Sufficient conditions for an almost-Hermitian manifold to be Kählerian

Dedicated to Professor Y. Katsurada on her 60th birthday

By Sumio Sawaki

§ 0. Introduction

If an almost-Hermitian manifold M is a Kählerian manifold, then its curvature tensor R satisfies

$$
\begin{equation*}
R(X, Y) \cdot F=0 \quad \text { for all tangent vectors } X \text { and } Y \tag{}
\end{equation*}
$$

where the endomorphism $R(X, Y)$ operates on the almost-complex structure tensor F as a derivation at each point on M.

Conversely, does this algebraic condition $\left(^{*}\right.$) on the almost-complex structure tensor field F imply that M is a Kählerian manifold? For an almostKählerian manifold or a K-space, Kotō and the present author (Sawaki and Kotō [3]) already showed that the answer is affirmative, that is,

Theorem A. If an almost-Kählerian manifold or a K-space M satisfies $S=S^{*}$, then M is Kählerian, where S is the scalar curvature and $S^{*}=\frac{1}{2}$ $F^{a b} R_{a b t}{ }^{c} F_{c}{ }^{t}$.

In this theorem, the condition $S=S^{*}$ is weaker than $R(X, Y) \cdot F=0$, in fact, $R(X, Y) \cdot F=0$ implies $S=S^{*}$.

This problem for an almost-Kählerian manifold has also been studied recently by Goldberg [1] and under some additional conditions the present author [4] has proved the following

Theorem B. If an almost-Hermitian manifold M satisfies
(i) $R(X, Y) \cdot F=0, \quad R(X, Y) \cdot \nabla F=0 \quad$ for all tangent vectors X and Y,
(ii) $\nabla_{[j} S_{i] h}=0$ (or equivalently $\nabla_{t} R_{j t h}^{t}=0$),
(iii) the Ricci form is definite,
then M is Kählerian.
Theorem C. If a compact Hermitian manifold M satisfies
(i) $R(X, Y) \cdot F=0, \quad R(X, Y) \cdot \Omega=0 \quad$ for all tangent vectors X and $Y,{ }^{1)}$

1) In the sequel, we omit "for all tangent vectors X and Y ".
(ii) the Ricci form is definite,
then M is Kählerian, where Ω is the exterior derivative of the 2-form $F_{j i} d x^{j} \wedge d x^{i}$.

The purpose of the present paper is to obtain other conditions for an almost-Hermitian manifold to be Kählerian. In §1 we shall give some definitions and a proposition about the purity and hybridity of tensors. In $\S 2$ we shall prepare some lemmas for later use. The main results in an almost-Hermitian manifold and an $* O$-space will be stated in $\S 3$ and $\S 4$ respectively. Particularly, in $\S 3$ we shall give an affirmative answer to the above question in the case where M is a locally symmetric and irreducible almost-Hermitian manifold Corollary 1).

§ 1. Prelimiuaries

Let M be a $2 n$-dim. almost-Hermitian manifold with local coordinates $\left\{x^{i}\right\}$ and the structure $\left(F_{j}^{i}, g_{j i}\right)$. Then by definition we have

$$
\begin{align*}
& F_{j}^{t} F_{t}^{i}=-\delta_{j}^{i} \tag{1.1}\\
& g_{a b} F_{j}^{a} F_{i}^{b}=g_{j i} \tag{1.2}\\
& F_{j i}=-F_{i j} \tag{1.3}
\end{align*}
$$

where $F_{j i}=F_{j}^{t} g_{t i}$.
If an almost-Hermitian manifold M satisfies

$$
\begin{equation*}
\Omega_{j i h}=\nabla_{j} F_{i h}+\nabla_{i} F_{h j}+\nabla_{h} F_{j i}=0, \tag{1.4}
\end{equation*}
$$

where ∇_{j} denotes the operator of covariant derivative with respect to the Riemannian connection, then it is called an almost-Kählerian manifold and if it satisfies

$$
\begin{equation*}
\nabla_{j} F_{i h}+\nabla_{i} F_{j h}=0 \tag{1.5}
\end{equation*}
$$

then it is called K-space (or Tachibana space or nearly Kähler manifold). Moreover, an almost-Hermitian manifold is called a Hermitian manifold if it satisfies $N_{j i}{ }^{h}=0$ where $N_{j i}{ }^{h}$ is the Nijenhuis tensor, that is,

$$
N_{j i}^{h}=F_{j}^{t}\left(\partial_{t} F_{i}^{h}-\partial_{i} F_{t}^{h}\right)-F_{i}^{t}\left(\partial_{t} F_{j}^{h}-\partial_{j} F_{t}^{h}\right)
$$

and an almost-Kählerian manifold satisfying $N_{j i}{ }^{h}=0$ is called a Kählerian manifold.

