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\S 0. Introduction

If an almost-Hermitian manifold M is a K\"ahlerian manifold, then its
curvature tensor R satisfies

(^{*}) R(X, Y)\cdot F=0 for all tangent vectors X and Y,

where the endomorphism R(X, Y) operates on the almost-complex structure
tensor F as a derivation at each point on M.

Conversely, does this algebraic condition (^{*}) on the almost-complex struc-
ture tensor field F imply that M is a K\"ahlerian manifold ? For an almost-
K\"ahlerian manifold or a K-space, Kot\={o} and the present author (Sawaki and
Kot\={o} [3] ) already showed that the answer is affirmative, that is,

THEOREM A. If an almost-K\"ahlerian manifold or a K-space M satisfifies
S=S^{*} , then M is K\"ahlerian, where S is the scalar curvature and S^{*}= \frac{1}{2}

F^{ab}R_{abt}^{c}F_{c}^{t} .
In this theorem, the condition S=S^{*} is weaker than R(X, Y)\cdot F=0 , in

fact, R(X, Y)\cdot F=0 implies S=S^{*} .
This problem for an almost-K\"ahlerian manifold has also been studied

recently by Goldberg [1] and under some additional conditions the present
author [4] has proved the following

THEOREM B. If an almost-Hermitian manifold M satisfifies
(i) R(X, Y)\cdot F=0 , R(X, Y)\cdot\nabla F=0 for all tangent vectors X and Y,
(ii) \nabla_{\ddagger f}S_{iIh}=0 {or equivalently \nabla_{t}R_{fih}^{t}=0),

(iii) the Ricci form is defifinite,

then M is K\"ahlerian,

THEOREM C. If a compact Hermitian manifold M satisfifies
(i) R(X, Y)\cdot F=0 , R(X, Y)\cdot\Omega=0 for all tangent vectors X and Y^{1)},

1) In the sequel, we omit “for all tangent vectors X and Y”.
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(ii) the Ricci form is defifinite,

then M is K\"ahlerian, where \Omega is the exterior derivative of the 2-f0rm
F_{fi}dx^{f}\wedge dx^{i}.

The purpose of the present paper is to obtain other conditions for an
almost-Hermitian manifold to be K\"ahlerian. In \S 1 we shall give some
definitions and a proposition about the purity and hybridity of tensors. In
\S 2 we shall prepare some lemmas for later use. The main results in an
almost-Hermitian manifold and an *0-space will be stated in \S 3 and \S 4
respectively. Particularly, in \S 3 we shall give an affirmative answer to the
above question in the case where M is a locally symmetric and irreducible
almost-Hermitian manifold (Corollary 1).

\S 1. Prelimiuaries

Let M be a 2n- dim. almost-Hermitian manifold with local coordinates
\{x^{\sqrt[i]{}}\} and the structure (F_{j}^{i}, g_{fi}) . Then by definition we have

(1. 1) F_{f}{}^{t}F_{t}^{i}=-\delta_{f}^{i},

(1. 2) g_{ab}F_{f}^{a}F_{i}^{b}=g_{fi} ,

(1. 3) F_{ji}=-F_{if}

where F_{fi}=F_{f}{}^{t}g_{ti} .
If an almost-Hermitian manifold M satisfies

(1. 4) \Omega_{fih}=\nabla_{f}F_{ih}+\nabla_{i}F_{\iota j},+\nabla_{h}F_{fi}=0 ,

where \nabla_{f} denotes the operator of covariant derivative with respect to the
Riemannian connection, then it is called an almost-K\"ahlerian manifold and
if it satisfies

(1. 5) \nabla_{f}F_{ih}+\nabla_{i}F_{fh}=0 ,

then it is called K space (or Tachibana space or nearly K\"ahler manifold).
Moreover, an almost-Hermitian manifold is called a Hermitian manifold if
it satisfies N_{fi}^{h}=0 where N_{ji}^{h} is the Nijenhuis tensor, that is,

