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Introduction. In a recent paper [2], the author introduced the notion
of the geodesic conformal transformation and discussed Riemannian spaces
which admit such transformations at each point. The geodesic conformal
transformation at a point O is, roughly speaking, a local conformal trans-
formation which leaves invariant any geodesic through O. The purpose of
this paper is to give the projective analogy. Though the results are not
satisfactory comparing to the conformal case, the geodesic projective transf0-
mation seems to be interesting. Because, when we seek after the projective
analogy of locally symmetric spaces, it must play a basic role.

1. Normal coordinates. Let M^{n} be an n dimensional analytic Rie-
mannian space with positive definite metric g_{ij}^{1)} . Consider a normal coor-
dinate \{x^{i}\} of origin O in a normal neighbourhood U, then

(1. 1) \{\begin{array}{l}hij\end{array}\} x^{i}x^{f}=0

hold good in U. Any geodesic \gamma through O is given by x^{i}=\xi^{f}s, where \xi^{\dot{j}}

is the unit tangent vector of \gamma at O and s means the arc length along \gamma.
Throughout the paper we shall only use such a coodinate, and consider s to
be positive, unless otherwise stated. f_{i} , f_{ij} , \cdots mean the successive derivatives
of f with respect to x^{i}, x^{f} , \cdots , and f’, f’, \cdots the ones with respect to s.

The following identities in U are well known.

(1. 2) (g_{if})_{0}x^{i}x^{f}=g_{if}x^{\tau j}x^{f}=s^{2} ,

(1. 3) s_{i}x^{i}=s ,

(1. 4) s_{if}x^{f}=Q_{1}

If we put s^{i}=g^{if}s_{j} and x_{i}=(g_{if})_{0}x^{j} , then
(1. 5) g_{if}x^{f}=x_{i} ,

(1. 6) g_{if}(\rho x)x^{i}x^{f}=x_{i}x^{i}=s^{2} for any small \rho,

1) We follow YanO-Bochner’s notations [1].
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(1. 7) s_{\sqrt[i]{}}s^{i}=1

hold good, too.

2. The geodesic transformation at \bm{O}. In a normal neighbourhood
U of origin O in M^{n} , we consider a local transformation f defined by

f : x^{i}=\xi^{i}s\in Uarrow y=\xi^{i}it\in U

which leaves invariant each geodesic through O. We assume that t is of
the form

(2. 1) t=\rho(s)s ,

and \rho is an analytic function of s in a domain 0<s<\epsilon for some \epsilon . Such
an f will be called a geodesic transformation at O.

As we have

(2. 2) \partial_{i}y^{h}=\rho’s_{i}x^{h}+\rho\delta_{i}^{h} , \partial_{i}=\partial/\partial x^{i} ,

it follows that

(2. 3) x^{i}\partial_{i}y^{h}=(\rho’s+\rho)x^{h}=t’x^{h} ,

(2. 4) x^{i}x^{f}\partial_{ij}y^{h}=s(\rho’s+2\rho’)x^{h}=st’x^{h} .
Putting

\Delta=\det(\partial_{i}y^{\prime\iota}) ,

we can obtain the following equation:

(2. 5) \Delta=\rho^{n-1}t’ .

3. The geodesic projective transformation at \bm{O}. Let f be a geodesic
transformation at O in M^{n} . If we denote

\overline{g}_{if}=g_{if}(y) , g_{if}^{*}=f^{*}.\overline{q}_{if} ,

then the condition for f to be projective is

(3. 1) \{\begin{array}{l}hij\end{array}\}=\{\begin{array}{l}hij\end{array}\} +\phi_{i}\delta_{j}^{h}+\phi_{f}\delta_{i}^{h} ,

where \{\begin{array}{l}hij\end{array}\} are the Christoffel symbols formed by g_{if}^{\star} and \phi_{i}=\partial_{i}\phi is a gradi-

ent vector.
When \phi is an analytic function of s defined on a domain 0<s<\epsilon_{1} for

some \epsilon_{1} , we shall call f a geodesic projective transformation at O.
In the following, f always means such a transformation.
From the definition of g_{if}^{*}, we have
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(3. 2) \{\begin{array}{l}lij\end{array}\}\partial_{l}y^{h}=\{\begin{array}{l}hkl\end{array}\}\partial_{i}y^{k}\partial_{j}y^{l}+\partial_{ij}y^{h}- .