Now, in an almost-Hermitian manifold, we define the following operators [6],

$$
O_{i h}^{m t}=\frac{1}{2}\left(\delta_{i}^{m} \delta_{h}^{t}-F_{i}^{m} F_{h}^{t}\right), \quad * O_{i \hbar}^{m t}=\frac{1}{2}\left(\delta_{i}^{m} \delta_{h}^{t}+F_{i}^{m} F_{h}^{t}\right)
$$

A general tensor $T_{j i}{ }^{h}$ (resp. $T_{j h}{ }^{i}$), for example, is said to be pure in j, i, if it satisfies $* O_{j i}^{a b} T_{a b}{ }^{h}=0$ (resp. ${ }^{*} O_{j b}^{a i} T_{a h}{ }^{b}=0$) and $T_{j i}{ }^{h}$ (resp. $T_{j h}{ }^{i}$) is said to be $h y b r i d$ in j, i, if it satisfies $O_{j i}^{a b} T_{a b}{ }^{h}=0$ (resp. $O_{j b}^{a i} T_{a h}{ }^{b}=0$).

Then, an almost-Hermitian manifold satisfying

$$
\begin{equation*}
* O_{j i}^{a b} \nabla_{a} F_{b \hbar}=0 \tag{1.6}
\end{equation*}
$$

is called an $* O$-space and it is well known that almost-Kählerian manifold and K-space are both ${ }^{*} O$-spaces. ${ }^{2)}$

We can easily verify the following

Proposition

(1) If $T_{j h}{ }^{2}$ is pure (resp. hybrid) in j, i, then

$$
F_{t}^{i} T_{j h}{ }^{t}=F_{j}^{t} T_{t h}{ }^{i} \quad\left(\operatorname{resp} . \quad F_{t}^{i} T_{j h}^{t}=-F_{j}^{t} T_{t h}{ }^{i}\right) .
$$

If $T_{j i}{ }^{h}$ is pure (resp. hybrid) in j, i then

$$
F_{j}^{t} T_{t i}^{h}=F_{i}^{t} T_{j t}^{h} \quad\left(r e s p . \quad F_{j}^{t} T_{t i}^{h}=-F_{i}^{t} T_{j t}^{h}\right) .
$$

(2) Let $T_{j i}{ }^{h}$ be pure in j, i. If $S_{j k}{ }^{i}$ is pure (resp. hybrid) in j, i, then $T_{j r}{ }^{h}$ $S_{i k}{ }^{r}$ is pure (resp. hybrid) in j, i.
(3) If $T_{j i}{ }^{n}$ is pure in j, i and $S_{k}^{j i}$ is hybrid in j, i, then

$$
T_{j i}{ }^{h} S_{k}{ }^{j i}=0
$$

(4) In an almost-Hermitian manifold, $\nabla_{j} F_{i n}$ or $\nabla_{j} F^{i h}$ is pure in i, h.
(5) In an almost-Hermitian manifold, $R(X, Y) \cdot F=0$ means that $R_{a b j}{ }^{i}$ is pure in j, i and hybrid in a, b.

§ 2. Lemmas

In this section, we shall prove some lemmas for later use. The following lemma is well known.

Lemma 2.1. (Yano and Mogi [5]) In order that an almost-Hermitian manifold be Kählerian, it is necessary and sufficient that $\nabla_{j} F_{i n}=0$.

Lemma 2.2. In an almost-Hermitian manifold, ${ }^{*} O_{j i}^{a b} \nabla_{a} F_{b h}=0$ is equivalent to $* O_{j i}^{a b} \Omega_{a b n}=0$.

