, one can see that
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X ∈ Λ−1,∞ if and only if X may be written as

X =
∑

k≥−1

λkXk

where Xk ∈ gk for k ≥ −1.

Definition 4.1 We call µ a holomorphic potential if µ is a Λ−1,∞-valued
holomorphic 1-form on S.

Clearly, a holomorphic potential µ is of the form

µ =
∑

k≥−1

λkµk,

where µk are gk-valued holomorphic 1-forms on S. Let µ be a holomorphic
potential. Then there exists a unique map Lµ : S → (ΛGC)σ satisfying

L−1
µ dLµ = µ

with an initial condition Lµ(0) = e. By (4.1), Lµ is decomposed into

Lµ = FµBµ, (4.7)

and then we obtain a map Fµ : S → (ΛG)σ with Fµ(0) = e. A short
calculation shows that Fµ satisfies (4.6), thus Fµ is an extended lift of the
harmonic map ψ = π ◦ (Fµ)1 : S → G/K.

5. Constructing special Lagrangian cones in C3 by the general-
ized Weierstrass representation

We now give a construction of special Lagrangian cones in C3 with the
generalized Weierstrass representation. Here, let us adopt the same settings
as Section 3.4.

Theorem 5.1 Let z be a complex coordinate on a simply-connected
open subset U of C and µ a holomorphic potential with µ−1 whose en-
tries are nowhere vanishing holomorphic functions on U . Suppose that
ψ̂ : U → SU(3)/K is the harmonic map generated from µ through the
generalized Weierstrass representation, and π : SU(3)/K → CP2 is the
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homogeneous projection. Then ψ = π ◦ ψ̂ : U → CP2 is a superconformal
minimal Lagrangian immersion, so that a special Lagrangian cone in C3 and
a solution of (3.14) are obtained.

Proof. Let Fµ : U → (ΛSU(3))σ denote the extended frame obtained from
µ by the generalized Weierstrass representation, then we have

F−1
µ dFµ = λ−1α1

′ + α0 + λα1
′′.

Since F−1
µ dFµ is (Λsu(3))σ-valued, α0 respectively α1 take values in the 1-

respectively ζ6-eigenspaces of σ where ζ6 = e2πi/6, which are equal to ĝ0

and ĝ1 in Section 3.4 respectively. Thus (3.11) holds for Fµ. Also, ĝ0 and
ĝ1 are respectively subspaces in the 1- and ζ3-eigenspaces of ν. Therefore,
Fµ also satisfies (2.11) with respect to SU(3)/T , so that ψ turns out to be
superconformal minimal Lagrangian from Section 2.4 and Proposition 3.3.

¤

6. Reduction of the Tzitzéica equation to the third Painlevé
equation

Suppose that w is a solution of (3.14) defined on C and z is the complex
coordinate on C. If w depends only on |z|, (3.14) reduces to

1
4

(
d2w

dr2
+

1
r

dw

dr

)
= e−2w − ew, (6.1)

where z = reiθ. We can see that (6.1) is transformed into

1
4

(
d2u

dt2
+

1
t

du

dt

)
=

4
9
a3e−2u − 4

9
a3/2 1

t
eu,

by the changes

ew = eur−1/2

and

r = at2/3

for a > 0. Defining v : (0,+∞) → (0,+∞) by v = eu, we have
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d2v

dt2
=

1
v

(
dv

dt

)2

− 1
t

dv

dt
− 16

9
a3/2 v2

t
+

16
9

a3 1
v
,

which is a special case of the third Painlevé equation

d2y

dx2
=

1
y

(
dy

dx

)2

− 1
x

dy

dx
+

1
x

(αy2 + β) + γy3 +
δ

y
, (6.2)

where α, β, γ, δ are complex constants. Thus, we have shown that rotation-
ally symmetric solutions of (3.14) are transformed to solutions of (6.2).

Now we shall give an example of holomorphic potentials which provide
solutions of (3.14) described above (cf. [7]). The notation here is the same
as in Section 3.4. Let µ be a holomorphic potential on C of the form

µ =
1
λ




pzk

pzk

qzl


 dz,

where k, l ∈ N ∪ {0} and p, q ∈ C\{0}. Then it shows that L : C →
(ΛSL(3,C))σ, the unique solution of the o.d.e.

L−1dL = µ

with an initial condition L(0) = I, satisfies

L(z)(λ) = T−1L(εz)(εmλ)T

for all ε ∈ C with |ε| = 1. Here m = (2k + l + 1)/3 and T =
diag(1, ε(k−l)/3, ε−(k−l)/3). The decomposition (4.7) of L gives F : C →
(ΛSU(3))σ and B : C→ (Λ+

HSL(3,C))σ satisfying

F (z)(λ) = T−1F (εz)(εmλ)T and B(z)(λ) = T−1B(εz)(εmλ)T

respectively. Note that B(z)(0) may be written in the form

B(z)(0) = diag(1, eb, e−b)

for some smooth function b : C→ R, so that
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b(z) = b(εz) (6.3)

for any ε ∈ C with |ε| = 1. Following [3, Theorem 2.5], there exist a map
η : C→ C such that

eη(ẑ) = pzkeb(z) ∂ϕ

∂ẑ
and p2qz2k+l

(
∂ϕ

∂ẑ

)3

= 1

under an appropriate holomorphic coordinate change z = ϕ(ẑ), and a func-
tion w(ẑ) = 2log|eη(ẑ)| which satisfies (3.14). We can now find

ϕ(ẑ) =
(

1
p2q

)1/3(
c(k, l)

3
ẑ

)3/c(k,l)

as a suitable coordinate change, where c(k, l) = 2k+ l+3. It is easy to show
from (6.3) that b̂(ẑ) := b(ϕ(ẑ)) depends only on |ẑ|. Thus we obtain a radial
solution of (3.14)

w(ẑ) =
2(k − l)
c(k, l)

log
(

c(k, l)
3

|ẑ|
)

+ 2b̂(ẑ) +
2
3
log

∣∣∣∣
p

q

∣∣∣∣

and the corresponding solution of (6.2)

v(t) =
∣∣∣∣
p

q

∣∣∣∣
2/3(

c(k, l)
3

)2(k−l)/c(k,l)

a3(2k−l+3)/2c(k,l)t2k−l+3/c(k,l)e2b̂(at2/3)

for t ∈ (0,+∞) and a > 0.
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