
Discrimination of the space-time V. I.

By Hy\^oitir\^o TAKENO

\S 1. Introduction.

The present paper is a continuation of [1]^{1)} , [2] and [3], and deals with
the problem of the discrimination of the space-time V. In other words,
we are going to establish a theory by which we can determine whether a
four-dimensional Riemannian space-time defined by g_{if} arbitrarily given in any
coordinate system is a V or not. Mathematically speaking, this problem is
“to determine the necessary and sufficient condition that the given g_{if} be
reducible to the form

(1. 1) ds^{2}=-dx^{2}–Bd^{2}y-Cdz^{2}+Ddt^{2} .

where B, C and D are positive valued functions of x alone”.
As is easily understood, the problem of “determining whether a given

space-time is V or not” is not only interesting from the standp0-nt of tensor
analysis but also its solution is of importance when we consider the physical
meanings of the given space-time. If the answer of this problem is given
by some tensor equat_{A}^{i}ons to be satisfied by the curvature tensor K_{a}ifmn made
from g_{ij} , especially when the equations contain no tensor other than g_{f}\dot{\prime}.,
\eta_{ijmn}.(=\sqrt{}^{-}\overline{-g}\in_{ijmn}) and K_{fmn}\dot{\Pi}., we may say that the problem is solved in
the most desirable form. Unfortunately, however, we have not succeeded
in finding such equations at the present stage of the investigations. In the
present paper and the forthcoming one [4], we shall give another way of
discriminating V using the theory of characteristic system (abbreviated to
c.s.) developed in [1], [2] and [3].

If we see the results of [1], it is true that if we can determine whether
or not there exists a c.s . satisfying (F_{1}) , (F_{2}) and (F3) below, the purpose of
the discrimination may be attained. But in order to carry out this plan,
we need some devices and techniques. Now let g_{if} be an arbitrary funda-
mental tensor whose signature is of type (—+), and U be the space-
time defined by this g_{if} . Determine from g_{ij} the forms to be taken by the
characteristic vectors (abbreviated to c.v. ) assuming that the U is a V. If
only these forms are known, we can easily determine whether the U is
a V or not by substituting them into the fundamental equations (F_{1}) , (F_{2}) and

1) Numbers in brackets refer to the references at the end of the paper.
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(F3), and testing whether the U satisfies these equations or not. We call
such a method of determining whether the given U is a V or not a c.v.
test. It should be noted here that in performing a c.v. test, we can ignore
in a certain sense the signs of the c.v. , by virtue of the freedom of e-trans-
formation of the c.s. elucidated in [1]. Thus, in the following, the sentence
“u_{i}1 is determined uniquely”, for example, means, rigorously speaking, that “u_{i}1

is determined uniquely to within its sign”-
The same notations and terminologies as those in [1], [2] and [3] will

be used, and many results of these papers will also be used without detailed
elucidations. The last two sections are devoted to the appendices, in which
we give some mathematical investigations which are in close connection with
the contents of the text.

\S 2. Preliminaries.
A V is a four-dimensional Riemannian space-time whose metric can be

\alpha

brought into the form (1.1). A c.s. is composed of four unit vectors u_{i} ,
(\alpha, \beta, \cdots=1, \cdots, 4; i,j,\cdots =1, \cdots,4) , called c.v. , and scalars \lambda_{a} , \mu_{a} , (a, b=2,3, 4).
They satisfy

(F_{1}) -u^{i}u_{i}=11-u^{i}u_{i}=22-u^{i}u_{f}=u^{i}u_{i}=13344 , u^{i}u_{i}=0\alpha\beta.

,
(\alpha\neq\beta) ;

1 22 33 44
(F_{2a}) \nabla_{i}u_{f}=-\lambda_{2}u_{i}u_{f}-\lambda_{3}u_{i}u_{f}+\lambda_{4}u_{i}u_{f} ;

a a1
(F_{2b}) \nabla_{i}u_{f}=\lambda_{a}u_{i}u_{f} , (not summed for a);

1
(F3) \nabla_{i}\lambda_{a}=\mu_{a}u_{i} .
Sometimes we deal with the scalars \lambda_{1a}(=\lambda_{a1}) and \lambda_{ab}(=\lambda_{ba}, a\neq b), as the
members of a c.s. Here \lambda_{\alpha\beta}’ s are the six eigenvalues of -K_{A}^{B}.(\equiv K_{if}^{mn}.

. ; A,
B,\cdots=1,2 , \cdots,6), and are connected with \lambda_{a} ’s and \mu_{a} ’s by

(2. 1) \lambda_{1a}=(\lambda_{a})^{2}-\mu_{a} , \lambda_{ab}=\lambda_{a}\lambda_{b} , (a\neq b) .

