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Laurent decomposition for harmonic and biharmonic functions

in an infinite network
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Abstract. In this article we give a decomposition for harmonic functions in an infi-

nite network X which is similar to the Laurent decomposition of harmonic functions

defined on an annulus in Rn, n ≥ 2. Also we give a decomposition for biharmonic

functions on bihyperbolic infinite networks.
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1. Introduction

The Laurent decomposition for harmonic functions in Rn, n ≥ 2 is well-
known and is given, for example, in Axler et al. [4]: Let k be a compact
set contained in an open set ω in Rn, n ≥ 2. Let h be a harmonic function
on ω\k. Then, h can be written in the form h = s + t on ω\k, where s is
harmonic on Rn\k and t is harmonic on ω. Moreover, this representation is
unique if we impose the following restrictions,

(1) if n ≥ 3, limx→∞ s(x) = 0; and
(2) if n = 2, limx→∞[s(x)− α log |x|] = 0 for some constant α.

In this article we prove a similar Laurent decomposition for harmonic and
biharmonic functions in an infinite network X.

2. Preliminaries

By a network X, we mean an infinite graph which is connected, locally
finite and has no self loops. There is a collection of numbers p(x, y) ≥ 0,
called conductance, such that p(x, y) > 0 if and only if x ∼ y (the symbol
x ∼ y denotes that x and y are neighbours in X). For any vertex x ∈ X,
we write p(x) =

∑
y∈X p(x, y). Since X is locally finite, p(x) is finite; since

X is connected, p(x) > 0. Note that we have not placed the restriction
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p(x, y) = p(y, x) for every pair x, y ∈ X. For any subset E of X, we write
E0 = {x : x and all its neighbours are in E} and ∂E = E \ E0. E0 is
referred to as the interior of E and ∂E is referred to as the boundary of E.
Potential Theory on a network is extensively studied by Yamasaki [9], [10]
and Soardi [8]. It is generally assumed that the conductance is symmetric
(that is p(x, y) = p(y, x) for every pair of vertices x and y in X). But in
this note, we do not place the restriction that p(x, y) = p(y, x).

An arbitrary subset E in X is said to be circled if any z ∈ ∂E has at

least one neighbour in
◦
E. Let F be a finite set of vertices. Let E1 = V (F )

be the set consisting of F and also all vertices x in X such that x has a

neighbour in F . Then E1 is a finite set, F ⊂
◦

E1 and E1 is circled. Define
by recurrence Ei+1 = V (Ei) for i ≥ 1. Since X is connected, any x should
be in some Ei. Thus {Ei} an increasing sequence of finite circled sets such

that F ⊂
◦
Ei ⊂i⊂

◦
Ei+1 for i ≥ 1 and X = ∪Ei. We shall refer to {Ei} as

an exhaustion of X by finite circled sets. Example for a circled set: Let e

be a fixed vertex. For any vertex x, Let |x| denote the distance between e

and x. Then Bm = {x : |x| ≤ m} is a circled set.

If f is a real-valued function on E, the Laplacian of f at any x ∈
◦
E

is defined as ∆f(x) =
∑

y∼x p(x, y)[f(y) − f(x)]. f is said to be superhar-
monic (respectively harmonic, subharmonic) on E if ∆f(x) ≤ 0 (respec-

tively ∆f(x) = 0, ∆f(x) ≥ 0) for every x ∈
◦
E. A superharmonic function

f ≥ 0 on E is said to be a potential on E if for any subharmonic function g

on E such that g ≤ f we have g ≤ 0.
We say that a superharmonic function f on X is said to have the har-

monic support in E if ∆f(x) = 0 for every x ∈ X \E. If E is a finite set and
if ∆f(x) = 0 for every x ∈ X \ E, then we say that f has finite harmonic
support. A superharmonic function f is said to be admissible if and only if
it has a harmonic minorant outside a finite set.

If there exists a nonconstant positive superharmonic function on X,
then X is said to be a hyperbolic network. If it is not hyperbolic, then X

is referred to as parabolic. This division corresponds to R2 being parabolic
and Rn, n ≥ 3, being hyperbolic in the classical potential theory.