Proof. If $* O_{j i}^{a b} \nabla_{a} F_{b h}=0$, then by Proposition (4), we have $* O_{j i}^{a b} \Omega_{a b h}=0$. Conversely, when

$$
\nabla_{j} F_{i h}+\nabla_{i} F_{h j}+\nabla_{h} F_{j i}+F_{j}^{a} F_{i}^{b}\left(\nabla_{a} F_{b h}+\nabla_{b} F_{h a}+\nabla_{h} F_{a b}\right)=0
$$

or by Proposition (4),

[^0]\[

$$
\begin{equation*}
\nabla_{j} F_{i k}+F_{j}^{a} F_{i}^{b} \nabla_{a} F_{b h}=\nabla_{\imath} F_{j h}+F_{j}^{a} F_{i}^{b} \nabla_{b} F_{a k}, \tag{2.1}
\end{equation*}
$$

\]

if we put

$$
T_{j i h}=\nabla_{j} F_{i l}+F_{j}^{a} F_{i}^{b} \nabla_{a} F_{b l},
$$

then (2.1) shows that $T_{j i \hbar}$ is symmetric in j, i. But, since $T_{j i \hbar}$ is skewsymmetric in i, h, we obtain $T_{j t h}=0$, that is, $* O_{j i}^{a b} \nabla_{a} F_{b h}=0$.

Lemma 2.3. In an almost-Hermitian manifold M satisfying $R(X, Y)$. $F=0, \nabla_{Z} R(X, Y) \cdot F=0$ is equivalent to $R(X, Y) \cdot \nabla_{Z} F=0$.

Proof. Since $(1,1)$ type tensor $R(X, Y)$ or F operates as a derivation on the tensor algebra of the tangent space $T_{x}(M)$ at each point $x \in M$, $R(X, Y) \cdot F=0$ is equivalent to $[R(X, Y), F]=0$ where $[A, B]$ means $A B-$ $B A$ for (1.1) type tensors A and B.

Thus, lemma follows from the identity :

$$
\begin{aligned}
\nabla_{z}[R(X, Y), F]=\left[\nabla_{z} R(X, Y), F\right] & +\left[R\left(\nabla_{Z} X, Y\right), F\right] \\
+ & {\left[R\left(X, \nabla_{Z} Y\right), F\right]+\left[R(X, Y), \nabla_{Z} F\right] . }
\end{aligned}
$$

Lemma 2. 4. In an almost-Hermitian manifold $M, R(X, Y) \cdot \nabla_{W} \nabla_{Z} F=0$ implies $R(X, Y) \cdot F=0$.

Proof. From $R(X, Y) \cdot \nabla_{W} \nabla_{Z} F=0$, we have

$$
\begin{equation*}
R_{a b j}{ }^{s} \nabla_{c} \nabla_{a} F_{s i}+R_{a b i}{ }^{s} \nabla_{c} \nabla_{d} F_{j s}=0 . \tag{2.2}
\end{equation*}
$$

Transvecting (2.2) with $F^{j i}$, we have

$$
2 R_{a b j}{ }^{s} F^{j i} \nabla_{c} \nabla_{a} F_{s i}=0
$$

or
again transvecting with $g^{a c} g^{b d}$, then this equation turns out to be

$$
F^{j t} R^{a b}{ }_{j}{ }_{j}\left(\nabla_{a} \nabla_{b} F_{s i}-\nabla_{b} \nabla_{a} F_{s i}\right)=0,
$$

where

$$
F^{j i}=g^{a j} g^{b i} F_{a b}, \quad R^{a b{ }_{j}}=g^{a c} g^{b d} R_{c a j} \quad \text { etc. . }
$$

Thus, by Ricci identity, we have

$$
F^{j i} R^{a b}{ }_{j}^{s}\left(R_{a b s}{ }^{t} F_{t i}+R_{a b c}{ }^{t} F_{s t}\right)=0
$$

or
or

$$
\begin{aligned}
& R^{a b j}{ }_{s}\left(R_{a b j s}+F_{j}^{i} F_{t}^{s} R_{a b i}{ }^{t}\right)=0 \\
& \frac{1}{2}\left(R_{a b j}{ }^{s}+F_{j}^{i} F_{t}^{s} R_{a b i}^{t}\right)\left(R^{a b j}+F_{c}^{j} F_{s}^{d} R_{d}^{a b c}\right)=0
\end{aligned}
$$

from which it follows that

$$
R_{a b j}{ }^{s}+F_{j}^{i} F_{t}^{s} R_{a b i}{ }^{t}=0,
$$

that is, $R(X, Y) \cdot F=0$, by virtue of Proposition (5).