(See \S 12 below.)
It is proved in [1] that U is a V when and only when it admits an

orthonormal ennuple and a set of scalars satisfying (F_{1}), (F_{2}) and (F3). They
are nothing but the members of a c.s. Some equations satisfied by them
are also obtained. The most important one that gives the starting point of
the present research is the equation

(2. 2) K_{i}^{f}.u^{i}=\alpha\nu_{\alpha}u^{f}\alpha, (not summed for \alpha),

where K_{i}^{f}
. is the Ricci tensor and the \nu_{\alpha} ’s are its eigenvalues or principal
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values. It is further proved in [1] that when [K]=\{u_{i}, \lambda_{a}, \mu_{a}, \lambda_{\alpha\beta}\}\alpha is a c.s.
of a V, we have a coordinate system in which the metric is given by (1.1)

\alpha

and u_{i} ’s, \lambda_{a} ’s and \mu_{a} ’s are given by
1 2 3 4

(2. 3) u_{i}=\delta_{i}^{1} , u_{i}=\sqrt{B}\delta_{i}^{2} , u_{i}=\sqrt{C}\delta_{ij}^{3} u_{i}=\sqrt{D}\delta_{i}^{4} ;

(2. 4) \lambda_{2}=-\beta/2 , \lambda_{3}=-\gamma/2 , \lambda_{4}=-\delta/2 , (\beta=B’/B, \gamma=C’/C, \delta=D’/D) ;

(2. 5) \mu_{2}=-\beta’/2 , \mu_{3}=-\gamma’/2’. \mu_{4}=-\delta’/2 .
where a prime means the derivative with respect to x. The coordinate
system is called standard for the [K] . \nu_{\alpha}’s and \lambda_{\alpha\beta}’ s satisfy

\nu_{1}=-(\lambda_{12}+\lambda_{13}+\lambda_{14}) , \nu_{2}=-(\lambda_{12}+\lambda_{23}+\lambda_{24}) ,
(2. 6)

\nu_{3}=-(\lambda_{13}+\lambda_{23}+\lambda_{34}) , \nu_{4}=-(\lambda_{14}+\lambda_{24}+\lambda_{34}) .

In the above coordinate system, we have \nu_{\alpha}=K_{\alpha}^{\alpha}. , (not summed for \alpha).

\S 3. Classification of \bm{U}’s in terms of \{\nu\}, and preparatory theorems.

As is stated in the last section, the relation (2.2) is most important for
our present purpose. We classify all U’s in the following five types in
terms of the set of the principal values \{\nu\} :

U_{I} : \{\nu\}=\{a, b, c, d\} , (a, b, c, d\neq) .
U_{II} : ,, =\{a, a, b, c\} , (a, b, c\neq)(

U_{III} : ,, =\{a, a, a, b\} , (a\neq b) .
U_{Iv} : ,, =\{a, a, b, b\} , (a\neq b) .
U_{v} : ,, =\{a, a, a, a\} .

This classification corresponds to that of V’s given in \S 2 of [2], and U_{I} ,
\ldots , U_{V} correspond to V_{I},\cdots , V_{v} respectively. Here it should be noted that
we use the same notation \nu_{\alpha} to denote a principal value of both U and V
for brevity’s sake.

The above classification will be used throughout the remainder of the
present paper. As is stated in \S 1, we can perform a c.v. test only when

\alpha

u_{i}’s are known. It will easily be understood, however, that if some or all
of \lambda_{a} ’s are known further, the test will become much simpler. Further, in
some special cases, we may have some methods of discrimination which,
compared with that of c.v. test, are much simpler. Examples of these cases
will be seen in the following.

1

Next we prove a theorem which will be of use in determining u_{i} from
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g_{ij} when U is given. We introduced the concept of V_{0} in [Z]. A V_{0} is
a V in which all of the six eigenvalues of 1T_{A}^{B}., i.e. \lambda_{\alpha\beta}’s, are constants.
Thus when we speak of a V which is not V_{0} , it means a V in which at
least one of \lambda_{\alpha\beta}’ s is not constant. Corresponding to V_{0} , we shall denote by
U_{0} a U whose six eigenvalues, which we denote by the same notations \lambda_{\alpha\beta}’s,
are all constants.

Now we consider a V which is not V_{0} , and let \lambda be one of its non-
constant \lambda_{\alpha\beta}’s. Since, as is easily seen, the six \lambda_{a\beta}’s are functions of x in
the coordinate system of (1. 1), the unit vector proportional to the gradient

1
\nabla_{i}\lambda is space-like and identical with u_{i} to within its sign, which is of no
importance in the following discussions as is elucidated in \S 1. Further it is

1

also evident that any non-constant \lambda_{\alpha\beta} gives the same u_{\nu}\dot, . Thus we have

PROPOSITION 3. 1. Consider a U which is not U_{0} . Let. \lambda be one of its
1

non-constant \lambda_{\alpha\beta}

’s, and u_{i} be the unit vector proportional to \nabla_{i}\lambda . If all \lambda_{a\beta}’s
1

do not determine the same u_{i} , which is gradient and space-like, the U is
1

not V. If they determine the same u_{i} satisfying these conditions, the U has
a possibility of being a V.

Here it should be noted that it is easy to discriminate whether a vector
is a gradient or not, since the condition that a vector be a gradient is given

1

by that its rotation be 0. For example, u_{i} is a gradient from (F_{2^{r}\iota}) .
1

We add another preparatorya theorem. Consider a V. Then u_{i}2is a

gradient. On the other hand, u_{i} is not necessarily gradient. When u_{i} is
a gradient, for example, we have in the standard coordinate system for the
c.s. B=const. Similar considerations lead us to

a

PROPOSITION 3. 2. When u_{i} is a gradient for some a, we have \lambda_{1a}=

\lambda_{ab}=\nu_{a}=0 for all b(\neq a) .