In a hyperbolic network, for any z, there exists a unique potential gz(x)
(called the Green function of X with pole at z) such that ∆gz(x) = −δz(x).
Here δz denotes the characteristic function of the set {z}. Similarly, in a
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parabolic network, for any z, there exists a unique superharmonic function
qz(x) with the following properties,

(1) qz(x) ≤ 0 on X,
(2) ∆qz(x) = −δz(x) for every x ∈ X,
(3) qz(z) = 0, and
(4) for a constant α > 0, qz(x) + αHe(x) is bounded on X,

where e is a fixed vertex and He is a fixed function such that He(x) ≥ 0
on X, He(e) = 0 and ∆He(x) = δe(x) for any x ∈ X. Notice that He is
unbounded ([1]). Here the constant α is uniquely determined if we fix z.
We write α = φ(z). In a parabolic network, an admissible superharmonic
function q (that is, a superharmonic function q on X that has a harmonic
minorant outside a finite set in X) is said to be a pseudo-potential [2, p. 88]
if and only if its g.h.m. on X \e is of the form αHe +b, where b is a bounded
harmonic function.

3. Decomposition Theorem

In order to prove the Laurent decomposition in an infinite network in
the form given below, we need the following lemmas.

Lemma 3.1 If F is circled, then B = X \
◦
F has ∂F as its boundary ∂B.

Proof. Note B = (X \ F ) ∪ (∂F ). Let z ∈ ∂F . Then, for some y ∈
◦
F ,

y ∼ z (since F is circled); thus z ∈ ∂F ⊂ B. But a neighbour y of z is not in

B; hence z ∈ ∂B. Conversely, let b ∈ ∂B. Then b ∼ a for some a ∈
◦
F . Since

a ∈
◦
F and a ∼ b, we should have b ∈ F \

◦
F , that is b ∈ ∂F . Consequently

∂B = ∂F . ¤

Note B is also circled. The interior of B is X \ F .

Lemma 3.2 Let E be a circled set, E ⊂ F , and A = F \
◦
E. Then

∂A = ∂F ∪ ∂E.

Proof. Let z ∈ ∂F . Then z has a neighbour in X \F . Consequently z ∈ A

but a neighbour of z is outside A ⇒ z ∈ ∂A ⇒ ∂F ⊂ ∂A. Let y ∈ ∂E. Then

y has a neighbour in
◦
E (since E is circled). Then y ∈ A but has a neighbour

outside A ⇒ y ∈ ∂A ⇒ ∂E ⊂ ∂A. Hence ∂F ∪ ∂E ⊂ ∂A. Let now a ∈ ∂A,
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then a ∈ A and a has a neighbour b outside A, that is b ∈ X \ F or b ∈
◦
E.

If b ∈ X \ F , since a ∼ b ⇒ a ∈ ∂F by Lemma 3.1. If b ∈
◦
E, since b ∼ a,

a ∈ ∂E. Thus if a ∈ ∂A then a ∈ ∂F or a ∈ ∂E, that is ∂A ⊂ ∂E ∪ ∂F . ¤

Lemma 3.3 Let X be hyperbolic and u be subharmonic on X. If there
exists a potential p on X such that u(x) ≤ p(x) outside a finite set A, then
u(x) ≤ 0 on X.

Proof. Since A is finite, for a large α > 1, u(x) ≤ αp(x) for x ∈ A. Hence
u(x) ≤ αp(x) for all x ∈ X. Since u is subharmonic and αp is a potential
on X, we have u(x) ≤ 0. ¤

Theorem 3.4 Let X be an infinite network. Let F be an arbitrary subset

of X and E be a finite circled set such that E ⊂
◦
F . Suppose h is a harmonic

function on F \
◦
E. Then there exists a harmonic function s on X \

◦
E and

a harmonic function t on F such that h = s− t on F \
◦
E. Moreover,

i) if X is hyperbolic, then s and t are uniquely determined if we impose the
restriction |s| ≤ p outside a finite set, where p is a positive potential on
X.

ii) if X is parabolic, then s and t are uniquely determined up to an additive
constant, if we impose the restriction that s− αHe is bounded outside a
finite set, for some constant α.