N_{fi}^{h}=F_{f}{}^{t}(\partial_{t}F_{i}^{h}-\partial_{i}F_{t}^{h})-F_{i}{}^{t}(\partial_{t}F_{f}^{h}-\partial_{f}F_{t}^{h})

and an almost-K\"ahlerian manifold satisfying N_{fi}^{h}=0 is called a K\"ahlerian

manifold.
Now, in an almost-Hermitian manifold, we define the following opera-

form [6],

O_{ih}^{mt}= \frac{1}{2}(\delta_{i}^{m}\delta_{h}^{t}-F_{i}^{m}F_{h}^{t}) , * 0_{ih}^{mt}=\frac{1}{2}(\delta_{\sqrt[\dot{\prime}]{}}^{m}\delta_{h}^{t}+F_{i}^{m}F_{h}^{t}) .
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A general tensor T_{ji}^{h} (resp. T_{fh}^{i}), for example, is said to be pure in j, i, if
it satisfies *0_{J\emptyset}^{ab}.T_{ab}^{h}=0 (resp. *o_{jb}^{ai}T_{ah}^{b}=0) and T_{ji}^{h} (resp. T_{jh}^{i}) is said to be
hybrid in j, i, if it satisfies O_{ji}^{ab}T_{ab}^{h}=0 (resp. O_{jb}^{al}T_{ah}^{b}=0).

Then, an almost-Hermitian manifold satisfying
(1. 6) *0_{ji}^{ab}\nabla_{a}F_{bh}=0

is called an *0-space and it is well known that almost-K\"ahlerian manifold
and K-space are both *0-spaces.2)

We can easily verify the following
PROPOSITION

(1) If T_{fh}^{d}. is pure (resp. hybrid) in j, i, then

F_{t}^{i}T_{fh}^{t}=F_{f}{}^{t}T_{th}^{i} (resp. F_{t}^{i}T_{fh}^{t}=-F_{f}^{t} T_{th}^{i}).

If T_{fi}^{h} is pure {resp. hybrid) in j, i then

F_{j}{}^{t}T_{ti}^{h}=F_{i}{}^{t}T_{ft}^{h} (resp. F_{f}{}^{t}T_{ti}^{h}=-F_{i}^{t} T_{jt}^{h}).

(2) Let T_{fi}^{h} be pure in j, i. If S_{fk}^{i} is pure (resp. hybrid) in j, i, then T_{fr}^{h}

S_{ik}^{r} is pure (resp. hybrid) in j,i.
(3) If T_{fi}^{h} is pure in j, i and S_{k}^{fi} is hybrid in j, i, then

T_{fi}^{h}S_{k}^{ji}=0 .
(4) In an almost-Hermitian manifold, \nabla_{f}F_{ih} or \nabla_{f}F^{ih} is pure in i, h.
(5) In an almost-Hermitian manifold, R(X, Y)\cdot F=0 means that R_{abf}^{i} is
pure in j, i and hybrid in a, b.

\S 2. Lemmas

lemma 2. 1. {Yano and Mogi [5] ) In order that an almost-Hermitian
manifold be K\"ahlerian, it is necessary and sufficient that \nabla_{f}F_{ih}=0.

Lemma 2. 2. In an almost-Hermitian manifold, *0_{fi}^{ab}\nabla_{a}F_{bh}=0 is equiv-
alent to *0_{fi}^{ab}\Omega_{abh}=0 .

In this section, we shall prove some lemmas for later use. The follow-
ing lemma is well known.

PROOF. If*0_{fi}^{ab}\nabla_{a}F_{bh}=0 , then by Proposition (4), we have *0_{fi}^{ab}\Omega_{abh}=0 .
Conversely, when

\nabla_{f}F_{ih}+\nabla_{i}F_{hf}+\nabla_{h}F_{ji}+F_{f}^{a}F_{i}^{b}(\nabla_{a}F_{bh}+\nabla_{b}F_{ha}+\nabla_{h}F_{ab})=0

or by Proposition (4),

2) For example, see S. Sawaki [2].
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(2. 1) \nabla_{f}F_{ih}+F_{f}^{a}F_{i}^{b}\nabla_{a}F_{bh}=\nabla_{i}F_{jh}+F_{j}^{a}F_{i}^{b}\nabla_{b}F_{ah} ,

if we put

T_{jih}=\nabla_{j}F_{ih}+F_{j}^{a}F_{i}^{b}\nabla_{a}F_{bh} ,

then (2.1) shows that T_{fih} is symmetric in j, i. But, since T_{fih} is skew-
symmetric in i, h, we obtain T_{fih}=0 , that is, *0_{fi}^{ab}\nabla_{a}F_{bh}=0 .