\S 4. Discrimination of V_{I} .
First we consider the problem of discriminating whether a U_{I} is a V_{I}

or not. (Note that the given U_{I} may or may not be a U_{0} .) We can easily
obtain

2 3

PROPOSITION 4. 1. In a V_{I} , if u_{i} or u_{i} is a gradimt, the corresponding
\nu_{\alpha}2

(i.e.
\nu_{2,3}

, or \nu_{3} respectively) is 0, and we cannot have the case in which both

u_{i} and u_{i} are gradients.
The proof of the last part is evident from the fact that if both are
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gradients, we have \nu_{2}=\nu_{3}=0 , which cannot be the case.
Now we consider a U_{I} . It is evident that if at least one of the eigen-

vectors of K_{i}^{f}
. corresponding to the eigenvalues a, b, c, d is null, the U_{I}

cannot be V_{I} . Next we consider the case in which all eigenvectors are non-
null, and denote the unit eigenvectors by u_{a|i} , u_{b|i} , u_{c|i} , u_{d|i} respectively.

\alpha

When the U_{I} is a V_{I} , these vectors must be identical with u_{i}’s (to within
their signs) by virtue of (2.2). Therefore one of them (say, u_{l|i},) must be
time-like and the remaining three space-like, and we assume this in the fol-
lowing. Then, in principle, we can discriminate the U_{I} by putting

(4. 1) u_{p|i}=u_{u}i , u_{q|i}=u_{i}., u_{r|i}=u_{i} , u_{\mathfrak{l}|i},=u_{i} ,

where (p, q, r) is any permutation of (a, b, c), and by trying c.v. test. If
the U_{I} passes the test for some permutation, it is a V_{I} , while it is not when
it fails for all permutations. It will be laborious, however, to carry out this
plan. So we shall give some devices in the following.

It is evident that when all of the space-like eigenvectors u_{a|i} , u_{b|i} , u_{c|i}

are not gradient, the U_{I} is not V_{I} . Next when only one of these vectors
(say, u_{a|i}) is a gradient, put

(4. 2) u_{a|i}=u_{i} , u_{b|i}=u_{i} , u_{c|i}=u_{i} , u_{l_{1}^{1}i},=u_{ii}

and try c.v. test. Then the U_{I} is a V_{I} when and only when it passes the
test. (Note the freedom of i-transformation. Cf. \S 4 of [1].) When two of
the three vectors (say, u_{a|i} and u_{b|i}) are gradients, one of a and b (say, b)

must be \dot{0} and the remaining one (i.e. a) be non-zero. Try c.v. test by
putting (4. 2). If the U_{I} passes the test, it is a V_{I} . When it fails any-
where, it is not V_{I} , and accordingly not V.

We find from Proposition 4.1 that one cannot have the case in which
all of the three vectors are gradients. Further it is evident that if the given

1
U_{1} is not U_{0} , we can determine u_{i} by the method stated in Proposition 3. 1,
and, in general, this procedure simplifies the discrimination process. Thus
we have completed the discussions concerning the case of V_{I} .

\S 5. Discrimination of V_{II} .
We proceed to U_{II} ’s, which are defined by \{\nu\}=\{a, a, b, c\} , (a, b, c\neq) .

They are classified into two sub-classes U_{II1} and U_{II2} corresponding to V_{II1}

and V_{II2} respectively. (See \S 2 of [2].) In U_{II1} , all eigenvectors correspond-
ing to the double eigenvalue a are space-like, while they are space-like or
null or time-like in U_{II2} .
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First we consider the case of U_{II1} . If the U_{II1} is a V_{II1} , one of the
eigenvectors corresponding to the simple eigenvalues b and c, say u_{b|i} , is
space-like and the other, say u_{c|i} , is time-like. Mutually orthogonal unit
eigenvectors corresponding to a are given by

(5. 1) v_{i}^{*}=v_{i} cos \omega-w_{i} sin \omega , w_{i}^{*}=v_{i} sin \omega+w_{i} cos \omega ,

where v_{i} and w_{i} are any pair of mutually orthogonal unit space-like eigen-

vectors and \omega is an arbitrary scalar. If (u_{i})=(u_{b|i}, v_{i}^{*}, w_{i}^{*}, u_{c|i})\alpha or (u_{i})=\alpha

(v_{i}^{*}, w_{i}^{*}, u_{b|i}, u_{c|i}) passes the test, the U_{II1} is a V_{IIa} or V_{IIb} respectively.
(Cf. \S 4 of [1] and \S 2 of [2].) If both fail in the test, the given U_{II1} is
not V.

Again it is evident that, when the U_{II1} is not U_{0} , we can determine
1 2 3

u_{i} by the method of Proposition 3. 1, and the determination of u_{i} and u_{t} ,
and hence the process of the c.v. test, becomes much simpler.