Proof. Given that E is circled, E ⊂
◦
F . Then by Lemma 3.2, ∂(F \

◦
E) =

∂F ∪∂E. Given also that h is harmonic on F \
◦
E. Extend h on E by taking

the Dirichlet solution with boundary value h on ∂E.
Let −t(x) = h(x) +

∑
z∈∂E ∆h(z)ϕz(x) for x ∈ F where ϕz(x) is a

superharmonic function defined on X (which is taken gz if X is hyperbolic
and qz if X is parabolic) such that ∆ϕz(x) = −δz(x) for all x in X.

Then t(x) is harmonic in F . Write s(x) = −∑
z∈∂E ∆h(z)ϕz(x). Then

s(x) is defined on X and harmonic at every vertex x 6∈ ∂E; in particular s is

harmonic at every vertex in X \ E which is the interior set of X \
◦
E. Thus

s is harmonic in X \
◦
E. Moreover h(x) = s(x)− t(x) for any x ∈ F \

◦
E.

Now, for the uniqueness of decomposition stated in the theorem:
i) Suppose X is hyperbolic. Then each ϕz(x) in the expression for s(x)

can be taken as a potential gz(x) in X with point support {z}. Hence
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|s(x)| ≤ ∑
z∈∂E |∆h(z)|gz(x) = p(x). It is clear that p(x) is a potential on

X. As for the uniqueness of decomposition, suppose h = s1 − t1 is another
such representations with |s1| ≤ q outside a finite set where q is a potential
on X. Then, the function u defined on X such that

u =





s− s1 X \
◦
E

t− t1 F

is a well-defined harmonic function on X such that |u| ≤ p + q outside a
finite set. Hence by Lemma 3.3, we have u ≡ 0. This proves that s = s1

and t = t1.
ii) If X is parabolic, let s(x) = −∑

z∈∂E ∆h(z)ϕz(x) obtained as above
is a pseudo-potential qz on X. Let α = −∑

z∈∂E φ(z)∆h(z). Then

s(x) + αHe(x) = −
∑

z∈∂E

[qz(x) + φ(z)He(x)]∆h(z).

Since qz(x) + φ(z)He(x) is bounded, we see that s(x) + αHe(x) is bounded

on X \
◦
E. Suppose h(x) = s1(x)− t1(x) is another representations on F \

◦
E.

u =





s− s1 X \
◦
E

t− t1 F
.

is a well-defined harmonic function on X. Since u + (α − α1)He = (s +
αHe) − (s1 + α1He) is bounded outside a finite set, there exist a constant
M > 0 and a finite set A such that −M ≤ u+(α−α1)He ≤ M on X \A. If
α > α1, then u ≤ u+(α−α1)He ≤ M on X\A, since He ≥ 0. It follows that
u is bounded above on X, since A is finite set. Since u is harmonic and X is
parabolic, u is a constant. Similarly, we see that u is constant if α < α1. If
α = α1, u is bounded on X. Since X is parabolic, u is constant. Therefore
u is constant in any case. Since He is unbounded, we have α = α1. ¤

Corollary 3.5 Let X be an infinite network. Suppose v is a superhar-
monic function outside a finite set. Then v can be written as

i) v = q + p1 − p2 outside a finite set if X is hyperbolic;
ii) v = q + b(x) + αHe outside a finite set if X is parabolic,
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where q is a superharmonic function (respectively harmonic) function on X

if v is superharmonic (respectively harmonic), p1 and p2 are potentials on
X with finite harmonic support in i); and b is bounded harmonic function
outside a finite set and α is finite (α is not unique if q is superharmonic, α

is uniquely determined if q is harmonic).

