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Introduction.

H. Liebmann [8] has proved that an ovaloid with constant mean cur-
vature in a 3-dimensional Euclidean space is a sphere. The above problem
for a closed hypersurface in a Riemannian manifold has been generalized
by Y. Katsurada [3], [4] and K. Yano [17]. Y. Katsurada [5], [6], H. K\^ojy\^o
[5], T. Nagai [6], [12] and K. Yano [18] have given conditions for a sub-
manifold of codimension greater than 1 in a Riemannian manifold to be
pseudo umbilical by making use of integral formulas.

On the other hand M. Okumura [13] has proved that a submanifold
of codimension 2 in an odd dimensional sphere is totally umbilical under
certain coditions. To prove the above result, M. Okumura made use of the
fact that the structure tensor of the natural normal contact structure on the
odd dimensional sphere is a conformal Killing tensor of order 2 which has
been defined by S. Tachibana [15].

In the previous papers [9], [10], the present author proved for a sub-
manifold of codimension p in a sphere and a Riemannian manifold of con-
stant curvature respectively that the submanifold is totally umbilical under
certain conditions by making use of integral formulas. However, in the
papers, it has been assumed that the connection of the normal bundle is
trivial.

In this paper, the present author studies on a submanifold of codimension
p in a Riemannian manifold of constant curvature without the condition
that the connection of the normal bundle is trivial and proves that the sub-
manifold is pseudo umbilical.

The present author wishes to express his hearty thanks to Professor
Yoshie Katsurada for her many valuable advices and kind guidances.

\S 1. Conformal Killing tensors.

Recently S. Tachibana [15] and T. Kashiwada [2] have introduced the
notion of conformal Killing tensor field in a Riemannian manifold. They
discussed such the tensor and obtained some results.

Let \overline{M}^{n+p} be a (n+p)-dimensional Riemannian manifold with the metric
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tensor G_{\mu}, . We call a skew symmetric tensor field F_{\lambda_{1}\cdot\cdot\lambda_{\beta}} a conformal Killing
tensor field of order p if there exists a skew symmetric tensor field f_{\lambda_{1}\cdots\lambda_{p-1}}

such that
(1. 1) \nabla_{\lambda}F_{\lambda_{1}\lambda_{2}\cdots\lambda_{p}}+\nabla_{\lambda_{1}}F_{\lambda\dot{x}_{2}\cdot\cdot\lambda_{p}}=2f_{\lambda_{2}\cdots\lambda_{p}}G_{\lambda\lambda_{1}}

- \sum_{a=2}^{p}(-1)^{a}(f_{\lambda_{1}\cdots\hat{\lambda}\cdot\cdot\lambda}apG_{\lambda\lambda_{a}}+f_{l\lambda_{1}\cdot\hat{\lambda}\cdot\cdot\lambda}apG_{\lambda_{1}\lambda_{a}}) ,

where \hat{\lambda}_{a} means that \lambda_{a} is omitted and \nabla_{\lambda} denotes the covariant derivative.
This f_{\lambda\cdot\cdot\lambda_{p-1}}

‘
is called the associated tensor field of F_{\lambda_{1}\cdots\lambda_{p}} .

\S 2. Submanifolds in a Riemannian manifold of constant
curvature.

Let \overline{M}^{n+p} be a (n+p)-dimensional Riemannian manifold of constant
curvature with the metric tensor G_{\lambda\mu} . Then the curvature tensor \tilde{R}_{\lambda\ell\nu\kappa}/ of
\overline{M}^{n+p} has the form
(2. 1) \tilde{R}_{\lambda\mu\nu\kappa}=k(G_{\kappa},G_{\mu\nu}-G_{\lambda\nu}G_{\mu\kappa}) , k=const. .

Let M^{n} be an orientable submanifold of codimension p in \overline{M}^{n+p} . We
denote by \{X^{\lambda}\} , \lambda=1,2 , \cdots , n+p , the local coordinates of \overline{M}^{n+p} and by
\{x^{i}\} , i=1, \cdots , n , the local coordinates of M^{n} . Then the submanifold M^{n} is
locally expressed by the equation

\lambda=1,2 , \cdots , n+p ,
(2. 2) X^{\lambda}=X^{\lambda}(x^{i}) ,

i=1, \cdots\cdots , n .
We put

(2. 3) B_{i}^{\lambda}=\partial X^{\lambda}/\partial x^{i}

Then n vectors B_{i}^{\lambda} are linearly independent vectors tangent to M^{n} . The
Riemannian metric tensor g_{ji} on M^{n} induced from G_{\lambda/l} is given by