LEMMA 2. 3. In an almost-Hermitian manifold M satisfying R(X, Y) .
F=0, \nabla_{Z}R(X, Y)\cdot F=0 is equivalent to R(X, Y)\cdot\nabla_{Z}F=0 .

PROOF. Since (1, 1) type tensor R(X, Y) or F operates as a derivation
on the tensor algebra of the tangent space T_{x}(M) at each point x\in M,
R(X, Y)\cdot F=0 is equivalent to [R(X, Y), F]=0 where [A, B] means AB-
BA for (1, 1) type tensors A and B.

Thus, lemma follows from the identity :

\nabla_{Z}[R(X, Y), F]=[\nabla_{Z}R(X, Y), F]+[R(\nabla_{Z}X, Y) , F]

+[R(X, \nabla_{Z}Y), F]+[R(X, Y), \nabla_{Z}F] .

PROOF. From R(X, Y)\cdot\nabla_{W}\nabla_{Z}F=0 , we have
(2. 2) R_{abf}^{s}\nabla_{c}\nabla_{l},F_{si}+R_{abi}^{s}\nabla_{c}\nabla_{d}F_{fs}=0 .

Transvecting (2. 2) with F^{fi}, we have
2R_{abj}^{s}F^{ji}\nabla_{c}\nabla_{l},F_{si}=0

or
again transvecting with g^{ac}g^{bd}, then this equation turns out to be

F^{fi}R_{f}^{abs}(\nabla_{a}\nabla_{b}F_{si}-\nabla_{b}\nabla_{a}F_{si})=0’.

where F^{fi}=g^{ajbi}gF_{ab} , R_{f}^{abs}=g^{ac}g^{bd}R_{cdf}^{S} etc.

Lemma 2. 4. In an almost-Hermitian manifold M, R(X, Y)\cdot\nabla_{W}\nabla_{Z}F=0

implies R(X, Y)\cdot F=0 .

Thus, by Ricci identity, we have
F^{ji}R_{f}^{abs}(R_{abs}{}^{t}F_{ti}+R_{abi}{}^{t}F_{st})=0

or
R_{s}^{abj}(R_{abjs}+F_{f}^{\dot{o}}.F_{t}^{s}R_{abi}^{t})=0

or \frac{1}{2}(R_{abf}^{s}+F_{j}^{i}F_{t}^{s}R_{abi}^{t})(R_{s}^{abf}+F_{c}^{f}F_{s}^{a}R^{abc_{Cl}})=0

from which it follows that
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R_{abj}^{s}+F_{f}^{i}F_{t}^{s}R_{abi}^{t}=0 ,

that is, R(X, Y)\cdot F=0 , by virtue of Proposition (5).

\S 3. Theorems in an almost-Hermitian manifold

THEOREM 3. 1. If an almost-Hermitian manifold M satisfies
(i) R(X, Y)\cdot F=0 , \nabla_{Z}R(X, Y)\cdot F=0,\cdot

(ii) the rank of the Ricci form is maximum.,

then M is K\"ahlerian.

PROOF. By Lemma 2.3, from (i) we have R(X, Y)\cdot\nabla_{Z}F=0, that is,

(3. 1) R_{abj}^{s}\nabla_{m}F_{si}+R_{abi}^{s}\nabla_{m}F_{js}=0

or transvecting (3. 1) with g^{bj}, we have
(3. 2) S^{as}\nabla_{m}F_{si}+R_{i}^{abs}\nabla_{m}F_{bs}=0 .

On the other hand, making use of the first Bianchi identity, we have

R_{i}^{abs} \nabla_{m}F_{bs}=\frac{1}{2}(R_{i}^{abs}-R_{i}^{asb})\nabla_{m}F_{bs}

=- \frac{1}{2}R_{i}^{asb}\nabla_{m}F_{bs} .