Proof. Let v be defined outside a finite set A. Choose a finite circled

set E and a finite set F such that A ⊂
◦
E ⊂ F . Let h be the Dirichlet

solution in F \
◦
E with boundary values v. Replacing v by h in F \

◦
E, we

can assume that v is defined in X \
◦
E and harmonic on F \

◦
E. Then by

the above theorem, v = s − t on F \
◦
E where s is harmonic on X \

◦
E and

s(x) = −∑
z∈∂E ∆v(z)ϕz(x); and t is harmonic on F .

Let q =




−s + v on X \

◦
E

−t on F.

Note q is well-defined on X. For in the common part F\
◦
E, s(x)−v(x) = t(x).

Consequently, q(x) is superharmonic on X (and q(x) is harmonic if v is

harmonic). On X \
◦
E,

i) If X is hyperbolic,

v(x)− q(x) = s(x)

=
∑

∂E

[∆v(z)]+ϕz(x)−
∑

∂E

[∆v(z)]−ϕz(x)

= p1(x)− p2(x) on X \
◦
E,

where p1 and p2 are potentials on X with finite harmonic support.
ii) If X is parabolic,

v(x)− q(x) = s(x)

= −
∑

∂E

∆v(z)[ϕz(x) + φ(z)He(x)] +
[∑

∂E

φ(z)∆v(z)
]
He(x)

= b(x) + αHe(x) on X \
◦
E (see Theorem 3.4 ii)
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where b(x) is bounded harmonic function outside a finite set and α is
finite. ¤

4. Decomposition theorem for Biharmonic functions

In a hyperbolic Riemannian manifold R, a positive kernel Qy(x) =
Q(x, y) is called a biharmonic Green function with biharmonic support at y if
∆2Qy(x) = δy(x), ∀x ∈ R. Sario et al. [7] give different sufficient conditions
for the existence of the biharmonic Green function on a hyperbolic Rieman-
nian manifold. A similar study considering polyharmonic Green functions
on an infinite tree with positive potentials is carried out in Anandam and
Bajunaid [3]. In this section, we consider biharmonic functions, biharmonic
Green functions etc. in an infinite network X when there are positive po-
tentials on X and some related results when there is no positive potential
on X.

In [6, Theorem 4.2], Bajunaid et al. prove the following: Let T be an
infinite tree that is recurrent without any terminal vertex. Fix a vertex e.
Then there exists a function K biharmonic off e such that for any function f

on T which is biharmonic outside a finite set one has the representation f =
βK +B +L where β is a constant, B is biharmonic on T and L is a function
for which the Laplacian is constant on all sectors sufficiently far from e. This
result is analogous to the case of R2 in Bajunaid and Anandam [5, Theorem
16]. In what follows we consider the representation of biharmonic functions
in an infinite network similar to the (Laurent) representation of biharmonic
functions defined on an annulus in Rn, n ≥ 5 and some of its consequences.

Definition 4.1 Let X be an infinite network. A real valued function u on
E ⊂ X, is said to be biharmonic on E if there exists a harmonic function h

on E such that ∆u(x) = h(x) for every x ∈
◦
E.

Definition 4.2 A potential q in an infinite network X is said to be a
bipotential if and only if (−∆)q = p where p is a potential in X.

Definition 4.3 For a fixed z in X, a potential Qz(x) in X is said to
be biharmonic Green function with biharmonic support {z} if and only
if (−∆)Qz(x) = gz(x) where gz(x) is the harmonic Green function with
harmonic support z.

Remark Let {En} be an exhaustion of X and En’s are finite circled
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sets. Let z ∈
◦

E1. Let g
(n)
z be the harmonic Green function on En. Let

∆Q
(n)
z = −g

(n)
z in

◦
En, where Q

(n)
z is defined on En, Q

(n)
z = 0 on ∂En so

that Q
(n)
z is a potential on En. Since g

(n)
z ≤ g

(n+1)
z on En, Q

(n)
z ≤ Q

(n+1)
z on

◦
En. Let Qz(x) = limn→∞Q

(n)
z (x) for x ∈ X. If Qz(x) = ∞ for some x, then

Q ≡ ∞. If Qz(x) < ∞ for some x in X, then Q is called the biharmonic
Green function on X with point singularity at z. If the biharmonic Green
function exists on X, then since Q

(n)
z → Qz, ∆Qz(x) = limn ∆Q

(n)
z (x) =

limn[−g
(n)
z (x)] = −gz(x) for each x. (Note ∆Q

(n)
z (x) = −g

(n)
z (x) is valid for

all n ≥ m if x ∈
◦

Em.)