On the other hand, it follows from (2. 3), (1. 1) and (2. 4) that

x^{i}x^{j}(\{\begin{array}{l}hkl\end{array}\}\partial_{i}y^{k}\partial_{f}y^{l}+\partial_{if}y^{h})=st’x^{h}-

From (3. 1), (1. 1) and (2. 3) we have

x^{i}x^{j} \{\begin{array}{l}lij\end{array}\}\partial_{l}y^{\Gamma\iota}=2\phi’st’x^{h} .

Thus, (3. 2) gives us
t’=2\phi’t’

As t’ does not vanish identically,

(3. 3) 2 \phi’=\frac{t’}{t’}

follows, and by integration we have
(3. 4) e^{2\phi}=C_{1}t’ ,

where C_{1} is a non-zero constant.
Consider the case when t’ is constant. Then \phi being constant, \phi_{i} van-

ishes identically and hence f is a homothety.
4. The projective curvature tensor. In this section, we shall assume

that a geodesic projective transformation f at O is defined without singularity
at O, that is, \rho and \phi are defined in a domain of s containin 0. As \rho(0)

and \rho’(0) are finite, it follows from (2. 2) that
(\partial_{i}y^{h})_{0}=a\delta_{i}^{\hslash}

,\cdot

where we have put a=\rho(0)\neq 0 .
f being projective, we have

(4. 1) W_{ijk}^{*h}=W_{ijk}^{h} .
where W_{ifk}^{h} denotes the s0-called Weyl projective curvature tensor defined
by

W_{ifk}^{h}=R_{ifk^{-}}^{h} \frac{1}{n-1}(R_{ij}\delta_{k}^{h}-R_{ik}\delta_{f}^{h}) .
On the other hand,

(4. 2) W_{ifk}^{*h}\partial_{h}y^{l}=\overline{W}_{abc}^{l}\partial_{i}y^{a}\partial_{j}y^{b}\partial_{k}y^{c}

are valid.
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If we put s=0 in (4. 1) and (4. 2), then it follows (W_{ifk}^{h})_{0}=a^{2}(W_{ijk}^{h})_{0} ,

and hence we get

(W_{ifk}^{h})_{0}=0
,\cdot if a\neq\pm 1

Similarly we can get

(\nabla_{l}W_{ifk}^{h})_{0}=0 , if a\neq 1 -,

on taking account of \phi_{i}(0)=0 .
As well known, if W_{\nu}^{h}ffk vanishes identically, the space is one of

constant curvature, that is,

R_{ifk}^{h}=k(g_{if}\delta_{k}^{h}-g_{ik}\delta_{f}^{h})

holds good, where

k= \frac{R}{n(n-1)}

and R is the scalar curvature. The converse is true.
It is known [4] that \nabla_{l}W_{ifk}^{h}=0 is equivalent to \nabla_{l}R_{ijk}^{h}=0 .
5. The relation of \bm{g}_{\bm{x}} and \bm{g}_{\bm{y}} . Let f be a geodesic projective trans-

formation at O in a Riemannian space M^{n} . Denoting

g_{x}=\det(g_{if}) , g_{y}=\det(\overline{/}0_{if}) ,

we shall find the relation between them.
From (3. 1) we have

(5. 1) \{\begin{array}{l}iij\end{array}\}=\{\begin{array}{l}iij\end{array}\} +(n+1)\phi_{j} .