But, by the assumption R(X, Y)\cdot F=0 , R_{i}^{asb} is hybrid in s, b and by
Proposition (4), \nabla_{m}F_{bs} is pure in b, s and therefore the last term vanishes,
by virtue of Proposition (3).

Thus, from (3. 2), we have
S^{as}\nabla_{m}F_{si}=0 .

Consequently, by the assumption (ii), we have \nabla_{m}F_{si},=0 which shows
that M is K\"ahlerian, by virture of Lemma (2.1).

Since a locally symmetric and irreducible almost-Hermitian manifold is
an Einstein manifold, we have the following

COROLLARY 1. If a locally symmetric and irreducible almost-Hermitian
manifold M with S\neq 0 satisfifies R(X, Y)\cdot F=0 , then M is K\"ahlerian.

COROLLARY 2. If an almost-Hermitian manifold M satisfifies
(i) R(X, Y)\cdot\nabla_{Z}F=0 , R(X, Y)\cdot\nabla_{W}\nabla_{Z}F=0,\cdot

(ii) the rank of the Ricci form is maximum ,

then M is K\"ahlerian.
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PROOF. This follows directly from Lemma 2.4 and Theorem 3.1.

\S 4. Theorems in an *\bm{O}-space

THEOREM 4. 1. If an *0-space M satisfifies
(i) R(X, Y)\cdot F=0 , R(X, Y)\cdot\Omega=0 ,

(ii) the rank of the Ricci form is maximum ,\cdot

then M is K\"ahlerian.

PROOF. From R(X, Y)\cdot\Omega=0 , we have
R_{abf}^{s}\Omega_{sih}+R_{abi}^{s}\Omega_{jsh}+R_{abh}^{s}\Omega_{jis}=0 .

Transvecting this equation with g^{bf} , we have

(4. 1) S^{as}\Omega_{sih}+R_{i}^{abs}\Omega_{bsh}+R_{h}^{abs}\Omega_{bis}=0

Now, the second term of the left hand side of (4.1), by the first Bianchi
dentity, can be written as

R_{i}^{abs} \Omega_{bsh}=\frac{1}{2}(R_{i}^{abs}-R_{i}^{asb})\Omega_{bsh}

=- \frac{1}{2}R_{y}^{a_{P}sb}\Omega_{bsh}

and this last term vanishes by virtue of Proposition (3), because by the
assumption R(X, Y)\cdot F=0 , R_{i}^{asb} is hybrid in s, b, and by Lemma 2.2, \Omega_{bsh}

is pure in s, b. Similarly, the third term of (4.1) also vanishes.
Thus, (4. 1) becomes

S^{as}\Omega_{sih}=0

from which it follows that \Omega_{sih}=0 , by virtue of (ii), that is, M is an almost-
K\"ahlerian manifold and therefore Theorem A proves the theorem.

THEOREM 4.2. In an *0-space M satisfies
(i) R(X, Y)\cdot F=0 . R(X, Y)\cdot N=0 ,

(ii) \nabla_{If}S_{ijh}=0 {or equivalently \nabla^{t}R_{tfih}=0),

(iii) the Ricci form is defifinite,

then M is K\"ahlerian.

PROOF. First we note that in an *0-space the Nijenhuis tensor can
be written as

N_{jih}=2F_{f}{}^{t}(\nabla_{t}F_{ih}-\nabla_{i}F_{th}) .
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Hence, making use of the assumption R(X, Y)\cdot F=0 , from R(X,Y)\cdot N=0,
we have

2F_{f}^{t}[\nabla_{a}\nabla_{b}(\nabla_{t}F_{ih}-\nabla_{i}F_{th})-\nabla_{b}\nabla_{a}(\nabla_{t}F_{ih}-\nabla_{i}F_{th})]=0 .