(2. 4) g_{fi}=G_{\lambda\mu}B_{j}^{\grave{l}}B_{i}^{\mu} .
We choose p mutually orthogonal unit normal vectors N_{A}^{\lambda}(A=n+1 ,

\ldots , n+p). Let H_{Aji} be the second fundamental tensor with respect to N_{A}^{\lambda}

and L_{ABf} the third fundamental tensor. Then the Gauss and Weingarten
equations are given by

\nabla_{f}B_{i}^{\lambda}=\sum_{A}H_{Aji}N_{A}^{\lambda} ,
(2. 5)

\nabla_{f}N_{A}^{\lambda}=-H_{Aj}^{i}B_{i}^{\lambda}+\sum_{B}L_{ABf}N_{B\prime}^{\lambda}.

where \nabla_{j} denotes the covariant derivative.
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The mean curvature vector field H^{2} of M^{n} is given by

(2. 6) H^{\lambda}= \frac{1}{n}\sum_{A}H_{At}{}^{t}N_{A\sim}^{\lambda}.

and H^{\lambda} is independent of the choice of mutually orthogonal unit normal
vectors.

Now we take a unit normal vector N_{n+1}^{\lambda} in the direction of the mean
curvature vector field H^{\lambda} . Then N_{n+1}^{\lambda} is determined uniquely on M^{n} . If
the second fundamental tensor H_{n+1fi} with respect to N_{n+1}^{\lambda} is proportional
to the metric tensor g_{fi} , that is, satisfying H_{n+1ji}=\alpha g_{ji} , where \alpha is a scalar
function on M^{n}, then we say that the submanifold M^{n} is pseudo umbilical.
We take N_{n+2}^{\lambda} , \cdots , N_{n+p}^{\lambda} such that N_{n+1}^{\lambda} , N_{n+2}^{\lambda} , \cdots , N_{n+p}^{\lambda} are mutually or-
thogonal unit normal vectors.

Since the curvature tensor \tilde{R}_{\lambda\mu\nu\kappa} of \overline{M}^{n+p} has the form (2. 1), the equa-
tions of Gauss, Codazzi and Ricci are written as

(2. 7) R_{kjih}=k(g_{kh}g_{fi}-g_{ki}g_{fh})+ \sum_{A}(H_{Akh}H_{Afi}-H_{Aki}H_{Afh}) ,

(2. 8) \nabla_{k}H_{n+1fi}-\nabla_{j}H_{n+1ki}+\sum_{A}(H_{Afi}L_{An+1k}-H_{Aki}L_{An+1f})=0j

(2. 9) H_{n+1k}^{i}H_{Afi}-H_{n\dagger 1j}^{i}H_{Aki}+\nabla_{k}L_{n+1Aj}-\nabla_{f}L_{n+1Ak}

+ \sum_{B}(L_{n+1Bf}L_{BAk}-L_{n+1Bk}L_{BAf})=0 ,

where R_{kjih} denotes the curvature tensor of M^{n} .
For a normal vector N^{\lambda} , if the normal part of \nabla_{f}N^{\lambda} vanishes identically

along M^{n}, then we call that N^{\lambda} is parallel with respect to the connection
of the normal bundle. We assume that the mean curvature vector field H^{\lambda}

of M^{n} is parallel with respect to the connection of the normal bundle.
Then we see easily that this assumption is equivalent to

(2. 10) H_{n+1t}^{t}=const . ’ L_{n+1Af}=0 .
From (2. 10), we have
(2. 11) \nabla_{f}H_{n+1k}^{f}=0 ,

(2. 12) H_{n+1k}^{i}H_{Afi}-H_{n+1f}^{i}H_{Aki}=0

by virtue of (2. 8) and (2. 9).

\S 3. Integral formulas.
Let \overline{M}^{n+p} be a (n+p)-dimensional Riemannian manifold of constant cur-

vature which admits a conformal Killing tensor field F_{\lambda_{1}\cdots\lambda_{p}} of order p with
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the associated tensor field f_{\lambda_{1}\cdot\cdot\lambda_{p-1}} and M^{n} a compact orientable submanifold
of codimension p in \overline{M}^{n+p} . In this section, we assume that the mean
curvature vector field H^{\lambda} of M^{n} is parallel with respect to the connection
of the normal bundle.