On the other hand, it follows from (3. 2) that

\{\begin{array}{l}hij\end{array}\}=\frac{\partial x^{h}}{\partial y^{l}} ( \{\begin{array}{l}\overline{l}kp\end{array}\}\partial_{i}y^{k}\partial_{j}y^{p}+\partial_{if}y^{l}).
Putting h=i, we get

\{\begin{array}{l}iij\end{array}\}=\{\begin{array}{l}kkp\end{array}\}\partial_{f}y^{p}+\partial_{j}- log |\Delta|c

Substituting this equation into (5. 1), we have

\{\begin{array}{l}iij\end{array}\}+(n+1)\phi_{f}=\{\begin{array}{l}iip\end{array}\}\partial_{f}y^{p}+\partial_{j}- log |\Delta|,\cdot

from which
\partial_{f}(\log\Gamma g_{x}+(n+1)\phi)=\partial_{f}(\log\sqrt\overline{g_{y}}+\log|\Delta|)

\{
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Hence we obtain

\sqrt\overline{g_{y}}\Delta=C_{2}e^{(n+1)\phi}\sqrt\overline{g_{x}} ,

where C_{2} is a non-zero constant. If we take account of (2. 5) and (3. 4), then

(5. 2) \frac{dt}{t^{2}G_{y}}=C_{3}\frac{ds}{s^{2}G_{x}}

follows, where we have put

G_{x}=g_{x}(n-1)^{-1} G_{y}=g_{y}(n-1)^{-1}

and C_{3} is a non-zero constant.
It should be noticed that G_{x} and G_{y} generally depend on not only s but

\xi^{i}, the direction of the geodesic.
Let us consider the Euclidean n space E^{n} . Then, since G_{x}=G_{y}=1 , (5. 2)

reduces to

\frac{dt}{t^{2}}=C_{3}\frac{ds}{s^{2}}

and we get

(5. 3) t= \frac{s}{C_{4}s+C_{3}}

with a constant C_{4}. On the other hand, it is evident that there is no
geodesic projective transformation at O in E^{n} except the similarity. Hence,
C_{4} in (5. 3) must be 0, and we get

(5. 4) t=C_{5}s .
where C_{5} is a non-zero constant.

6. Spaces of constant curvature. Consider a space M^{n} of constant
curvature k\neq 0 and a geodesic projective transformation f at a point O.
As well known [3, p. 169, p. 183], if we choose a normal coordinate of
origin O such that (g_{if})_{0}=\delta_{ij} , then g_{x} is given by

g_{x}=( \frac{\sin(\Gamma ks)}{\sqrt\overline{k}s})^{2(n-1)}

where sin (\sqrt\overline{k}s)=i\sin h(\sqrt\overline{|k|}s) for k<0 . Thus, we have from (5. 2)

\frac{dt}{\sin^{2}(\sqrt\overline{k}t)}=C_{3}\frac{ds}{\sin^{2}(\sqrt\overline{k}s)}

and by integration



92 S. Tachibana

(6. 1) \cot(\Gamma k t)=C_{3}\cot(\sqrt\overline{k}s)+C_{6} ,

where C_{3} is non-zero and C_{6} any constant.
Next, we shall show that a geodesic projective transformation certainly

exists in a space of positive constant curvature.
Since such a space M^{n} is locally isometric with a sphere S^{n} of radius

1/\Gamma k in the Euclidean (n+1) space E^{n+1} , we can regard M^{n} as S^{n} without
loss of generality.

Denoting by O, p_{0} and q_{0} the center, the north pole and the south pole
of S^{n}, consider the projection \psi from O to the Euclidean n space E^{n} which
is the tangent n-plane to S^{n} at p_{0}. \psi is a projective map from S^{n}- \{q_{0}\} to
E^{n}. Any geodesic projective transformation f at p_{0} on S^{n} is obtained as
the form \psi^{-1}\circ f_{0}\circ\psi with a geodesic projective transformation f_{0} at O on E^{n} ,

and f_{0} is a similarity which leaves O invariant. As it holds that

\xi^{i}sarrow\xi^{i}\frac{\tan(\sqrt\overline{k}s)}{\sqrt\overline{k}}C_{5}\xi^{i}\frac{\tan(\sqrt\overline{k}s)}{\Gamma k}=\xi^{i_{\frac{\tan(\sqrt\overline{k}t)}{\sqrt\overline{k}}}}\xi^{i}t\psi\underline{f_{0}}\underline{\psi^{-1}} ,

the following relation between s and t is valid,

\langle6. 2) tan (\sqrt\overline{k}t)=C_{5} tan (\sqrt\overline{k}s) , C_{5}\neq 0 .