Next we consider the case of U_{II2} . In this case, both u_{b|i} and u_{c|i} are
space-like. Mutually orthogonal unit eigenvectors corresponding to a are
given by

(5. 2) v_{i}^{*}=v_{i} cosh \sigma+w_{i} sinh \sigma , w_{i}^{*}=v_{i} sinh \sigma+w_{i} cosh \sigma ,

where v_{i} and w_{i} are any pair of mutually orthogonal space-like and time-
like unit eigenvectors respectively and \sigma is an arbitrary scalar. The c.v.
test by putting { (u_{i})=\alpha(u_{b|i},

u_{c1_{\sqrt}^{}} , v_{i}^{*} , w^{*}\dot,.) or (u_{c|i}, u_{b|i} , v_{i}^{*} , w_{i}^{*})} or (u_{i})\alpha=

(v_{i}^{*}, u_{b|i}, u_{c|i}, w_{i}^{*}) determines whether the U_{II2} is V_{IIc} or V_{IIl}, respectively.
(See again \S 4 of [1] and \S 2 of [2].) Again, when the U_{II2} is not U_{0} , the
test becomes much simpler by using Proposition 3. 1.

Here it should be noted that the meaning of the c.v. test in the above
is somewhat broader than the one used in the last section, since an arbitrary

a

function \omega or \sigma is contained in u_{i} ’s, which is to be determined in the process
of the test, in addition to \lambda_{a} ’s. As will be seen later in [4], however, when
the U_{II} is a U_{0} , we can determine \lambda_{a} ’s to some extent, and by virtue of
these circumstances, it will not be so laborious to carry out such a gener-
alized c.v. test.

\S 6. Discriminations of V_{IIIa} and V_{IIIb} .
Now we proceed to the discrimination of V_{III} , assuming that the given

U is a U_{III} and satisfies \{\nu\}=\{a, a, a, b\} , (a\neq b) . The V_{III} ’s are classified into
two sub-classes V_{III1} and V_{III2} , as is seen in \S 2 of [2]. Similarly, we clas-
sify U_{III} ’s into U_{III1} and U_{III2} . Both are characterized by that the eigen-
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vectors of K_{i}^{f}
. corresponding to the simple eigenvalue b are time-like and

space-like respectively. First we consider the case of U_{1II} which is not U_{0} .
1

Naturally we can assume that u_{i} is known. The discrimination of V_{III}

belonging to V_{0} will be discussed later in [4]1^{\cdot}

First we deal with the case of U_{III1} . u_{i} must be an eigenvector corre-
sponding to a. Take any pair of space-like unit vectors v_{i} and w_{i} belong-
ing to the eigenspace corresponding to a, which are mutually orthogonal

1
and orthogonal to the u_{i} . Then we can discriminate the U_{III1} by performing

the generalized c.v. test in which (u_{i})=(u_{i}, v_{i}^{*}, w_{i}^{*}, u_{b|i})\alpha 1, where v_{i}^{*} and
w_{i}^{*} are given by (5. 1).

Next we consider the case of U_{III2} , in which u_{b|i} is space-like. When
1

u_{b|i} is different from u_{i} , such a U_{III2} corresponds to V_{IIIb} and is denoted
by U_{IIIb} . Let v_{i,y}, and w_{i} be any pair of space-like and time-like unit eigen-
vectors corresponding to a, w^{v}hich are mutually orthogonal and orthogonal to

the u_{i}1 . Then by the generalized c.v. test in which (u_{i})=(u_{i}, v_{i}^{*}, u_{b|i}, w_{i}^{\star})\alpha 1,
where v_{i}^{*} and w_{i}^{*} are given by (5. 2), we can discriminate whether the
given U_{IIIb} is a V_{IIIb} or not.

1
Lastly, we consider a U_{III2} in which u_{i}=u_{b|}\dot{a}.\cdot Such a U_{III2} is denoted

2 3 4

by U_{IIIc} and corresponds to V_{IIIc} . We must choose u_{i} , u_{i} and u_{i} in the
eigenspace corresponding to a. This eigenspace is three-dimensional, and
these vectors are given by

2 2 3 4 3 2 3 4
u_{i}=l_{2}v_{i}+l_{3}v_{i}+l_{4}v_{i} . u_{i}=m_{2}v_{i}+m_{3}v_{i}+m_{4}v_{i} ,

(6. 1) 4 2 3 4
u_{i}=n_{2}v_{i}+n_{3}v_{i}+n_{4}v_{i} ,

2 3 4

where v_{i} , v_{i} , v_{i} are mutually orthogonal unit eigenvectors, the first two of
which are space-like and the third is time-like, and l_{2} , l_{3} , \cdots , n_{4} are coefficients
of a pseud0-0rthogonal transformation (not necessarily constants) which keeps
(F_{1}) invariant.

Thus, in principle, we can discriminate the U_{IIIc} by making a gener-
alized c.v. test. This work is very laborious, however, since we must deal
with many unknown functions l_{a} ’s, m_{a}’s and n_{a} ’s in addition to \lambda_{a} ’s, and it
is very desirable to reduce the number of the unknown functions as far as

possible. As has sometimes been stated, if \lambda_{a} ’s and u_{i}’ sa are known from
g_{if} to some extent, the work of the generalized c.v. test will become much
kQ\underline{i}mpler . The greater part of the remaining pages is devoted to such inves-
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tigations.

\S 7. Discrimination of V_{IIIc} , 1. Class (A).