§ 3. Theorems in an almost-Hermitian manifold

Theorem 3.1. If an almost-Hermitian manifold M satisfies

$$
\begin{equation*}
R(X, Y) \cdot F=0, \quad \nabla_{z} R(X, Y) \cdot F=0 \tag{i}
\end{equation*}
$$

the rank of the Ricci form is maximum,
then M is Kählerian.
Proof. By Lemma 2.3, from (i) we have $R(X, Y) \cdot \nabla_{Z} F=0$, that is,

$$
\begin{equation*}
R_{a b j}{ }^{s} \nabla_{m} F_{s i}+R_{a b i}{ }^{s} \nabla_{m} F_{j s}=0 \tag{3.1}
\end{equation*}
$$

or transvecting (3.1) with $g^{b j}$, we have

$$
\begin{equation*}
S^{a s} \nabla_{m} F_{s i}+R_{i d}^{a b}{ }_{i}^{s} \nabla_{m} F_{b s}=0 . \tag{3.2}
\end{equation*}
$$

On the other hand, making use of the first Bianchi identity, we have

$$
\begin{aligned}
R_{i}^{a b}{ }_{i}^{s} \nabla_{m} F_{b s} & =\frac{1}{2}\left(R_{i}^{a b_{i}^{s}}-R_{i}^{a s{ }_{i}^{b}}\right) \nabla_{m} F_{b s} \\
& =-\frac{1}{2} R_{i}^{a s b} \nabla_{m} F_{b s} .
\end{aligned}
$$

But, by the assumption $R(X, Y) \cdot F=0, R_{i}^{a b}$ is hybrid in s, b and by Proposition (4), $\nabla_{m} F_{b s}$ is pure in b, s and therefore the last term vanishes, by virtue of Proposition (3).

Thus, from (3.2), we have

$$
S^{a s} \nabla_{m} F_{s i}=0 .
$$

Consequently, by the assumption (ii), we have $\nabla_{m} F_{s i}=0$ which shows that M is Kählerian, by virture of Lemma (2.1).

Since a locally symmetric and irreducible almost-Hermitian manifold is an Einstein manifold, we have the following

Corollary 1. If a locally symmetric and irreducible almost-Hermitian manifold M with $S \neq 0$ satisfies $R(X, Y) \cdot F=0$, then M is Kählerian.

Corollary 2. If an almost-Hermitian manifold M satisfies

$$
\begin{equation*}
R(X, Y) \cdot \nabla_{Z} F=0, \quad R(X, Y) \cdot \nabla_{W} \nabla_{Z} F=0, \tag{i}
\end{equation*}
$$

(ii) the rank of the Ricci form is maximum,
then M is Kählerian.

Proof. This follows directly from Lemma 2.4 and Theorem 3.1.

\S 4. Theorems in an ${ }^{*} \mathrm{O}$-space

Theorem 4.1. If an ${ }^{*} O$-space M satisfies

$$
\begin{equation*}
R(X, Y) \cdot F=0, \quad R(X, Y) \cdot \Omega=0 \tag{i}
\end{equation*}
$$

the rank of the Ricci form is maximum,
then M is Kählerian.
Proof. From $R(X, Y) \cdot \Omega=0$, we have

$$
R_{a b j}{ }^{s} \Omega_{s i h}+R_{a b i}{ }^{s} \Omega_{j s h}+R_{a b h}{ }^{s} \Omega_{j i s}=0 .
$$

Transvecting this equation with $g^{b j}$, we have

$$
\begin{equation*}
S^{a s} \Omega_{s i \hbar}+R_{i}^{a b}{ }_{i}^{s} \Omega_{b s h}+R_{h}^{a b}{ }^{s} \Omega_{b i s}=0 \tag{4.1}
\end{equation*}
$$

Now, the second term of the left hand side of (4.1), by the first Bianchi dentity, can be written as

$$
\begin{aligned}
R_{i}^{a b s} \Omega_{b s h} & =\frac{1}{2}\left(R_{i}^{a b}{ }_{i}^{s}-R_{i}^{a s b}\right) \Omega_{b s h} \\
& =-\frac{1}{2} R_{i}^{a s b} \Omega_{b s h}
\end{aligned}
$$

and this last term vanishes by virtue of Proposition (3), because by the assumption $R(X, Y) \cdot F=0, R_{i}^{a b b}$ is hybrid in s, b, and by Lemma 2.2, $\Omega_{b s h}$ is pure in s, b. Similarly, the third term of (4.1) also vanishes.