Thus, any space of positive constant curvature k\neq 0 admits a geodesic pr0-

jective transformation at any point O, and C_{6} in (6. 1) must be 0. As the
space is locally symmetric, C_{5} in (6. 2) can be negative and hence takes any

value except 0.
7. The existence of a geodesic projective transformation in a space

of constant curvature. Let M^{n} be a space of constant curvature k\neq 0 .
For the case of k>0 , we have seen the existence of a geodesic projective
transformation at any point. In this section, the existence will be proved
for k<0 and >0 at the same time.

For this purpose we shall use the following well known facts.

a. A projective transformation is such a transformation that it maps any
geodesic to a geodesic.
b. The intersection of two totally geodesic subspaces is totally geodesic.
c. In a space of constant curvature, there is an n –1 dimensional totally
geodesic subspaces X_{n-1} which is tangent to any given (n –1)-plane section,

[3, p. 144].
d. In a space of constant curvature k\neq 0 , let U be a normal neighbourhood
such that (g_{if})_{0}=\delta_{if} . Then, the equation of any totally geodesic X_{n-1} in U is

\langle7. 1) a_{i}\xi^{i} tan (\sqrt\overline{k}s)=C ,
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where a_{i} and C are constant, and for k<0 we understant that tan (\sqrt\overline{k}s)

=i tanh (\sqrt\overline{|k|}s) and C is pure imaginary, [3, p. 186].

Now, we shall show that a geodesic transformation f at O given by

tan (\sqrt\overline{k}t)=C_{5} tan (\sqrt\overline{k}s)

is acutually projective in M^{n} .
In fact, any point (\xi^{i}s) on (7. 1) is mapped to (\xi^{i}t) on a_{i}\xi^{i} tan (\overline{\sqrt k}t)=

B for a constant B, and hence f maps any X_{n-1} in U to another totally
geodesic Y_{n-1} . Let \alpha be a geodesic in U and P be a point on \alpha. Consider
a frame e_{1} , \cdots , e_{n} at P such that e_{1} is tangent to \alpha. For each (n-l)-plane

section e_{1} , \cdots , e_{i-1} , e_{i+1} , \cdots , e_{n} , there is an X_{n-1}^{(i)} which contains \alpha. As f frame

forms X_{n-1}^{(i)} to Y_{n-1}^{(i)} , \alpha is mapped to another geodesic which is the inter-
section of Y_{n-1}^{(i)} , i=2, \cdots , n. Thus our assertion is proved.

8. Einstein spaces. We shall consider in this section a geodesic pro-
jective transformation f at O in an Einstein space, and obtain a differental
equation for t.

f being projective, the Ricci tensors of g_{if} and g_{if}^{*} satisfy

(8. 1) R_{if}^{*}
. =R_{if}-(n-1)\tau_{if}r,

where
\tau_{if}=\nabla_{i}\phi_{f}-\phi_{i}\phi_{j} .

As the space is Einstein, (8. 1) becomes

(8. 2) k^{*}g_{if}=kg_{if}-\tau_{ij} .

Multiplying (8. 2) by x^{i}x^{f} and taking account of
g_{ij}^{*}x^{i}x^{f}=\overline{g}_{kp}\partial_{i}y^{k}\partial_{f}y^{p}x^{i}x^{j}=t^{\prime 2}s^{2} ,

we have

(8. 3) \tau_{if}x^{i}x^{f}=k(1-t^{\prime 2})s^{2} .

On the other hand, since

\phi_{i}x^{i}=\phi’s , \phi_{i}=\phi’s_{i}=\frac{\phi’}{s}x_{i} ,

\tau_{if}x^{i}x^{f}=(\partial_{i}\phi_{f}-\phi_{i}\phi_{j})x^{i}x^{j}=(\phi’-\phi^{\prime 2})s^{2} ,

we get from (8. 3)

(8. 4) \phi’-\phi^{\prime 2}=k(1-t^{\prime 2}) .
If we eliminate \phi from (8. 4) by making use of (3. 3), then
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(8. 5) \{t, s\}=2k(1-t^{\prime 2})

is obtained as the differential equation for t, where

\{t, s\}=\frac{t’}{t}, - \frac{3}{2}(\frac{t’}{t’})^{2}

is the Schwarzian derivative of t with respect to s.
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