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Let M be a connected C^{\infty}-Riemannian manifold of n(\geqq 2) dimensions
with Riemannian metric g . Let us consider the system of partial differential
equations

(1) \nabla_{j}\nabla_{i}\rho+c^{2}\rho_{g_{ji}}=0 (c>0)

on M, where \nabla_{i} denote the local components of the covariant derivative with
respect to the Riemannian connection associated to g(i,j, k, \cdots=1,2, \cdots, n).

In a complete Riemannian manifold the existence of a non-trivial solu-
tion of (1) uniquely determines the Riemannian manifold structure up to an
isometry. In fact, the following theorem is well known.

THEOREM A (Obata [1], [2], [3]). Let M be complete. In order for
M to admit a non-trivial solution of (1), it is necessary and suf.ficient that

M be isometric to a sphere S^{n}( \frac{1}{c}) of radius \frac{1}{c} in the (n+1)-dimensional

Euclidean space E^{n+1} .
In the present paper we shall deal with Riemannian manifolds, admitting

more than n–1 linearly independent solutions of (1), instead of the assump-
tion of completeness, and prove the following three theorems.

THEOREM B. In order for M to admit n+1 solutions of (1), linearly
independent over the real number field R, it is necessary and sufficient that

M be isometrically immersed in S^{n}( \frac{1}{c}) in E^{n+1} .
THEOREM C. Let M be simply connected. In order for M to admit

n solutions of (1), linearly independent over R, it is necessary and sufficient
that M be isometrically immersed in S^{n}( \frac{1}{c}) in E^{n+1} .

THEOREM D. If M admit n –1 solutions of (1), linearly independent
over R, M is of constant curvature c^{2} .

The rest of the present paper is devoted itself to the proofs of these
three theorems.



Riemannian manifolds admitting more than n-1 linearly independent solutions 13

Let F be the vector space over R, consisting of all the solutions of (1).
We can define a positive definite bilinear form \langle

: \rangle on F, defined by

\langle\rho, \tau\rangle=c^{2}\rho\tau+g^{ij}\nabla_{i}\rho\nabla_{f}\tau for \rho, \tau\in F

In fact, this is constant on M, since
\nabla_{k}\langle\rho_{ \tau\rangle=c^{2}(\tau\nabla_{k}\rho+\rho\nabla_{k}\tau)+g^{if}(\nabla_{i}\rho\nabla_{k}\nabla_{f}\tau+\nabla_{k}\nabla_{i}\rho\nabla_{f}\tau)},

=0 ,

on account of the equations (1).
Let \rho\in F. We have

(2) Z_{kfi}^{h}\nabla_{h}\rho=0 ,\cdot

as the integrability condition for (1) and

(3) \nabla_{l}Z_{kfi}^{h}\nabla_{h}\rho=c^{2}Z_{kfil}\rho ,

differentiating (2) covariantly, where Z is the concircular curvature tensor
with components

Z_{kfi}^{h}=R_{kfi}^{h}-c^{2}(g_{fi}\delta_{k}^{h}-g_{ki}\delta_{f}^{h}) ,

and Z_{kfil}=Z_{kfi}^{h}g_{hl} .
PROOF of THEOREM B. The sufficiency follows from the fact that on

S^{n}( \frac{1}{c}) in E^{n+1} defined by \sum_{\alpha=0}^{n}(y^{\alpha})^{2}=\frac{1}{c^{2}} every coordinate function y^{a} re-

stricted on S^{n}( \frac{1}{c}) satisfies (1) on S^{n}( \frac{1}{c}) and y^{\alpha} ’s induce n+1 linearly in-

dependent solutions of (1) on M for an isometric immersion i:M arrow S^{n}(\frac{1}{c})

(\alpha, \beta=0,1,2, \cdots, n) .
Conversely, suppose that there are n+1 solutions of (1) on M, linearly

independent over R. We can assume without loss of generality that they
are orthonormal with respect to the bilinear form \langle , \rangle , i.e. ,

(4) \langle\rho^{\alpha}, \rho^{\beta}\rangle=c^{2}\rho^{a}\rho^{\beta}+g^{if}\nabla_{i}\rho^{a}\nabla_{f}\rho^{\beta}=\delta^{\alpha\beta}r