Now we put

(3. 1) r=F_{1},\lambda_{2}\cdots\lambda_{p}N_{n+1}^{\lambda_{1}}N_{n+2}^{\lambda_{2}}\cdots N_{n+p}^{\lambda_{p}} ,

(3. 2) u_{i}=F_{\lambda_{1}\lambda_{2}\cdots\lambda_{p}}B_{i}^{\lambda_{1}}N_{n+2}^{\lambda_{2}}\cdots N_{n+p}^{\lambda_{p}} .

Then we find that r is independent of the choice of mutually orthogonal
unit normal vectors in the previous papers [9], [10]. u_{i} is independent of
the choice of p–1 mutually orthogonal unit normal vectors N_{n+2}^{\lambda} , \cdots , N_{n+p}^{\lambda}

orthogonal to N_{n+1}^{\lambda} . We take another p-1 mutually orthogonal unit normal
vectors \prime N_{n+2}^{\lambda} , \cdots,

\prime N_{n+p}^{\lambda} orthogonal to N_{n+1}^{\lambda} . Then there exists a orthogonal
matrix (T_{AB}) , A, B=n+2, \cdots , n+p such that det (T_{AB})=1 and \prime N_{A}^{\lambda}(A=

n+2, \cdots , n+p) can be written as

(3. 3) \prime N_{A}^{\lambda}=\sum_{B}T_{AB}N_{B}^{\lambda}

Therefore we find
\prime u_{i}=F_{\lambda_{1}\lambda_{2}\cdots\lambda_{p}}B_{i}^{\lambda_{1}\prime}N_{n+2}^{\lambda_{-}\prime},\ldots N_{n+p}^{\lambda_{p}}

= \sum T_{n+2A_{l}}\cdots T_{n+pA_{p}}F_{\lambda_{1}\lambda_{2}\cdots\lambda_{p}}B_{i}^{\lambda_{1}}N_{A_{2}}^{\lambda_{2}}\cdots N_{A_{p}}^{J_{p}}A_{2},\cdot\cdot,A_{p}^{\cdot}

= \sum sgnA_{2},\cdots,A_{p}(\begin{array}{llll}n +2, \ldots, n+p A_{2}, \ldots, A_{p}\end{array}) T_{n+2A_{2}}\cdots T_{n+pA_{\beta}}F_{\lambda_{1}\lambda_{2}\cdots\lambda_{p}}B_{i}^{\lambda_{1}}N_{n+2}^{\lambda_{2}}\cdots N_{n+p^{\lambda_{p}}}

=\det(T_{AB})u_{i}=u_{i}

by means of the skew symmetry of F_{\lambda\lambda_{t}}‘\ldots, \cdot This shows that u_{i} is independent
of the choice of p–1 mutually orthogonal unit normal vectors orthogonal
to N_{n+1}^{\lambda} .

Differentiating (3. 2) covariantly and making use of (2. 5), we have

\nabla_{j}u_{i}=B_{f}^{\lambda}\nabla_{\lambda}F_{\lambda_{1}\lambda_{2}\cdots\lambda_{p}}B_{i}^{\lambda_{1}}N_{n+2}^{\lambda_{2}}\cdots N_{n+p}^{\lambda_{p}}

+F_{\lambda_{1}\lambda_{2}\cdots\lambda_{p}} \sum_{A}H_{Afi}N_{A}^{\lambda_{1}}N_{n+2}^{\lambda_{2}}\cdots N_{n+p}^{\lambda_{p}}

+ \sum_{a=2}^{p}F_{\lambda_{1}\lambda_{2}\cdots\lambda_{a}\cdots\lambda_{p}}B_{i}^{\lambda_{1}}N_{n+2}^{\lambda_{2}}\cdots(-H_{n+af}^{h}B_{h}^{\lambda}a+\sum_{A}L_{n+aAf}N_{A}^{\lambda_{a}})\cdots N_{n+p}^{\lambda_{p}}

=B_{f}^{\lambda}\nabla_{\lambda}F_{\lambda_{1}\lambda_{2}\cdots r_{p}}B_{i}^{J_{1}}N_{n+2^{4}}^{\lambda \mathfrak{n}}\cdots N_{n+p}^{\lambda_{p}}+rH_{n+1fi}

- \sum_{a=2}^{p}H_{n+af}^{h}F_{\lambda_{1}\lambda_{2}\cdots\lambda_{a}\cdots\lambda_{p}}B_{i}^{J_{1}}N_{n+2}^{\lambda_{2}}\cdots B_{h}^{\lambda_{a}}\cdots N_{n+p}^{\lambda_{p}}

