Riemannian manifolds admitting more than $n-1$
 linearly independent solutions of $\nabla^{2} \rho+c^{2} \rho g=0$

Dedicated to Prof. Yoshie Katsurada on the occassion of her sixtieth birthday

By Kwoichi Tandai

Let M be a connected C^{∞}-Riemannian manifold of $n(\geqq 2)$ dimensions with Riemannian metric g. Let us consider the system of partial differential equations

$$
\begin{equation*}
\nabla_{j} \nabla_{i} \rho+c^{2} \rho_{g_{j i}}=0 \quad(c>0) \tag{1}
\end{equation*}
$$

on M, where ∇_{i} denote the local components of the covariant derivative with respect to the Riemannian connection associated to $g(i, j, k, \cdots=1,2, \cdots, n)$.

In a complete Riemannian manifold the existence of a non-trivial solution of (1) uniquely determines the Riemannian manifold structure up to an isometry. In fact, the following theorem is well known.

Theorem A (Obata [1], [2], [3]). Let M be complete. In order for M to admit a non-trivial solution of (1), it is necessary and sufficient that M be isometric to a sphere $S^{n}\left(\frac{1}{c}\right)$ of radius $\frac{1}{c}$ in the $(n+1)$-dimensional Euclidean space E^{n+1}.

In the present paper we shall deal with Riemannian manifolds, admitting more than $n-1$ linearly independent solutions of (1), instead of the assumption of completeness, and prove the following three theorems.

Theorem B. In order for M to admit $n+1$ solutions of (1), linearly independent over the real number field R, it is necessary and sufficient that M be isometrically immersed in $S^{n}\left(\frac{1}{c}\right)$ in E^{n+1}.

Theorem C. Let M be simply connected. In order for M to admit n solutions of (1), linearly independent over R, it is necessary and sufficient that M be isometrically immersed in $S^{n}\left(\frac{1}{c}\right)$ in E^{n+1}.

Theorem D. If M admit $n-1$ solutions of (1), linearly independent over R, M is of constant curvature c^{2}.

The rest of the present paper is devoted itself to the proofs of these three theorems.

Let F be the vector space over R, consisting of all the solutions of (1). We can define a positive definite bilinear form \langle,$\rangle on F$, defined by

$$
\langle\rho, \tau\rangle=c^{2} \rho_{\tau}+g^{i j} \nabla_{i} \rho \nabla_{j} \tau \quad \text { for } \quad \rho, \tau \in F .
$$

In fact, this is constant on M, since

$$
\begin{aligned}
\nabla_{k}\langle\rho, \tau\rangle & =c^{2}\left(\tau \nabla_{k} \rho+\rho \nabla_{k} \tau\right)+g^{i j}\left(\nabla_{i} \rho \nabla_{k} \nabla_{j} \tau+\nabla_{k} \nabla_{i} \rho \nabla_{j} \tau\right) \\
& =0,
\end{aligned}
$$

on account of the equations (1).
Let $\rho \in F$. We have

$$
\begin{equation*}
Z_{k j i} V_{n} \rho=0, \tag{2}
\end{equation*}
$$

as the integrability condition for (1) and

$$
\begin{equation*}
\nabla_{l} Z_{k j i}{ }^{h} \nabla_{h} \rho=c^{2} Z_{k j i l} \rho, \tag{3}
\end{equation*}
$$

differentiating (2) covariantly, where Z is the concircular curvature tensor with components

$$
Z_{k j i}{ }^{h}=R_{k j i}{ }^{h}-c^{2}\left(g_{j i} \delta_{k}^{h}-g_{k i} \delta_{j}^{h}\right),
$$

and $Z_{k j i l}=Z_{k j i}{ }^{h} g_{n l}$.
Proof of Theorem B. The sufficiency follows from the fact that on $S^{n}\left(\frac{1}{c}\right)$ in E^{n+1} defined by $\sum_{\alpha=0}^{n}\left(y^{\alpha}\right)^{2}=\frac{1}{c^{2}}$ every coordinate function y^{α} restricted on $S^{n}\left(\frac{1}{c}\right)$ satisfies (1) on $S^{n}\left(\frac{1}{c}\right)$ and $y^{\alpha \text { s }}$ s induce $n+1$ linearly independent solutions of (1) on M for an isometric immersion $i: M \rightarrow S^{n}\left(\frac{1}{c}\right)$ $(\alpha, \beta=0,1,2, \cdots, n)$.

Conversely, suppose that there are $n+1$ solutions of (1) on M, linearly independent over R. We can assume without loss of generality that they are orthonormal with respect to the bilinear form \langle,$\rangle , i.e.,$

$$
\begin{equation*}
\left\langle\rho^{\alpha}, \rho^{\beta}\right\rangle=c^{2} \rho^{\alpha} \rho^{\beta}+g^{i j} \nabla_{i} \rho^{\alpha} \nabla_{j} \rho^{\beta}=\delta^{\alpha \beta} . \tag{4}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
c^{2} \sum_{\alpha=0}^{n}\left(\rho^{\alpha}\right)^{2}=1 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
g=\sum_{\alpha=0}^{n} \nabla \rho^{\alpha} \otimes \nabla \rho^{\alpha}, \tag{6}
\end{equation*}
$$