Thus, (4.1) becomes

$$
S^{a s} \Omega_{s i h}=0
$$

from which it follows that $\Omega_{s i n}=0$, by virtue of (ii), that is, M is an almostKählerian manifold and therefore Theorem A proves the theorem.

Theorem 4.2. In an ${ }^{*} O$-space M satisfies

$$
\begin{equation*}
R(X, Y) \cdot F=0, \quad R(X, Y) \cdot N=0 \tag{i}
\end{equation*}
$$

(ii) $\quad \nabla_{[j} S_{i] h}=0 \quad$ (or equivalently $\nabla^{t} R_{t j i h}=0$),
(iii) the Ricci form is definite,
then M is Kählerian.
Proof. First we note that in an $* O$-space the Nijenhuis tensor can be written as

$$
N_{j i h}=2 F_{j}^{t}\left(\nabla_{t} F_{i h}-\nabla_{i} F_{t h}\right) .
$$

Hence, making use of the assumption $R(X, Y) \cdot F=0$, from $R(X, Y) \cdot N=0$, we have

$$
2 F_{j}^{t}\left[\nabla_{a} \nabla_{b}\left(\nabla_{t} F_{i h}-\nabla_{i} F_{t h}\right)-\nabla_{b} \nabla_{a}\left(\nabla_{t} F_{i h}-\nabla_{i} F_{t h}\right)\right]=0 .
$$

Transvecting this equation with $\frac{1}{2} F_{k}{ }^{j}$ and using Ricci identity, we have

$$
\begin{equation*}
R_{a b k}{ }^{s}\left(\nabla_{s} F_{i h}-\nabla_{i} F_{s h}\right)+R_{a b i}{ }^{s}\left(\nabla_{k} F_{s h}-\nabla_{s} F_{k h}\right)+R_{a b b k}{ }^{s}\left(\nabla_{k} F_{i s}-\nabla_{i} F_{k s}\right)=0 . \tag{4.2}
\end{equation*}
$$

Multiplying (4.2) by $g^{b t}\left(\nabla^{a} F^{i h}-\nabla^{i} F^{a h}\right)$, we have

$$
\begin{align*}
& S^{a s}\left(\nabla_{s} F_{i h}-\nabla_{i} F_{s h}\right)\left(\nabla_{a} F^{i h}-\nabla^{i} F_{a}{ }^{n}\right) \tag{4.3}\\
&=-R_{i}^{a b s}{ }_{i}^{s}\left(\nabla_{b} F_{s h}-\nabla_{s} F_{b h}\right)\left(\nabla_{a} F^{i h}-\nabla^{i} F_{a}{ }^{h}\right) \\
&+R_{h}^{a b{ }_{h} s} \nabla_{i} F_{b s}\left(\nabla_{a} F^{i h}-\nabla^{i} F_{a}{ }^{h}\right)+R^{a b h s}\left(\nabla_{b} F_{i s}\right) \nabla^{i} F_{a h} \\
&-R_{h}^{a b{ }_{h}^{s}}\left(\nabla_{b} F_{i s}\right) \nabla_{a} F^{i h} .
\end{align*}
$$

We are now going to show that the right hand side of (4.3) vanishes. Its first term, by the first Bianchi identity, turns out to be

$$
\begin{aligned}
R_{i}^{a b}{ }_{i}\left(\nabla_{b}\right. & \left.F_{s h}-\nabla_{s} F_{b \hbar}\right)\left(\nabla_{a} F^{i \hbar}-\nabla^{i} F_{a}{ }^{h}\right) \\
& =\frac{1}{2}\left(R_{i}^{a b}-R_{i}^{a s b}\right)\left(\nabla_{b} F_{s h}-\nabla_{s} F_{b h}\right)\left(\nabla_{a} F^{i h}-\nabla^{i} F_{a}{ }^{h}\right) \\
= & -\frac{1}{2} R_{i}^{a}{ }_{i}^{s b}\left(\nabla_{b} F_{s h}-\nabla_{s} F_{b h}\right)\left(\nabla_{a} F^{i \hbar}-\nabla^{i} F_{a}{ }^{h}\right)
\end{aligned}
$$

and therefore, by virtue of Proposition (3), it vanishes, because $R_{i}^{a}{ }^{s b}$ is hybrid in s, b and $\nabla_{b} F_{s h}-\nabla_{s} F_{b h}$ is pure in s, b. By the same method, we can see that the second and third terms vanish. For the last term, by the assumption (ii), we have

$$
R^{a b}{ }_{h}{ }^{s}\left(\nabla_{b} F_{i s}\right) \nabla_{a} F^{i h}=\nabla_{a}\left(R^{a b{ }_{h}{ }^{s}} F^{i h} \nabla_{b} F_{i s}\right)-R^{a b{ }_{h}{ }^{s}} F^{i h} \nabla_{a} \nabla_{b} F_{i s} .
$$