+ \sum_{a=2}^{p}L_{n+1n+af}F_{\lambda_{1}\cdots\lambda_{a}\cdots\lambda_{p}}N_{n+1}^{\lambda_{1}}\cdots B_{i}^{\lambda}a\ldots N_{n+p}^{\lambda_{p}} ,
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from which we have

\nabla ju_{f}=\frac{1}{2}B^{f\lambda}(\nabla_{\lambda}F_{\lambda_{1}\lambda_{2}\cdots 1_{p}}+\nabla_{\lambda_{1}}F_{\lambda\lambda_{2}\cdots\lambda_{p}})B_{j}^{\lambda_{1}}N_{n+2}^{\dot{x}_{2}}\cdots N_{n+p}^{\lambda_{p}}+rH_{n+1t}^{t}

= \frac{1}{2}B^{f\lambda}\{2f_{\lambda_{2}\cdots\dot{x}_{p}}G_{\lambda_{1}},-\sum_{a=2}^{p}(-1)^{a}(f_{\lambda\cdot\cdot\hat{\lambda}\cdots\lambda_{p}}1aG_{\lambda\lambda_{a}}

+f_{\lambda\cdot\cdot\hat{z}_{a}\cdots\lambda_{p}}G_{\dot{\lambda}_{1}\lambda_{a}})\}B_{f}^{\lambda_{1}}N_{n+2}^{\lambda_{2}}\cdots N_{n+p^{\lambda_{p}}}+rH_{n+1t}^{t}

by virtue of (1. 1) and our assumption. Thus we have

\nabla^{f}u_{f}=rH_{n+1t}^{t}+nf_{\lambda_{2}\cdots\lambda_{p}}N_{n+2}^{\lambda_{2}}\cdots N_{n+p}^{\lambda_{p}},\cdot

from which we get the following integral formula

(3. 4) \int_{M^{n}}(rH_{n+1t}^{t}+nf_{\lambda_{2}\cdots\lambda_{p}}N_{n+2}^{\lambda_{2}}\cdots N_{n+p}^{\lambda_{p}})dM=0

by virtue of Green’s theorem.
Next differentiating H_{n+1f}^{i}u_{i} covariantly and making use of (1. 1), (2. 5),

(2\Rightarrow 11) and (2. 12), we have
\nabla^{j}(H_{n+1j}^{i}u_{i})=(\nabla^{f}H_{n+1f}^{i})u_{i}+H_{n+1}^{ji}\nabla_{j}u_{i}

=H_{n+1}^{fi}(B_{j}^{\lambda}\nabla_{\lambda}F_{1},\lambda_{2}\cdots\lambda_{p}B_{i}^{1_{1}}N_{n+2}^{\lambda_{2}}\cdots N_{n+p}^{\lambda_{p}}+rH_{n+1fi}

- \sum_{a=2}^{p}H_{n+aj}^{h}F_{\lambda_{1}\lambda_{2}\cdots\lambda_{a}\cdots\lambda_{p}}B_{i}^{\lambda_{1}}N_{n+2}^{\lambda_{2}}\cdots B_{h}^{\lambda_{a}}\cdots N_{n+p}^{J_{p}}
.

+ \sum_{a=2}^{p}L_{n+1n+af}F_{\lambda_{1}\cdots\lambda} _{\lambda}a\cdot\cdot,pN_{n+1}^{\lambda_{1}}\cdots B_{i}^{\lambda}a\ldots N_{n+p}^{\lambda})

= \frac{1}{2}H_{n+1}^{ji}B_{j}’(\nabla_{\lambda}F_{\lambda_{1}\lambda_{2}\cdots\lambda_{p}}+\nabla_{\lambda_{1}}F_{\lambda\dot{A}_{2}\lambda_{p}}\ldots)B_{i}^{\lambda_{1}}N_{n+2}^{\lambda_{2}}\cdots N_{n+p}^{\lambda_{p}}

+rH_{n+1fi}H_{n+1}^{ji}

- \sum_{a=2}^{p}H_{n+1}^{ji}H_{n+aj}^{h}F_{i_{1}\lambda_{2}\cdot\cdot\lambda_{a}\cdot\cdot\lambda_{p}}B_{i}^{\lambda_{1}}N_{n+2}^{l_{2}}\cdots B_{h}^{\lambda_{a}}\cdots N_{n+p}^{\lambda_{p}} ,

from which we find

\nabla f(H_{n\dagger 1f}^{i}u_{i})=rH_{n+1fi}H_{n+1}^{fi}+H_{n+1t}{}^{t}f_{\lambda_{2}\cdots\lambda_{p}}N_{n+2}^{\lambda_{2}}\cdots N_{n+p}^{\lambda_{p}} .
Therefore we obtain the following integral formula

(3. 5) \int_{M^{n}}(rH_{n+1ji}H_{n+1}^{ji}+H_{n+1t}{}^{t}f_{\lambda_{2}\cdots\lambda_{p}}N_{n+2}^{l_{2}}\cdots N_{\iota\iota+p}^{\lambda_{p}})dM=0

by virtue of Green’s theorem.