which imply that the map $\tilde{\rho}: M \rightarrow E^{n+1}, x \mapsto\left(\rho^{\alpha}(x)\right)$, is an isometric immer-
sion into $S^{n}\left(\frac{1}{c}\right) \subset E^{n+1}$. To see this, we shall calculate the lengths of the gradient $\nabla \phi$ of the function $\phi=\sum_{\alpha=0}^{n}\left(\rho^{\alpha}\right)^{2}$ and of the tensor $g-\sum_{\alpha=0}^{n} \nabla \rho^{\alpha} \otimes \nabla \rho^{\alpha}$:

$$
\begin{aligned}
\|\boldsymbol{\nabla} \phi\|^{2} & =\sum_{\alpha, \beta=0}^{n} \rho^{\alpha} \rho^{\beta} g^{i j} \nabla_{i} \rho^{\alpha} \nabla_{j} \rho^{\beta} \\
& =\sum_{\alpha, \beta=0}^{n} \rho^{\alpha} \rho^{\beta}\left(\delta^{\alpha \beta}-c^{2} \rho^{\alpha} \rho^{\beta}\right) \\
& =\phi\left(1-c^{2} \phi\right) \geqq 0
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|g-\sum_{\alpha=0}^{n} \nabla \rho^{\alpha} \otimes \nabla \rho^{\alpha}\right\|^{2} & =n-2 \sum_{\alpha=0}^{n} g^{i j} \nabla_{i} \rho^{\alpha} \nabla_{j} \rho^{\alpha}+\sum_{\alpha, \beta=0}^{n}\left(g^{i j} \nabla_{i} \rho^{\alpha} \nabla_{j} \rho^{\beta}\right)^{2} \\
& =n-2 \sum_{\alpha=0}^{n}\left\{1-c^{2}\left(\rho^{\alpha}\right)^{2}\right\}+\sum_{\alpha, \beta=0}^{n}\left(\delta^{\alpha \beta}-c^{2} \rho^{\alpha} \rho^{\beta}\right)^{2} \\
& =c^{4} \phi^{2}-1 \geqq 0,
\end{aligned}
$$

which prove (5) and (6) at the same time.
Proof of Theorem D. Let us assume that M admit $n-1$ solutions $\rho^{2}(\lambda=1,2, \cdots, n-1)$ of (1) on M, linearly independent over R, which may be supposed to be orthonormal with respect to the bilinear form \langle,$\rangle without$ loss of generality. Let x be an arbitrary point of M. If $n-1$ covectors $\nabla \rho^{2}$ are linearly dependent at x, then there are $n-1$ constants a_{2} such that x, is a stationary point of $\rho=\sum_{i=1}^{n-1} a_{k} \rho^{2} \in F$ with $\sum_{\lambda=1}^{n-1}\left(a_{k}\right)^{2}=1$, i. e., $\nabla \rho=\sum_{\lambda=1}^{n-1} a_{k} \nabla \rho^{2}$ vanishes at x. Then the concircular curvature tensor Z vanishes at x on account of (3) and $\langle\boldsymbol{\rho}, \boldsymbol{\rho}\rangle=c^{2} \rho(x)^{2}=1$. On the other hand, if $n-1$ covectors $\nabla \rho^{2}$ are linearly independent at x, it is easy to see that the sectional curvature for every plane section at x is constant c^{2}, because of the identities $Z_{k j i}{ }^{h} \nabla_{h} \rho^{2}=0$ at x. Thus M must be of constant curvature c^{2}.

Proof of Theorem C. The sufficiency is contained in the proof of Theorem B. Therefore, we only prove the necessity. Let $\rho^{a}(a=1,2, \cdots, n)$ be n solutions of (1) on M, linearly independent over R, which we may assume to be orthonormal with respect to the bilinear form \langle,$\rangle . At first$ we note that M is of constant curvature c^{2} by Theorem D . Then the integrability conditions for (1) are automatically satisfied. Hence for every point x of M the vector space F_{x} of germs of solutions at x of (1) is of $n+1$ dimensions over R and $F=\underset{x \in \mathcal{M}}{\cup} F_{x}$ is a Riemannian vector bundle over M with fibre E^{n+1}, the metric of which is canonically induced from the
bilinear form \langle,$\rangle . Since \rho^{a}$ determine a field of orthonormal n-frames in F, our problem is reduced to the extendability of this field of orthonormal n-frames to a field of orthonormal $(n+1)$-frames in F. However, if M is simply connected, it is a simple consequence of the theory of fibre bundles (cf., e. g., 13.9. Corollary of Steenrod [4]).

Yoshida College,
Kyoto University

References

[1] M. Obata: Certain conditions for a Riemannian manifold to be isometric to a sphere, J. Math. Soc. Japan, 14 (1962), 333-340.
[2] M. Овта: Conformal transformations in Riemannian manifolds (in Japanese), Sugaku, 14 (1963), 152-164.
[3] M. Obata: Riemannian manifolds admitting a solution of a certain system of differential equations, Proc. United States-Japan Seminar in Differential Geometry, Kyoto, Japan (1965), 101-114.
[4] N. Steenrod: The topology of fibre bundles, Princeton Mathematical Series (1951).
[5] Y. TAshiro: Conformal transformations in complete Riemannian manifolds, Publications of the study group of Geometry, Vol. 3 (1967).
[6] Y. Tashiro and S. Ishihara: On Riemannian manifolds admitting a concircular transformation, Math. J. Okayama Univ. 9 (1959), 19-47.
[7] K. YaNO and T. NAGANO: Einstein spaces admitting a one parameter group of conformal transformations, Ann. of Math., (2) 69 (1959), 451-461.
[8] K. Yano: Integral formulas in Riemannian Geometry, Pure and Applied Math., Vol. 1, New York (1970).
(Received, July 25. 1971)