In order to deal with the problem of discriminating V_{IIIc} which is not
V_{0} , we investigate its properties more in detail by classifying all such V_{IIIc}’ s

into six classes (A), (B), \cdots , (F). (A) is composed of V_{IIIc}’s, none of which
is V_{0} but admits a c.s. satisfying \lambda_{2}=\lambda_{3}=\lambda_{4} . The meanings of the remaining
classes will be elucidated in the following sections respectively. In this sec-
tion, we consider the properties of V_{IIIc}’ s belonging to (A).

Then in the standard coordinate system for the c.s. , we have \beta=\gamma=\delta,
and hence from the formulas in \S 2, we have

(7. 1) \lambda_{34}=\lambda_{42}=\lambda_{23}=(\lambda_{2})^{2}(=a_{1}) , \lambda_{12}=\lambda_{13}=\lambda_{14}(=a_{2}) ,

\nu_{1}=-3\lambda_{12} , \nu_{2}=\nu_{3}=\nu_{4}=-(\lambda_{12}+2\lambda_{34}) ,
(7. 2)

(.\lambda_{12}\neq\lambda_{34}, \nu_{1}\neq\nu_{2})(

Thus we find that \{\lambda\} , i.e. the set of \lambda_{\alpha\beta} ’s, is of type

(7. 3) (8) \{a_{1}, a_{1}, a_{1}, a_{2}, a_{2}, a_{2}\} , (a_{1}\neq a_{2}) ,

where the type number (8) is that used in \S 13 below, and that the sequence
of signs \{\lambda\}_{s} , which is composed of the signs of the magnitudes of the
six-dimensional eigenvectors corresponding to the respective eigenvalues, is
given by

(7. 4) \{\lambda\}_{s}=\{+--’ \wedge++-\} .

(See \S 12 below.) On the other hand, as the result of \S 7 of [3], the V_{IIIc}

admits the freedom of the generalized \omega-transformation of c.s. , from which
2 3

we find that any set of mutually orthogonal unit vectors u_{o}i , u_{i} (both space-like)
4

and u_{i} (time-like) in the three-dimensional eigenspace corresponding to \nu_{2}

1
(=\nu_{3}=\nu_{4}) can be c.v. together with u_{i} .

Conversely, from Proposition 11. 1 below, we know that. if the eigen-
values and eigenvectors of K_{A}^{B}

. of a V_{IIIc} have the properties stated above,
it must admit a c.s . satisfying \lambda_{2}=\lambda_{3}=\lambda_{4} . Thus, considering the freedom of
\in_{1}-transformation, we have

PROPOSITION 7. 1. Let a U_{IIIc} , which is not U_{0} , be given, its \{\lambda\} be
of type (8), and further its \{\lambda\}_{s} be given by(7.4)1’ by interchanging a_{1} and
a_{2} when necessary. Try c.v. test by using u_{i} and any set of orthonormal

2 3 4

vectors u_{i} , u_{i} , u_{i} (the first two are space-like and the last one time-like) in
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the eigenspace corresponding to the triple eigenvalue of Ki^{f} and \lambda_{a}’s deter-
mined from \lambda_{2}=\lambda_{3}=\lambda_{4}=\sqrt{a_{1}} or -\sqrt{a_{1}} If the test succeeds, the U_{IIIc} is a
V_{IIIc},, and if the procedure fails anywhere, it is not V.

REMARK. The relation between the types of \{\lambda\} and those of \{\nu\} will
be studied in detail in \S 13 below, and the results obtained there will be of
use in considering the present problem, especially in checking the calculations.

\S 8. Discrimination of V_{IIIc} , 2. Class (B).

Now we proceed to the discrimination of V_{IIIc} which is not V_{0} and
admits a c.s. whose two \lambda_{a} ’s are equal. The class (B) is composed of such
V_{IIIc},’ s .

(B_{4}) First we consider the case of \lambda_{2}=\lambda_{3}\neq\lambda_{4} , and study the properties
of \{\lambda\} and \{\nu\} somewhat in detail. In the standard coordinate system for
the c.s. , we have \beta=T\neq\delta and

4\lambda_{12}=4\lambda_{13}=2\beta’+\beta^{2} , 4\lambda_{14}=2\delta’+\delta^{2} .
(8. 1)

4\lambda_{34}=4\lambda_{24}=\beta\delta
,\cdot

4\lambda_{23}=\beta^{2} .
\nu_{\alpha} ’s are given by (2. 6) with (8. 1). The condition that the V be V_{IIIc} is given
by, in terms of \beta and \delta,

(8. 2) 4\beta’+2\beta^{2}+2\delta’+\delta^{2}\neq 2\beta’+2\beta^{2}+\beta\delta=2\delta’+\delta^{2}+2\beta\delta

Using these relations we can prove that only the following cases are possible:
(i) The most general case, i.e. the case in which (\lambda_{12}, \lambda_{24}, \lambda_{14}, \lambda_{23}\neq) .

