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Throughout the present paper, A will represent a ring with 1, C the
center of A, and B a subring of A containing 1. We consider a (ring)
endomorphism \rho of A sending 1 to 1, and set J(\rho)=\{x\in A|\rho(x)=x\} .
Further, we use the following convention: a, a’ will mean arbitrary elements
of A, and b, b’ elements of B.

Given x\in A , the map \delta_{\rho,x} : Aarrow A defined by \delta_{\rho,x}(a)=ax-x\rho(a) is
called the inner \rho-derivation effected by x. In fact, \delta_{\rho,x} is a (\rho, 1)-derivation
of A : \delta_{\rho,x}(aa’)=\delta_{\rho,x}(a)\rho(a’)+a\delta_{\rho,x}(a’) . Recently, in his paper [3], P. V. Praag
proved the following proposition: If A is a division ring with [A:C]>4
and B is a division subring properly contained in A which is invariant
relative to all the inner \rho-derivations effected by elements of A, then B is
a fifield contained in J(\rho) .

In what follows, we shall prove a proposition which essentially contains
Praag’s, and extend [3; Corollaire] to tw0-sided simple rings and (right)

primitive rings with non-zero socles.
Lemma 1. Assume that B is invariant relative to all the inner \rho-

derivations effected by elements of A.
(a) The restriction \rho|B of \rho to B is an endomorphism of B.
(b) If B is commutative then the additive group [B, A] generated by

\{[b, a]=ab-ba|a\in A, b\in B\} is a B-B-submodule of A and bd=d\rho(b) for
every d\in[B, A] .

PROOF. (a) is evident by b-\rho(b)=b\cdot 1-1\cdot\rho(b)\in B. If B is commutative,
it is easy to see that [B, A] is B-B-admissible. Further, [b, b’a-a\rho(b’)]=0

implies b’[b, a]=[b, a]\rho(b’) , proving (b).

Lemma 2. Let B be a fifield. Assume that B is invariant relative to
all the inner \rho-derivations effected by elements of A and B \sum J(\rho) .

(a) B coincides with the centeralizer V_{A}(B) of B in A.
(b) A=[B, A]+B and [B, A]^{2}\subseteq B.
PROOF. (a) It suffices to prove V_{A}(B)\subseteq B. Now, let b^{*} be an arbitrary

element of B not contained in J(\rho) . If v is in V_{A}(B) then v(b^{*}-\rho(b^{*}))=
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b^{*}v-v\rho(b^{*})\in B and b^{*}-\rho(b^{*}) is a non-zero element of B (Lemma 1 (a)).
Hence, v is in B.

(b) There holds a=(\rho(b^{*})-b^{*})^{-1}([\rho(b^{*}), a]-(b^{*}a-a\rho(b^{*}))\in[B, A]+B by
Lemma 1 (b). Further, if d, d’ are in [B, A] then (dd’)(\rho^{2}(b^{*})-\rho(b^{*}))=b^{*}

(dd’)-(dd’)\rho(b^{*})\in B (Lemma 1 (b)). Since \rho^{2}(b^{*}1-\rho(b^{*})\neq 0 , we obtain dd’\in B.
PROPOSITION 1. Assume that B is a proper subfifield of A which is

invariant relative to all the inner \rho-derivations effected by elements of A.
If Bc.\underline{\overline{Z}}J(\rho) and A is a prime ring then A is a simple ring with [A:C]=4.

PROOF. Since A=[B, A]+B by Lemma 2 (b), [B, A]^{2}\neq 0 . In fact,
[B, A]^{2}=0 implies a contradition that [B, A] is a non-zero nlipotent ideal
of A. Now, let u, u’ be elements of [B, A] with uu’\neq 0 . Then, uu’ is
a unit of B by Lemma 2 (b) and u’u is also in B and non-zero by (uu’)^{2}\neq 0.
We see therefore that u is a unit. Since bu=u\rho(b) by Lemma 1 (b),
we obtain b([b’, a]u^{-1})=[b’, a]\rho(b)u^{-1}=[b’, a](u^{-1}bu)u^{-1}=([b’, a]u^{-1})b . Hence,
[b’, a]u^{-1}\in V_{A}(B)=B (Lemma 2 (a)), namely, [5, A]=Bu. We have seen
therefore [A : B]_{L}=2 . Combining this with B=V_{A}(B) , we readily obtain
[A : C]=4. (Cf. for instance [5 ; Proposition 7.1].)