In the right hand side of this equation, by Proposition (3) we have $R^{a b{ }_{h}{ }^{s}} F^{i h} V_{b} F_{i s}=0$, because by Proposition (2) $R^{a b}{ }_{h}{ }^{s} F^{i h}$ is hybrid in s, i and $\nabla_{b} F_{i s}$ is pure in i, s. For the last term, since $R^{a b}{ }_{h}{ }^{s}$ is skew-symmetric in a, b, and by the assumption $R(X, Y) \cdot F=0, \nabla_{a} \nabla_{b} F_{i s}$ is symmetric in a, b, it vanishes.

Consequently, (4.3) becomes

$$
S^{a s}\left(\nabla_{s} F_{i h}-\nabla_{i} F_{s_{n}}\right)\left(\nabla_{a} F^{i h}-\nabla^{i} F_{a}{ }^{h}\right)=0
$$

from which it follows that, by the assumption (iii),

$$
\nabla_{s} F_{i h}-\nabla_{i} F_{s i}=0 .
$$

But, since $\nabla_{s} F_{i h}$ is skew-symmetric in i, h, we have $V_{s} F_{i n}=0$ which shows
that M is Kählerian.
We conclude this section with the following theorem where the condition $R(X, Y) \cdot F=0$ has been removed.

Theorem 4.3. If a compact almost-Kählerian manifold M satisfies

$$
\begin{equation*}
R(X, Y) \cdot N=0, \tag{i}
\end{equation*}
$$

(ii) $\quad \nabla_{[j} S_{i] n}=0 \quad$ (or equivalently $\nabla^{t} R_{t j i h}=0$),
(iii) the Ricci form is semi-negative definite,
then M is Kählerian.
Proof. First we note that in an almost-Kählerian manifold, the Nijenhuis tensor can be written as

$$
N_{j i}^{h}=2 F_{t}^{h} \nabla^{t} F_{j i} .
$$

Thus, from (i) we have

$$
R_{a d s}{ }^{h} F_{t}^{s} \nabla^{t} F_{j i}-R_{a b j}{ }^{s} F_{t}{ }^{h} \nabla^{t} F_{s i}-R_{a b i}{ }^{s} F_{t}^{h} \nabla^{t} F_{j s}=0
$$

or transvecting this equation with δ_{n}^{b},

$$
\begin{equation*}
S_{a s} F_{t}^{s} \nabla^{t} F_{j i}+R_{a n j}{ }^{s} F_{t}{ }^{n} \nabla^{t} F_{s i}+R_{a n i}{ }^{s} F_{t}^{n} \nabla^{t} F_{j s}=0 . \tag{4.4}
\end{equation*}
$$

Again transvecting (4.4) with $F_{k}{ }^{i} V^{a} F^{j k}$, we have

$$
\begin{align*}
S_{a s} F_{t}^{s}\left(\nabla^{t} F_{j i}\right) F_{k}{ }^{i} \nabla^{a} V^{3 k} & +R_{a n j}{ }^{s} F_{t}^{n}\left(\nabla^{t} F_{s i}\right) F_{k}{ }^{i} \nabla^{a} F^{j k} \tag{4.5}\\
& +R_{a n k}{ }^{s} F_{t}^{h}\left(\nabla^{t} F_{j s}\right) F_{k}{ }^{i} \nabla^{a} F^{j k}=0 .
\end{align*}
$$