Definition 4.4 An infinite network X is said to be a bihyperbolic network
if there exists the biharmonic Green function on X.

Theorem 4.5 X is a bihyperbolic network if and only if there exists a
bipotential.

Proof. Suppose the biharmonic Green function Qy(x) exists on X. Then
(−∆)Qy(x) = gy(x), where gy(x) is the harmonic Green function on X.
Since Qy(x) and gy(x) are potentials on X, then X is a bihyperbolic network.

Conversely, let X be a bihyperbolic network. That is (−∆)q = p where
p and q are potentials on X. Let z be a fixed vertex. Then for some λ,
gz(x) ≤ λp(y) for any y ∈ X (Domination Principle [2, p. 26]). Now

λq(x) = λ
∑

y∈X

gy(x)p(y)

≥
∑

y∈X

gy(x)gz(y)

= Qz(x).

Hence Qz(x) is a well-defined potential on X such that (−∆)Qz(x) = gz(x)
and (−∆)2Qz(x) = δz(x). ¤

Lemma 4.6 Let f be a real-valued function defined on a finite set E in
an infinite network X. Then there exists u on X such that ∆u(x) = −f(x)
for every vertex x ∈ E.

Proof. Let ϕy(x) be a superharmonic function on X such that ∆ϕy(x) =
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−δy(x) for all x ∈ E. Let f be defined on X by giving values 0 outside
E. Then u(x) =

∑
y∈X f(y)ϕy(x) is a well-defined function on X such that

∆u(x) = −f(x) for all x ∈ E. ¤

Lemma 4.7 Let X be a bihyperbolic network. If f is any real-valued
function such that |f | ≤ u where u is a potential on X with finite harmonic
support, then there exists a uniquely determined real-valued function v such
that ∆v = −f on X, and |v| is dominated by a potential on X.

Proof. Since X is a bihyperbolic network, there exist potentials p and q

on X such that ∆q = −p on X. Let u be a potential with finite harmonic
support A. Then u(x) =

∑
z∈X gz(x)µ(z) with µ(z) = −∆u(z). Hence µ is

non-negative and vanishes outside a finite set. We have

∑

y∈X

|f(y)|gy(x) ≤
∑

y∈X

u(y)gy(x)

=
∑

y∈X

( ∑

z∈X

gz(x)gy(x)
)

µ(z)

=
∑

z∈X

Qz(x)µ(z)

= s(x) < ∞

where s(x) is a potential. Let v(x) =
∑

y∈X f(y)gy(x). Then ∆v = −f and
|v(x)| ≤ s(x).

As for the uniqueness, suppose ∆v1 = −f on X and |v1| is dominated
by a potentials in X. Then v − v1 is harmonic on X and is dominated by a
potential in X. Consequently, v − v1 = 0. ¤

Theorem 4.8 Let F be an arbitrary set in a bihyperbolic network X. Let

E be a finite circled set such that E ⊂
◦
F . Let b be a biharmonic function on

F \
◦
E. Then there exist a biharmonic function on X \

◦
E and a biharmonic

function v on F such that b = u−v on F \
◦
E. We can choose u so that there

exists a potential p on X such that on X \
◦
E, |u| and |∆u| are dominated

by p. With this restriction the decomposition of b is unique.