We claim that

(5) c^{2} \sum_{a=0}^{n}(\rho^{a})^{2}=1

and

(6) g= \sum_{a=0}^{n}\nabla\rho^{\alpha}\otimes\nabla\rho^{\alpha} ,

which imply that the map \tilde{\rho}:Marrow E^{n+1} , x\mapsto(\rho^{\alpha}(x)), is an isometric immer-



14 K. Tandai

sion into S^{n}( \frac{1}{c})\subset E^{n+1} . To see this, we shall calculate the lengths of the

gradient \nabla\phi of the function \phi=\sum_{a=0}^{n}(\rho^{a})^{2} and of the tensor g- \sum_{\alpha=0}^{n}\nabla\rho^{a}\otimes\nabla\rho^{a} :

|| \nabla\phi||^{2}=\sum_{a,\beta=0}^{n}\rho^{a}\rho_{g^{ij}}^{\beta}\nabla_{i}\rho^{a}\nabla_{f}\rho^{\beta}

= \sum_{a,\beta=0}^{n}\rho^{a}\rho^{\theta}(\delta^{a\beta}-c^{2}\rho^{\alpha}\rho^{\theta})

=\phi(1-c^{2}\phi)\geqq 0

and

||g- \sum_{\alpha=0}^{n}\nabla\rho^{\alpha}\otimes\nabla\rho^{a}||^{2}=n-2\sum_{\alpha=0}^{n}g^{if}\nabla_{i}\rho^{\alpha}\nabla_{f}\rho^{\alpha}+\sum_{a,\beta=0}^{n}(g^{if}\nabla_{i}\rho^{\alpha}\nabla_{f}\rho^{9})^{z}

=n-2 \sum_{a=0}^{n}\{1-c^{2}(\rho^{a})^{2}\}+\sum_{\alpha,\beta=0}^{n}(\delta^{\alpha\beta}-c^{2}\rho^{a}\rho^{\beta})^{2}

=c^{4}\phi^{2}-1\geqq 0 ,

which prove (5) and (6) at the same time.
PROOF of THEOREM D. Let us assume that M admit n –1 solutions

\rho^{\lambda} (\lambda=1,2, \cdots, n -- 1) of (1) on M, linearly independent over R, which may
be supposed to be orthonormal with respect to the bilinear form \langle , \rangle without
loss of generality. Let x be an arbitrary point of M. If n –1 covectors
\nabla\rho^{\lambda} are linearly dependent at x, then there are n –1 constants a_{\lambda} such that
x, is a stationary point of \rho=\sum_{\lambda=1}^{n-1}a_{\lambda}\rho^{\lambda}\in F with \sum_{\lambda=1}^{n-1}(a_{\lambda})^{2}=1 , i.e. , \nabla\rho=\sum_{\lambda=1}^{n-1}a_{\lambda}\nabla\rho^{l}

vanishes at x. Then the concircular curvature tensor Z vanishes at x on
account of (3) and \langle\rho, \rho\rangle=c^{2}\rho(x)^{2}=1 . On the other hand, if n –1 covectors
\nabla\rho^{\lambda} are linearly independent at x, it is easy to see that the sectional curva-
ture for every plane section at x is constant c^{2} , because of the identities
Z_{kji}^{h}\nabla_{h}\rho^{\lambda}=0 at x. Thus M must be of constant curvature c^{2} .

PROOF of THEOREM C. The sufficiency is contained in the proof of
Theorem B. Therefore, we only prove the necessity. Let \rho^{a}(a=1,2, \cdots, n)

be n solutions of (1) on M, linearly independent over R, which we ma;L
assume to be orthonormal with respect to the bilinear form \langle , \rangle . At first
we note that M is of constant curvature c^{2} by Theorem D. Then the in-
tegrability conditions for (1) are automatically satisfied. Hence for every
point x of M the vector space F_{x} of germs of solutions at x of (1) is of
n+1 dimensions over R and F=\cup F_{x} is a Riemannian vector bundle over

x\in M

M with fibre E^{n+1} , the metric of which is canonically induced from the
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bilinear form \langle , \rangle . Since \rho^{a} determine a field of orthonormal n-frames in
F, our problem is reduced to the extendability of this field of orthonormal
n-frames to a field of orthonormal (n+1)-frames in F. However, if M is
simply connected, it is a simple consequence of the theory of fibre bundles
(cf., e.g. , 13. 9. Corollary of Steenrod [4]).
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