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Introcluction.
Let $M$ be acompact and simply connected Riemannian manifold with

positive curvature $K$, $0<K\leqq 1$ . Denote by $d(p, q)$ the distance between two
points $p$ and $q$ of $M$. K. Hatsuse has introduced the following number
$L(M)$ ;

$L(M)=Maxp,q,r\in M\{d(p, q)+d(q, r)+d(r, p)\}$

Actually it is possible to define $L(M)$ for any compact and connected Rieman-
nian manifold with positive curvature. It has been studied by K. Hatsuse
and Y. Tsukamoto $[4],*[5]$ to investigate the topological structure of $M$

satisfying suitable conditions for $L(M)$ . In particular, K. Hatsuse has proved
the following theorem.

THEOREM. Let $M$ be a compact and simply connected Riemannian mani-
fold utith positive curvature $K$, $0<K\leqq 1$ . If $L(M)<3\pi$, then $M$ is home-
omorphic to a sphere. In particular, if $L(M)=2\pi$, then $M$ is isometric to
the sphere with constant curvature 1.

The purpose of the present paper is to prove the following theorems.
THEOREM A. Let $M$ be a compact and connected Riemannian manifold

with positive curvature $K$, $0<K\leqq 1$ . If $L(M)=2\pi$ and there exist two
points $p$ and $q$ of $M$ satisfying $d(p, q)=\pi$ , then $M$ is isometric to the sphere
uzith constant curvature 1.

THEOREM B. Let $M$ be an $n$-dimensional $(n\geqq 2)$ compact and connected
Riemannian manifold which is not simply connected. Suppose that the sec-
tional curvature $K$ of $M$ satisfies the inequalities $1/4<\delta\leqq K\leqq 1$ , uthere $0^{\vee}$

is a constant, and the fundamental group $\pi_{1}(M)$ of $M$ satisfies $\pi_{1}(M)=Z_{2}$ .
If $L(M)=3\pi/2$ , then $M$ is isometric to the real projective space $PR^{n}(1)$ of
constant curvature 1, and if $L(M)=3\pi/2\sqrt{\delta}$ , then $M$, is isometric to $PR^{n}(\delta)$

of constant curvature $0^{Q}$ .
\S 1 will be of reviews of definitions and notations and \S 2 will be devoted

*Numbers in brackets refer to the references at the end of the paper.
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to some known results to use later. And in 13, the theorems Aand $B$ shall
be proved.

The present author wishes to express his deep appreciation to Professor
Yoshie Katsurada and Doctor Tamao Nagai for their constant guidances and
criticisms.

\S 1. Definitions and notations.

Let $M$ be an $n$-dimensional $(n\geqq 2)$ complete and connected Riemannian
manifold of class $C^{\infty}$ without any other statement and $M_{p}$ the tangent space
at the point $p$ of $M$. We denote by $||||$ (resp. $<,$ $>$ ) the norm (resp. scalar
product) which defines the Riemannian structure of $M$. We denote by $\rho=$

$\rho(X, Y)$ the plane section spanned by two linearly independent vectors $X$

and $Y$ belonging to the tangent space $M_{p}$ , and by $K(\rho)=K(X, Y)$ the sec-
tional curvature corresponding to aplane section $\rho_{=}\rho(X, Y)$ , which is by
definition, the scalar

$K( \rho)=K(X, Y)=-\frac{<R(X,Y)X,Y>}{||X||^{2}||Y||^{2}-<X,Y>^{2}}$

where $R$ denotes the Riemannian curvature tensor on $M$. In acompact
manifold with positive curvature, it is always possible that we have the
norm of Riemannian structure of $M$ such that $0<K(\rho)\leqq 1$ for any plane
section $\rho$ . We denote by $S^{n}(1)$ an $n$-dimensional sphere with constant cur-
vature 1. We consider that all the geodesics on $M$ and $S^{n}(1)$ are parame-
trized by the arc length measured from their origin. If $\Lambda=\{\lambda(s)\}(0\leqq s\leqq s_{0})$

is such ageodesic, then $\lambda’(s)$ denotes its tangent vector at $\lambda(s)$ and we have
$||\lambda’(s)||=1$ for all $s$. We denote by $d(p, q)$ (resp. $\hat{d}(\hat{p},\hat{q})$) the distance be-
tween two points $p$ and $q$ of $M$ (resp. $\hat{p}$ and $\hat{q}$ of $S^{n}(1)$), with respect to
the metric structure associated canonically to its Riemannian structure (resp.
canonical metric of AS $n(1))$ . For convenience’ sake we put “