Transvecting this equation with \frac{1}{2}F_{k}^{f} and using Ricci identity, we have

(4. 2) R_{abk}^{s}(\nabla_{s}F_{ih}-\nabla_{i}F_{sh})+R_{abi}^{s}(\nabla_{k}F_{sh}-\nabla_{s}F_{kh})+R_{abh}^{s}(\nabla_{k}F_{is}-\nabla_{i}F_{ks})=0 .
Multiplying (4. 2) by g^{bk}(\nabla^{a}F^{ih}-\nabla^{i}F^{ah}), we have
(4. 3) S^{as}(\nabla_{s}F_{ih}-\nabla_{i}F_{sh})(\nabla_{a}F^{ih}-\nabla^{i}F_{a}^{h})

=-R_{i}^{abs}(\nabla_{b}F_{sh}-\nabla_{s}F_{bh})(\nabla_{a}F^{ih}-\nabla^{i}F_{a}^{h})

+R_{h}^{abs}\nabla_{i}F_{bs}(\nabla_{a}F^{ih}-\nabla^{i}F_{a^{h}})+R^{abhs}(\nabla_{b}F_{is})\nabla^{i}F_{ah}

-R_{h}^{abs}(\nabla_{b}F_{is})\nabla_{a}F^{ih}

We are now going to show that the right hand side of (4.3) vanishes.
Its first term, by the first Bianchi identity, turns out to be

R_{i}^{abs}(\nabla_{b}F_{sh}-\nabla_{s}F_{bh})(\nabla_{a}F^{ih}-\nabla^{i}F_{a}^{h})

= \frac{1}{2}(R_{i}^{abs}-R^{as_{i}b})(\nabla_{b}F_{sh}-\nabla_{S}F_{bh})(\nabla_{a}F^{ih}-\nabla^{i}F_{a^{h}})

=-^{\frac{1}{2}}R_{i}^{asb}(\nabla_{b}F_{sh}-\nabla_{s}F_{bh})(\nabla_{a}F^{ih}-\nabla^{i}F_{a}^{h})

and therefore, by virtue of Proposition (3), it vanishes, because R_{i}^{asb} is hybrid
in s, b and \nabla_{b}F_{sh}-\nabla_{s}F_{bh} is pure in s, b. By the same method, we can see
that the second and third terms vanish. For the last term, by the assump-
tion (ii), we have

R_{h}^{abs}(\nabla_{bS}F_{\sqrt[i]{}})\nabla_{a}F^{ih}=\nabla_{a}(R_{h}^{abs}F^{ih}\nabla_{b}F_{iS})-R_{h}^{abs}F^{ih}\nabla\nabla abF\dot{\rho}\nu S .
In the right hand side of this equation, by Proposition (3) we have

R_{h}^{abs}F^{ih}\nabla_{b}F_{is}=0 , because by Proposition (2) R_{h}^{abs}F^{ih} is hybrid in s, i and
\nabla_{b}F_{\emptyset S}. is pure in i, s. For the last term, since R_{h}^{abs} is skew-symmetric in
a, b, and by the assumption R(X, Y)\cdot F=0, \nabla_{a}\nabla_{b}F_{is} is symmetric in a, b, it
vanishes.

Consequently, (4. 3) becomes
S^{as}(\nabla_{s}F_{ih}-\nabla_{i}F_{sh})(\nabla_{a}F^{ih}-\nabla^{i}F_{a}^{h})=0

from which it follows that, by the assumption (iii),

\nabla_{s}F_{ih}-\nabla_{i}F_{sh}=0\tau

But, since \nabla_{s}F_{ih} is skew-symmetric in i, h, we have \nabla_{s}F_{ih}=0 which shows
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that M is K\"ahlerian.

We conclude this section with the following theorem where the condi-
tion R(X, Y)\cdot F=0 has been removed.

THEOREM 4. 3. If a compact almost-K\"ahlerian manifold M satisfifies
(i) R(X, Y)\cdot N=0 ,

(ii) \nabla_{If}S_{i1h}=0 {or equivalently \nabla^{t}R_{tfih}=0),

(iii) the Ricci form is semi-negative definite,

then M is K\"ahlerian.