In this case we have

(8. 3) \{\lambda\}=\{a_{1}(12) , a_{1}(13) , a_{2}(24) , a_{2}(34) , a_{3}(14) , a_{4}(23)\} ,

(8. 4) -\{\nu\}=\{2a_{1}+a_{3},2a_{2}+a_{3}, -, \} , (a_{1}, a_{2}, a_{3}, a_{4}\neq) ,

where a_{1}=\lambda_{12} , a_{2}=\lambda_{24} , a_{3}=\lambda_{14} , a_{4}=\lambda_{23} , and a’s must satisfy

(8. 5) a_{1}-a_{2}-a_{3}+a_{4}=0

Here and throughout the remainder of the paper, a_{1}(12), a_{1}(13), \cdots in \{\lambda\}

mean a_{1}=\lambda_{12} , a_{1}=\lambda_{13},\cdots respectively, and the members of \{\nu\} are arranged
in their natural order \nu_{1} , \nu_{2} , \nu_{3} , \nu_{4} . Thus we have from (8. 3), \{\lambda\}_{s}=\{++ ,
—, –, + }.

(ii) Especially when \lambda_{12}=\lambda_{23} holds, we have \beta’=0 and

(8. 6) \{\lambda\}=\{a_{1}(12) , a_{1}(13) , a_{1}(23) , a_{2}(24) , a_{2}(34) , a_{3}(14)\} ,

(8. 7) -\{\nu\}=\{2a_{1}+a_{3},2a_{1}+a_{2} , -, }, (a_{1}, a_{2}, a_{3}\neq) ,
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where 4a_{1}\Rightarrow\beta^{2},4a_{2}=\beta\delta , 4a_{3}=2\delta’+\delta^{2} , and \beta and \delta must satisfy

(8. 8) 2a_{1}.=a_{2}+a_{3} .
(iii) When \lambda_{14}=\lambda_{2\not\subset} holds, we have

(8. 9) \{\lambda\}=\{a_{1}(14) , a_{1}(24) , a_{1}(34) , a_{2}(12) , a_{2}(13) , a_{3}(23)\} ,

(8. 10) -\{\nu\}=\{a_{1}+2a_{2},3a_{1}, ,, \} , (a_{1}, a_{2}, a_{3}\neq) ,

where 4a_{1}=2\delta’+\delta^{2}=\beta\delta , 4a_{2}=2\beta’+\beta^{2},4a_{3}--\beta^{2} , \vee(\beta’\neq 0), and \beta and \delta must
satisfy (8. 8).

(B_{3}) Next we consider the case of \lambda_{2}=\lambda_{4}\neq\lambda_{3} . In this case, we have
\beta=\delta\neq\gamma and

4\lambda_{12}=4\lambda_{14}=2\beta’+\beta^{2} , 4\lambda_{13}=2\gamma’+\gamma^{2} ,
(8. 11)

4\lambda_{23}=4\lambda_{34}.--\beta\gamma’
’

4\lambda_{24}=\beta^{2}

Similarly to the preceding case, the following three cases are possible:
(i) When (\lambda_{12}, \lambda_{23}, \lambda_{34}, \lambda_{13}, \lambda_{24}\neq) , we have (8. 4), (8. 5) and

(8. 12) \{\lambda\}=\{a_{1}(12) , a_{1}(14) , a_{2}(23) , a_{2}(34) , a_{3}(13) , a_{4}(24)\} .

(ii) When \lambda_{12}=\lambda_{24} holds, we have (8. 7), (8. 8) and

(8. 13) \{\lambda\}=\{a_{1}(12) , a_{1}(14) , a_{1}(24) , a_{2}(23) , a_{2}(34) , a_{3}(13)\} .
(iii) When \lambda_{13}=\lambda_{23} holds, we have (8. 10), (8. 8) and

(8. 14) \{\lambda\}=\{a_{1}(13) , a_{1}(23) , a_{1}(34) , a_{2}(12) , a_{2}(14) , a_{3}(24)\} .

(B_{2}) The case in which \lambda_{3}=\lambda_{4}\neq\lambda_{2} holds is obtained from (B3) by inter-
changing the index 2 with 3 and \beta with \gamma . Thus we have the following
three cases:

(i) In the general case, we have (8. 4), (8. 5) and

(8. 15) \{\lambda\}=\{a_{1}(13) , a_{1}(14) , a_{2}(23) , a_{2}(24) , a_{3}(12) , a_{4}(34)\} .

(ii) When \lambda_{13}=\lambda_{34} holds, we have (8. 7), (8. 8) and

(8. 16) \{\lambda\}=\{a_{1}(13) , a_{1}(14) , a_{1}(34) , a_{2}(23) , a_{2}(24) , a_{3}(12)\} .

(iii) When \lambda_{12}=\lambda_{23} holds, we have (8. 10), (8. 8) and

(8. 17) \{\lambda\}=\{a_{1}(12) , a_{1}(23) , a_{1}(24) , a_{2}(13) , a_{2}(14) , a_{3}(34)\} .

Summarizing the above, we find that when a V_{IIIc} admits a c.s. whose
two \lambda_{a} ’s are equal, its \langle \lambda\} is one of the following two types:
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(8. 18) (.3) \{a_{1}, a_{1}, a_{2}, a_{2}, a_{3}, a_{4}\} , and (6) \{a_{1}, a_{1}, a_{1}, a_{2}, a_{2}, a_{3}\} .
Here a_{\rho}\neq a_{\sigma} when \rho\neq\sigma, and the numberings (3) and (6) are those used in
\S 13 below.