From (3. 5)- \frac{1}{n}H_{n+1t}^{t}\cross(3.4), we have the following integral formula
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(3. 6) \int_{M^{n}}r1^{H_{n+1ji}H_{n+1}^{ji}-}\frac{1}{n}(H_{n+1t}^{t})^{2}\}dM=01

THEOREM 3. 1. Let \overline{M}^{n+p}.bea(n+p)-dimensional Riemannian manifold
of constant curvature which admits a conformal Killing tensor fifield F_{\lambda_{1}\cdots\lambda_{p}}

of order p and M^{n} a compact orientable submanifold of codimension p in
\overline{M}^{n+p} . Suppose that the mean curvature vector fifield H^{\lambda} of M^{n} is parallel
with respect to the connection of the normal bundle. If the function r has
fifixed sign on M^{n} , then the submanifold M^{n} is pseudo umbilical.

PROOF. From the following relation

(3. 7) (H_{n+1ji}- \frac{1}{n}H_{n+1t}{}^{t}g_{ji})(H_{n+1}^{fi}-\frac{1}{n}H_{n+1^{f}}{}^{t}g^{fi})

=H_{n+1j_{b}^{i}}H_{n+1}^{j^{i}}- \frac{1}{n}(H_{n+1t}^{t})^{2}.
,

we see that H_{n+1ji}H_{n+1}^{ji}- \frac{1}{n}(H_{n+1t}^{t})^{2} is non negative. Therefore we have

H_{n+1ji}H_{n+1}^{ji}- \frac{1}{n}(H_{n+1t}^{t})^{2}=0

by virtue of (3.6) and our assumption, which shows that the submanifold
M^{n} is pseudo umbilical by means of (3. 7).

In the case of p=1 and p=2, we obtain the following corollaries in
the previous papers [9], [10].

COROLLARY 3. 2. Let \overline{M}^{n+1} be a(n+1)-dimensional Riemannian mani-
fold of constant curvature which admits a conformal Killing vector fifield

F_{\grave{\lambda}} and M^{n} a compact orientable hypersurface in \overline{M}^{n+1} . Assume that the
mean curvature of M^{n} is constant. If F_{\lambda}C^{\lambda} has fifixed sign on M^{n}, then
the hypersurface M^{n} is umbilical, where C^{\lambda}

’ denotes a unit normal vector

of M^{n} .
The above corollary is included in the theorem of Y. Katsurada [3], [4].

COROLLARY 3. 3. Let \overline{M}^{n+2} be a(n+2)-dimensional Riemannian mani-
fold of constant curvature which admits a conformal Killing tensor field

F_{\lambda}/1 of order 2 and M^{n} a compact orientable submanifold of codimmsion 2
in \overline{M}^{n+2} . Assume that the mean curvature vector fifield H^{\lambda} of M^{n} is parallel
with respect to the connection of the normal bundle. If F_{\lambda\mu}C^{\lambda}D^{u} has fixed
sign on M^{n}, then the submanifold M^{n} is totally umbilical, where C^{\lambda} and
D^{\lambda} denote mutually orthogonal unit normal vectors of M^{n} .

We assume that the connection of the normal bundle of M^{n} is trivial.
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Then we get the following result given in the previous papers [9], [10].

COROLLARY 3. 4. Let \overline{M}^{n+p} be a(n+p)-dimensional Riemannian mani-
fold of constant curvature which admits ct conformal Killing tensor fifield

F_{\lambda_{1}\cdots\lambda_{p}} of order p and M^{n} a compact orientable submanifold of codimension
p in \overline{M}^{n+p} . Suppose that the mean cumature vector field H^{\lambda} of M^{n} is
parallel with respect to the connection of the normal bundle and the con-
nection of the normal bundle is trivial. If the function r has fixed sign
on M^{n}, then the submanifold M^{n} is totally umbilical.

Department of Mathematics,
Hokkaido University
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