Proof. Choose a finite set F1 such that E ⊂
◦

F1 ⊂
◦
F . Since b is biharmonic



354 M. Venkataraman

on F1 \
◦
E, by the definition there exists a harmonic function h on F1 \

◦
E

such that ∆b(x) = h(x) for every x in the interior of F1 \
◦
E. Then by

Theorem 3.4, there exist a harmonic function s on X \
◦
E and a harmonic

function t on F1 such that h = s − t on F1 \
◦
E. Since X is a bihyperbolic

(and hence a hyperbolic) network we can assume that s is defined on X

by giving values 0 on
◦
E. Note that s has been chosen (Theorem 3.4) such

that |s| ≤ p0 on X where p0 is a potential with finite harmonic support.
Hence there exists u1 on X such that ∆u1 = s on X (Lemma 4.7); in
particular, note that for a potential p1 on X, |u1| ≤ p1 on X and u1 is

biharmonic on X \
◦
E. Similarly assuming t is defined on X by giving values

0 outside F1, there exists v1 on X such that ∆v1 = t on X (Lemma 4.6);

note that v1 is biharmonic on F1. Hence for every x in the interior of F1 \
◦
E,

∆b(x) = h(x) = s(x)− t(x) = ∆(u1− v1)(x). Hence on F1 \
◦
E, b− (u1− v1)

is a harmonic function H. Again using Theorem 3.4, write H = u2 − v2 on

F \
◦
E where u2 is harmonic on X \

◦
E dominated by a potential p2 on X

and v2 is harmonic on F . Then b = (u1 + u2)− (v1 + v2) = u− v on F1 \
◦
E,

where u = u1 + u2 is biharmonic on X \
◦
E and v = v1 + v2 is biharmonic

on F1. Therefore b = u− v in F1 \
◦
E where u is biharmonic at each vertex

in X \
◦
E and v is biharmonic in F1. Define

v′ =





u− b in F \
◦
E

v in F1

v′ is well-defined in F . For the common part F1 \
◦
E, u − b = v. Note that

v′ is biharmonic in F and u− v′ = b in F \
◦
E. Note that on F \

◦
E |u| and

|∆u| are dominated by the potential p = p1 + p2 on X.
Suppose b = u∗ − v∗ is another such representation. Then

B =





u− u∗ on X \
◦
E

v′ − v∗ on F
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is biharmonic on X such that |B| and |∆B| are dominated by a potential P

in X, outside a finite set. By Lemma 3.3 we can assume that |B| and |∆B|
are dominated by P on X. Since ∆B is harmonic and |∆B| ≤ P on X, then
∆B = 0 and hence B is harmonic on X; and |B| ≤ P so that B = 0. Thus
u = u∗ and v′ = v∗. ¤

Remark Let X be an infinite tree, parabolic or hyberbolic. Assume that
every non-terminal vertex in X has at least two non-terminal vertices as
neighbours. Then given any harmonic function h on a subset E of X (that

is h is defined on E and ∆h = 0 on
◦
E) there exists a harmonic function u on

X such that u = h on E ([2, p. 113]). Consequently, given any real-valued
function f ≥ 0 on X, there exists a superharmonic function s on X such that
∆s = −f on X ([2, Theorem 5.1.4]). In this case, we prove the following:
Let F be an arbitrary set in an infinite tree X in which every non-terminal
vertex has at least two non-terminal neighbours. There may or may not

be positive potentials on X. Let E be a finite circled set, E ⊂
◦
F . Let b

be a biharmonic function defined on F \
◦
E. Then there exist a biharmonic

function u on X \
◦
E and a biharmonic function v on F such that b = u− v

on F \
◦
E.

Corollary 4.9 Let X be a bihyperbolic network. Let b be a biharmonic
function defined outside a finite set in X. Then there exists a unique bi-
harmonic function B on X such that if f = b − B, then |f | and |∆f | are
bounded by a potential p in X.

Proof. Replace F by X, u by f and v by −B in Theorem 4.8 we can get
a biharmonic function B on X such that if f = b−B then |f | and |∆f | are
bounded by a potential p in X.

As for the uniqueness, note that if B1 is another such that biharmonic
function in X, then |(B−B1)| and |∆(B−B1)| are bounded by a potential
in X outside a finite set. It leads to the conclusion B = B1, as shown in the
proof of Theorem 4.8. ¤
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