Lemma 3. Assume that B is a proper subring of A which is invariant
relative to all the inner \rho-derivations effected by elements of A.

(a) If B is twO-sided simple then B is a fifield.
(b) If A is a {right) primitive ring with non-zero socle S, B a com-

pletely primitive ring with non-zero socle T), and \rho a monomorphism, then
B is a fifield.

PROOF. (a) Since b(b’a-a\rho(b))\in B and b’(ba)-(ba)\rho(b’)\in B, we readily
obtain [b, b’]a\in B. If [B, B]\neq 0 then B[B, B]B=B, and hence A=BA=
(B[B, B]B)A\subseteq B. This contradiction shows that B is a field.

(b) By [1; Theorem IV. 15.1], T can not be equal to S. As in (a),
we obtain B\supseteq[B, B]A\cup A\rho([B, B]) . If [B, B]\neq 0 then \rho([B, B]\neq 0 . Noting
here that the non-zero ideals B[B, B]B and B\rho([B, B])B contains T, we
readily obtain B\supseteq TA and B\supseteq AT. Accordingly, T\subseteq TA=TTA\subseteq T and
T\subseteq AT\subseteq ATT\subseteq T, namely, AT=T=TA. Hence, the ideal T of A con-
tains S and ST is a non-zero ideal of B, which implies a contradiction
S=T

Lemma 4. If A is a simple ring with [A:C]=4 and B is a fifield
with B=V_{A}(B) , then there exists a unique automorphism \rho_{B} of B such that
ba-a\rho_{B}(b)\in B, and then there exists an {inner) automorphism \rho’ of A such
that B is invariant relative to all the inner \rho’-derivations effected by
elements of A.
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PROOF. Let x be an arbitrary element of A not contained in B. Then,
x, 1 form a right free B-basis of A, and we obtain a map \rho_{B} : Barrow B such
that (bx-x\rho_{B}(b)\in B and hence) ba-a\rho_{B}(b)\in B. To be easily seen, \rho_{B} is
a C-automorphism of B and uniquely determined. Now, it is well-known
that \rho_{B} can be extended to an inner automorphism \rho’ of A. (Cf. for in-
stance [5 ; Theorem 7.2].)

THEOREM 1. Let A and B be twO-sided simple. Then, B is invariant
relative to all the inner \rho-derivations effected by elements of A if and only
if one of the following conditions is satisfified:

(1) B=A.
(2) B\subseteq J(\rho)\cap C.
(3) [A : C]=4, B=V_{A}(B), and \rho|B=\rho_{B} {see Lemma 4).

THEOREM 2. Let A be a primitive ring with non-zero socle, B a com-
pletely primitive ring, and \rho a monomorphism. Then, B is invariant
relative to all the inner \rho-derivations effected by elements of A if and only
if one of the following conditions is satisfified:

(1) B=A.
(2) B\subseteq J(\rho)\cap C.
(3) A is a simple ring with [A:C]=4, B=V_{A}(B) , and \rho|B=\rho_{B} .
PROOF OF THEOREMS 1 and 2. By the validity of Lemma 4, it remains

only to prove the only if part. We may assume here that B is a proper
subring of A. In any rate, B is a field by Lemma 3. If B\not\cong J(\rho) then
it is the case (3) by Proposition 1 and Lemma 4. On the other hand, if
B\subseteq J(\rho) then B is invariant relative to all the inner derivations effected by
elements of A. In case B is not of characteristic 2, B\subseteq C by [5; Proposi-
tion 8.10 (b)] and [2; Corollary 1 (1’)]. In what follows, we may assume
therefore that B is of characteristic 2 and B\not\cong C. Then, [b, [b, a]]=0
implies b^{2}\in C, in particular, [b, a]^{2}\in C. Hence, A is a simple ring with
[A:C]=4 by [4; Theorem 2]. Choosing here b_{0}\in B and a_{0}\in A with
[b_{0}, a_{0}]\neq 0 , there holds 1=[b_{0}, a_{0}]^{-1}[b_{0}, a_{0}]=[b_{0}, [b_{0}, a_{0}]^{-1}a_{0}] . Accordingly, for
every c\in C we have c=[b_{0}, c[b_{0}, a_{0}]^{-1}a_{0}]\in B, which means c_{\neq}\subset B. Conse-
quently, B=V_{A}(B) and it is the case (3).
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