PROOF. First we note that in an almost-K\"ahlerian manifold, the
Nijenhuis tensor can be written as

N_{fi}^{h}=2F_{t}^{h}\nabla^{t}F_{fi} .
Thus, from (i) we have

R_{abs^{h}}F_{t}^{s}\nabla^{t}F_{fi}-R_{abf}^{s}F_{t}^{h}\nabla^{t}F_{si}-R_{abi}^{s}F_{t}^{h}\nabla^{t}F_{js}=0

or transvecting this equation with \delta_{h}^{b} ,

(4. 4) S_{as}F_{t}^{s}\nabla^{t}F_{fi}+R_{ahf}^{s}F_{t}^{h}\nabla^{t}F_{si}+R_{ahi}^{s}F_{t}^{h}\nabla^{t}F_{fs}=0 .
Again transvecting (4. 4) with F_{k}^{i}\nabla^{a}F^{fk} , we have
l(4.5) S_{as}F_{t}^{s}(\nabla^{t}F_{fi})F_{k}^{i}\nabla^{a}F^{fk}+R_{ahf}^{s}F_{t}^{h}(\nabla^{t}F_{si})F_{k}^{i}\nabla^{a}F^{fk}

+R_{ahi}^{s}F_{t}^{h}(\nabla^{t}F_{fs})F_{k}^{i}\nabla^{a}F^{jk}=0 .
Now, the each term of (4.5), making use of Proposition (1), turns out

to be the following
S_{as}F_{t}^{s}(\nabla^{t}F_{fi})F_{k}^{i}\nabla^{a}F^{jk}=S_{as}F_{ti}(\nabla^{s}F_{f}^{t})F_{k}^{i}\nabla^{a}F^{fk}=S_{as}(\nabla^{s}F_{fk})\nabla^{a}F^{fk} ,

R_{ahf}^{s}F_{t}^{h}(\nabla^{t}F_{si})F_{k}^{i}\nabla^{a}F^{fk}=R_{ahf}^{s}F_{ti}(\nabla^{h}F_{s}^{t})F_{k}^{i}\nabla^{a}F^{fk}=R_{ahf}^{s}(\nabla^{h}F_{sk})\nabla^{a}F^{fk},\cdot

R_{ahi}^{s}F_{t}^{h}(\nabla^{t}F_{fs})F_{k}^{i}\nabla^{a}F^{fk}=R_{ahi}^{s}F_{tf}(\nabla^{h}F_{s}^{t})F_{k}^{f}\nabla^{a}F^{ki}=R_{ahi}^{s}(\nabla^{h}F_{ks})\nabla^{a}F^{ki}.
,

respectively.
Hence, (4. 5) reduces to

(4. 6) S_{as}(\nabla^{s}F_{fk})\nabla^{a}F^{jk}+2R_{ahf}^{s}\langle\nabla^{h}F_{sk})\nabla^{a}F^{fk}=0 .
Integrating (4.6) over M and making use of Green’s theorem and the as-
sumption (ii), we have

\int_{M}S_{as}(\nabla^{s}F_{fk})\nabla^{a}F^{fk}dV-2\int_{M}R_{ahf}^{s}(\nabla^{a}\nabla^{h}F_{sk})F^{fk}dV=0

where dV denotes the volume element of M, or by Ricci identity
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\int_{M}S_{as}(\nabla^{s}F_{fk})\nabla^{a}F^{jk}dV+\int_{M}R_{ahj}^{s}(R_{s}^{ah}{}^{t}F_{tk}+R_{k}^{ah}{}^{t}F_{st})F^{fk}dV=0

or

(4. 7) \int_{M}S_{as}(\nabla^{s}F_{jk})\nabla^{a}F^{fk}dV-\int_{M}R_{ahj}^{s}(R_{s}^{ahj}+F_{k}^{f}F_{s}{}^{t}R_{t}^{ahk})dV=0\iota

(4. 7) can be written as

\int_{M}S_{as}(\nabla^{s}F_{jk})\nabla^{a}F^{fk}dV

- \frac{1}{2}\int_{M}(R_{ahj}^{s}+F_{f}^{k}F_{t}^{s}R_{ahkt})(R_{s}^{ahj} \dagger F_{c}^{j}F_{s}^{d}R^{ahc_{l}},)dV=0 .

Consequently, by the assumption (iii), we have
R_{ahf}^{s}+F_{f}^{k}F_{t}^{s}R_{ahk}^{t}=0 ,

that is, R(X, Y)\cdot F=0 and therefore, Theorem A proves the theorem.

Niigata University
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