Conversely, if a V_{IIIc} is of type (3) or (6), the V_{IIIc} admits a c.s. whose
two \lambda_{a} ’s are equal if we exclude some special cases. These circumstances
will be made clear in \S 11 below.

Now we come back to the V_{IIIc} admitting a c. s . whose two \lambda_{a}’s
are equal. (8. 3), (8. 12) and (8. 15) are of the same type (3). But \{\lambda\}_{s}

in these cases are \{++ , —, -, +\} , \{+-, +-, +,-\} and \{+- , +- ,
+ , -} respectively. The last two are identical with each other, while the
first is different from them. Further, \{\nu\} and the additional condition (8. 5)
are common to the last two cases. These come from the fact that any V
admits the freedom of the i-transformation of. c.s . Similar circumstances
also hold for the cases (ii) and (iii) in (B_{3}) and (B_{2}) . Thus we can consider
that the cases (B_{3}) and (B_{2}) are identical with each other by virtue of the
freedom of the i-transformation of c.s . In the following, we say that (B_{3})

and (B_{2}), for example, are (23)-conjugate, since each case is obtained from
the other by interchanging each 2 with 3 and each 3 with 2, in the indices
of \lambda_{a} ’s, \lambda_{\alpha\beta}’s, etc.

As the result of the above we find that when a V_{IIIc} of type (3) is given
and it is known to admit a c. s . whose two \lambda_{a} ’s are equal, we can discrimi-
nate to which of (B_{4}) and (B_{3}) (or (B_{2})) the given V_{IIIc} belongs, by studying
its \{\lambda\}_{s} . Similar considerations can be made with respect to the cases (ii)
and (iii) of (B_{4}) , (B3) and (B_{2}) .

The \{\lambda\}_{s}’ s corresponding to (8. 6), (8. 9); (8. 13), (8. 14) (or (8. 16), (8. 17))
are \{+++ , —, - \} , \{-- ---, ++, +\};\{+--, +-, +\} , \{++- ,
+ -, -} respectively. These four types are exclusive with each other.
Hence by using these results, we find that when a V_{IIIc} whose \{\lambda\} is of
type (6) is given and it is known to admit a c.s . whose two \lambda_{a} ’s are equal,
we can discriminate to which case the V_{IIIc} belongs.

In the above two cases, in which \{\lambda\} is of type (3) or (6), if further the
case (B_{a}), (a=2,3, 4), to which the given V_{IIIc} belongs, is known, we can

a 1
express u_{i}’s in terms of the eigenvectors u_{\rho|A} of K_{A}^{B}

. and u_{i} , at most to
within a transformation of the form (5. 1) or (5. 2). Further the values of
\lambda_{a} ’s can be almost determined from the eigenvalues of K_{A}^{B}

. . We shall show
these circumstances by taking two examples.

a) Let \{\lambda\} and \{\lambda\}_{s} be of type (3) and \{+-, +-, +,-\} respectively,
and the corresponding eigenvalues and unit eigenvectors of K_{A}^{B}

. be a_{1} , a_{2} ,
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a_{3} , a_{4} and u_{1|A} , u_{2|A} , u_{3|A} , u_{4|A}respectivelyl23^{\cdot} D4enote the four-dimensional

expressions of these vectors by u_{if} , u_{if} , u_{if} , u_{if} respectively. Then it is
easy to see thatthe2V_{IIIc}42 belongs to (i) of (B3) (or2(B_{2}))2and that we have

either \{u_{if}u^{i}=au_{f}+bu_{f}, u_{if}u^{i}=0\}111 or \{u_{if}u^{i}=0, u_{lf}u^{i}=au_{f}+bu_{f}\}1114 , where a

and b are some scalars. When the latter holds, by interchanging the num-

beringsofa_{1and}a_{2},w_{1}e.canh_{aveu_{if}u^{i}=\in u_{f}andu_{if}u^{\dot{a}}=0}^{3134}\cdot assumethattheformerholds.Furtherwe(Notethatthecaseobtainedfromtheabove

2 3 a

by interchanlging u_{i} and u_{i} is also po_{3ssib}1e. ) Thus u_{i}’s can be obtained from

u_{\rho|A}2
’s and4u_{i} to within the sign of u_{i} and the transfor_{2matio}_{4n}(5.2) between

u_{i} and u_{i} . (We can also determine the linear space au_{i}+bu_{i} from the con-
1 3

dition that it be orthogonal to both u_{i} and u_{i} .) Next, \lambda_{a}’s satisfying \lambda_{2}=

\lambda_{4}\neq\lambda_{3} are obtained from (\lambda_{2})^{2}=a_{2} and \lambda_{2}\lambda_{4}=a_{4} to within their common sign.
b) Consider a V_{IIIc} whose \{\lambda\} is of type (6) and whose \{\lambda\}_{s} is given

by \{+++ , —, - \} , which corresponds to the case of 4(8.6). Deno_{3te} the

eigenvalues4 by a_{1} , a_{2}2’ a_{3}respectively3^{\cdot} We can determine u_{i} by using u_{if}u^{i}=1

\in u_{f} , and then au_{j}+bu_{f} . \lambda_{a}’s are determined from \lambda_{2}=\lambda_{3}\neq\lambda_{4} , (\lambda_{2})^{2}=a_{1} ,
\lambda_{2}\lambda_{4}=a_{2} .