$\Lambda$ ”over the
elements of $S^{n}(1)$ corresponding to the elements of $M$ without any other
statement. If the manifold $M$ is compact, we denote by $d(M)$ its diameter,
that is the least upper bound of $d(p, q)$ when $p$ and $q$ vary on $M$. The
geodesic joining $p$ to $q$ is called the shortest geodesic segment if its length
is equal to $d(p, q)$ . By the cut locus $C(p)$ of apoint $p$ of $M$, we mean the
set of points $\{q\}$ , on geodesics starting at $p$, where each point $q$ is the last
point for which the geodesic segment $pq$ from $p$ to $q$ realizes the absolute
minimum of the length for all segments of curves joining $p$ to $q$. By the
geodesic triangle here we always mean ageodesic triangle composed of three
shortest geodesic segments. We denote by $\triangle(p, q, r)$ the geodesic triangle
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whose vertices are $p$, $q$ and $r$, and $\triangleleft p=\triangleleft(q, p, r)$ the angle between the
geodesic segments $pq$ and $pr$.

\S 2. Reviews of the known results.

We shall devote the following results which are necessary to prove
our theorems.

THEOREM 1. (H. Nakagawa [1]) If, in an $n$-dimensional $(n\geqq 2)$ com-
plete and connected Riemannian manifold $M$, there exists a point $p$ such
that $C(p)$ consists of only one point $q$ and $d(p, q)=\pi$, then $M$ is isometric
to an $n$-dimensional sphere $S^{n}(1)$ with constant curvature 1.

THEOREM 2. (Y. Tsukamoto [3]) Let $M$ be a Riemannian manifold
with positive curvature $K$, $0<K\leqq 1$ . Denote by $\triangle(\hat{p},\hat{q},\hat{r})$ the geodesic tri-
angle on the sphere $S^{n}(1)$ cvith constant curvature 1uzhose side lengths are
equal to the corresponding side lengths of the geodesic triangle $\triangle(p, q, r)$

on M. If $\triangle(p, q, r)$ is contained in a convex neighbourhood, then each angle
of $\triangle(p, q, r)$ is not greater than the corresponding angle of $\triangle(\hat{p},\hat{q},\acute{\grave{r}})$ .

THEOREM 3. (K. Shiohama [2]) Let $M$ be an $n$-dimensional $(n\geqq 2)$

complete and connected Riemannian manifold which is not simply connected.
Suppose that the sectional curvature $K$ of $M$ satisfies the inequalities $1/4<$

$o’\leqq K\leqq 1$ , where ais a constant, and the fundamental group $\pi_{1}(M)$ of $M$

satisfies $\pi_{1}(M)=Z_{2}$ . Then for any point $p$ of $M$, $\pi/2\leqq d(p, C(p))\leqq\pi/2\sqrt{\delta}$

and $\pi/2\leqq d(M)\leqq\pi/2\sqrt{\delta}-$
, where the left hand side equalities hold if and

only if $M$ is isometric to the real projective space $PR^{n}(1)$ of constant curva-
ture 1, and the right hand side equalities hold if and only if $M$ is isometric
to $PR^{n}(0^{Q})$ of constant curvature $0^{s}$ .

\S .3. Proof of the theorems.

In order to prove theorem $A$ , we prepare the following two lemmas.
LEMMA 1. Let $M$ satisfy the assumptions of theorem A. Then for

any two points $r$ and $s$ of $M$, we have the. inequality $d(r, s)\leqq\pi$ .
PROOF. By the definition of $L(M)$ we have

$d(r, s)+d(s, t)+d(t, r)\leqq L(M)$

for any three points $r$, $s$ and $t$ of $M$. Therefore, from $L(M)=2\pi$ , we have

$d(r, s)\leqq d(r, t)+d(t, s)\leqq 2\pi-d(r, s)$ .
Hence we have $d(r, s)\leqq\pi$ . Q. E. D.