Now, the each term of (4.5), making use of Proposition (1), turns out to be the following

$$
\begin{aligned}
& S_{a s} F_{t}^{s}\left(\nabla^{t} F_{j i}\right) F_{k}^{i} \nabla^{a} F^{j k}=S_{a s} F_{t i}\left(\nabla^{s} F_{j}^{t}\right) F_{k}{ }^{i} \nabla^{a} F^{j k}=S_{a s}\left(\nabla^{s} F_{j k}\right) \nabla^{a} F^{j k}, \\
& R_{a n j}{ }^{s} F_{t}^{h}\left(\nabla^{t} F_{s i}\right) F_{k}{ }^{i} V^{a} F^{j k}=R_{a h j}{ }^{s} F_{t i}\left(\nabla^{h} F_{s}{ }^{t}\right) F_{k}{ }^{i} \nabla^{a} F^{j k}=R_{a h j}{ }^{s}\left(\nabla^{h} F_{s k}\right) \nabla^{a} F^{y k}, \\
& R_{a h i}{ }^{s} F_{t}^{n}\left(\nabla^{t} F_{j s}\right) F_{k}{ }^{i} \nabla^{a} F^{j k}=R_{a n i}{ }^{s} F_{t j}\left(\nabla^{a} F_{s}^{t}\right) F_{k}{ }^{j} \nabla^{a} F^{k i}=R_{a h i}{ }^{s}\left(\nabla^{a} F_{k s}\right) \nabla^{a} F^{k i},
\end{aligned}
$$

Hence, (4.5) reduces to

$$
\begin{equation*}
S_{a s}\left(\nabla^{s} F_{j k}\right) \nabla^{a} F^{j k}+2 R_{a k j}{ }^{s}\left(\nabla^{a} F_{s k}\right) \nabla^{a} F^{j k}=0 . \tag{4.6}
\end{equation*}
$$

Integrating (4.6) over M and making use of Green's theorem and the assumption (ii), we have

$$
\int_{M} S_{a s}\left(\nabla^{s} F_{j k}\right) \nabla^{a} F^{j k} d V-2 \int_{M} R_{a h j}{ }^{s}\left(\nabla^{a} \nabla^{n} F_{s k}\right) F^{3 k} d V=0
$$

where $d V$ denotes the volume element of M, or by Ricci identity

$$
\int_{M} S_{a s}\left(\nabla^{s} F_{j k}\right) \nabla^{a} F^{j k} d V+\int_{M} R_{a h j}^{s}\left(R_{s}^{a h t} F_{t k}+R_{k}^{a h}{ }_{k}^{t} F_{s t}\right) F^{j k} d V=0
$$

or
(4. 7) $\quad \int_{M} S_{a s}\left(\nabla^{s} F_{j k}\right) \nabla^{a} F^{j k} d V-\int_{M} R_{a n j}{ }^{s}\left(R^{a h j}{ }_{s}+F_{k}{ }^{j} F_{s}{ }^{t} R^{a h k}\right) d V=0$.
(4.7) can be written as

$$
\begin{aligned}
\int_{M} S_{a s}\left(\nabla^{s} F_{j k}\right) & \nabla^{a} F^{j k} d V \\
& -\frac{1}{2} \int_{M}\left(R_{a h j^{s}}+F_{j}{ }^{k} F_{t}^{s} R_{a k k t}\right)\left(R^{a h j}{ }_{s}+F_{c}^{j} F_{s}^{d} R_{d}^{a h c}\right) d V=0 .
\end{aligned}
$$

Consequently, by the assumption (iii), we have

$$
R_{a h j}^{s}+F_{j}^{k} F_{t}^{s} R_{a h k}{ }^{t}=0,
$$

that is, $R(X, Y) \cdot F=0$ and therefore, Theorem A proves the theorem.

Niigata University

Bibligraph

[1] S. I. Goldbeg: Integrability of almost Kaehler manifolds, Proc. Amer. Math. Soc., 21 (1969), 96-100.
[2] S. SAWAKI: On almost-analytic tensors in *O-spaces, Tōhoku Math. Jour., 13 (1961), 154-178.
[3] S. Sawaki, and S. Kotō: On almost-Hermitian spaces, Sūgaku (in japanese), 16 (1964), 9-18.
[4] S. SAWAKI: On almost-Hermitian manifolds satisfying a certain condition on the almost-complex structure tensor, Diff. Geom. in honor of Kentaro Yano, Kinokuniya, Tokyo, 1972, 443-450.
[5]ilK. Yano, and I. Mogi: On real representations of Kählerian manifolds, Ann. of Math., 61 (1955), 170-189.
[6] K. Yano: The theory of Lie derivatives and its applications, Amsterdam, 1957.
(Received September 15, 1971)

[^0]: 2) For example, see S. Sawaki [2],