LEMMA 2. Let $M$ satisfy the assumptions of theorem A. Then for
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any three points $r$, $s$ and $t$ of $M$, we have one of the follouting two cases.
(i) One of the three numbers $d(r, s)$ , $d(r, t)$ and.d(t, $s$) is equal to $\pi$ .

And if $d(r,s)=\pi$ , we have the equality $d(r, t)+d(t, s)=\pi$ .
(ii) All the three numbers $d(r, s)$ , $d(r, t)$ and $d(t, s)$ are less than $\pi$ .
RROOF. From $L(M)=2\pi$ and lemma 1, we can easily see that either

the first part of the case (i) or the case (ii) can only occur. Therefore we
must prove the second part of the case (i). By the same argument as the
proof of lemma 1, we have the inequalities

$d(r, s)\leqq d(r, t)+d(t, s)\leqq 2\pi-d(r, s)$ .
From $d(r, s)=\pi$ we have the equality

$d(r, t)+d(t, s)=\pi 1$ Q. E. D.

PROOF OF THEOREM A. The proof would be complete by virtue of
theorem 1if we could show that $C(p)$ consists of only one point $q$. By
lemma 1we have $d(M)\leqq\pi$ . Therefore, by the definition of the cut locus
and $d(p, q)=\pi$ , we have that $q$ belongs to $C(p)$ . We assume now that $C(p)$

does not coincide with $\{q\}$ . Then, taking account of the properties of the
cut locus, we see that there is aconvex neighbourhood $U$ of $q$ such that
the intersection of $U-\{q\}$ and $C(p)-\{q\}$ is not empty. For any point $r$

in $U{}_{\cap}C(p)-\{q\}$ , let $s$ be the point on the shortest geodesic segment joining
$p$ to $r$ which is sufficiently close to $r$ and contained in $U$. Thus we obtain
the geodesic triangle $\triangle(q, r, s)$ which is contained in $U$. Let $\triangle(\hat{q},\hat{r},\hat{s})$ be
ageodesic triangle on the sphere $S^{n}(1)$ of constant curvature 1which has
the same side lengths as $\triangle(q, r, s)$ . Then, by theorem 2we have $\triangleleft\hat{q}\geqq\triangleleft$

.
$q$,

$<\check{\lambda}\hat{r}\geqq\triangleleft r$ $and\triangleleft\hat{s}\geqq\triangleleft$

.
$s$ . On the other hand, by $d(p, q)=\pi$ and lemma 2,

we get

$d(p, s)+d(s, r)+d(r, q)=d(p, r)+d(r, q)=\pi=d(p, s)+d(s, q)$ .
So we have

$d(s, r)+d(r, q)=d(s, q)=\pi-d(p, s)<\pi$ .
Therefore we have

$\hat{d}(\hat{s},\hat{r})+\hat{d}(r,\hat{q})A=\hat{d}(\hat{s},\hat{q})<\pi\tau$

Hence the equalities $<\grave{\acute{\lambda}}\hat{q}=0$ , $\triangleleft^{\backslash }r=\pi A$ and $\triangleleft\hat{s}=0$ hold and imply $\triangleleft^{\backslash }q=0$

and $<\acute{\lambda}s=0$ . Thus we see that $r$ lies on the shortest geodesic segment joining
$p$ to $q$. But this contradicts to $r\in C(p)$ . Q. E. D.

PROOF 0F THEOREM B. The proof would be complete if we could show
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that $M$ is isometric to $PR^{n}(\delta)$ if $L(M)=3\pi/2\sqrt{\delta}$ By the definitions of
$L(M)$ and $d(M)$ we have $3d(M)\geqq L(M)$ . Hence we have $d(M)\geqq\pi/2\sqrt{\delta}$

Therefore by theorem 3we have $d(M)=\pi/2\sqrt{\delta}$ and see that $M$ is isometric
to $PR^{n}(\delta)$ . Q. E. D.
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