Now it is evident from the properties of V_{IIIc} studied in detail in the
above that the following discrimination theorem holds.

PROPOSITION 8. 1. Let a U_{IIIc} , which is not U_{0} , be given, its \{\lambda\} be

of type (3) or (6), and its \{\lambda\}_{s} be one of those stated in the above. Further,

we assume that it is known to admit a c.s. whose two \lambda_{a}’s are equal. De-
a

termine \lambda_{a}’s and u_{i}’s by using the eigenvalues and eigenvectors of K_{A}^{B}
. and

1
u_{i} . In determining these quantities, we will have the freedom of the trans-

a

formation of the form (5. 1) or (5.2) for u_{i}’s and that of the sign for \lambda_{a}

’s.
Then try c.v. test by1 using these \lambda_{a}’s and an arbitrary orthonormal set com-

posed of u_{i}’ sa and u_{i} . When the test succeeds, the U_{IIIc} is a V_{IIIc} . If this
procedure fails anywhere, it is not V.

The reason for the middle part of Proposition comes from the fact that
any V_{IIIc} admitting a c.s. whose two \lambda_{a}’s are equal admits the freedom of
\omega-transformation.

a

REMARK. The relation between u_{\rho|A}’s and u_{i}’s in the above can easily
be understood if we consider the results obtained in \S 12 below.
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\S 9. Discrimination of V_{IIIc} , 3. Classes (C), \cdots ,(F).

In order to establish the discrimination theorem concerning the V_{IIIc}

which admits a c.s. satisfying (\lambda_{2}, \lambda_{3}, \lambda_{4}\neq), we study the properties of such
space-times in more detail. The method to be used is the same as those
in the previous sections, but the calculations are somewhat long and tedious.
So we omit them and only state the outline of the results. In the standard
coordinate system for the c.s . under consideration, which satisfies (\lambda_{2}, \lambda_{3}, \lambda_{4}\neq),
\lambda_{a} ’s are given by (2. 4) with (\beta, \gamma, \delta\neq), and we have

4\lambda_{12}=2\beta’+\beta^{2} . 4\lambda_{13}=2\gamma’+\gamma^{2},\cdot 4\lambda_{14}=2\delta’+\delta^{2} ,
(9. 1)

4\lambda_{34}=\mathcal{T}\delta , 4I_{24}=\beta\delta , 4\lambda_{23}=\beta\gamma

The condition that the V be V_{IIIc} is given by \nu_{1}\neq\nu_{2}=\nu_{3}=\nu_{4} , i.e.
\lambda_{12}+\lambda_{13}+\lambda_{14}\neq\lambda_{12}+\lambda_{23}+\lambda_{24}

(9. 2)
=\lambda_{13}+\lambda_{23}+\lambda_{34}=\lambda_{14}+\lambda_{24}+\lambda_{34}\tau

If we use (9. 1) and (9. 2), we can prove that only the following cases
are possible:

(C) The most general case is the one in which all six eigenvalues \lambda_{\alpha\beta}’s
are different from one another, i.e.

(9. 3) (1) \{\lambda\}=\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\} , ( a_{\rho}\neq a_{\sigma} when \rho\neq\sigma),

where (a_{1}, a_{2}, a_{3}) and (a_{4}, a_{5}, a_{6}) (after a suitable renumbering of a_{\rho}

’s, when
necessary) are eigenvalues corresponding to plus and minus eigenvectors re-
spectively. Here a plus or minus vector means a six-dimensional vector
whose magnitude is plus or minus respectively. (Cf. \S 12 below.) Thus we
have

(9. 4) \{\lambda\}=\{a_{1}(12) , a_{2}(13) , a_{3}(23) , a_{4}(14) , a_{5}(24) , a_{6}(34)\} ,

and \{\lambda\}_{s}=\{+, +, +,-, -, -\} . Evidently, u_{ij}u^{i}11, u_{ij}u^{i}21, \cdots give u_{f}2 , u_{f}3 , 0,
4

u_{j} , 0, 0 respectively, and a_{3}=\lambda_{2}\lambda_{3} , a_{5}=\lambda_{2}\lambda_{4} , a_{6}=\lambda_{3}\lambda_{4} . From this we find that
a 1

u_{i}’s and \lambda_{a} ’s are almost known from a_{\rho}’s, u_{\rho|A}’s and u_{i} .
(D) Next we have the case in which

(9. 5) (2) { \lambda\rangle=\{a_{1}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\} , (a_{\rho}\neq a_{\sigma} when \rho\neq\sigma).

In more detail, the following six subcases are possible:

(9. 6) \{\lambda\}=\{a_{1}(12) , a_{1}(24) , a_{2}(13) , a_{3}(23) , a_{4}(14) , a_{5}(34)\} with

(9. 7) \{\lambda\}_{s}=\{+-, +, +, -, -\} ,
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(9. 8) \{\lambda\}=\{a_{1}(12) , a_{1}(23) , a_{2}(13) , a_{3}(14) , a_{4}(24) , a_{5}(34)\} with

(9. 9) \{\lambda\}_{s}=\{++, +, -, -, -\} ,

(9. 10) \{\lambda\}=\{a_{1}(14) , a_{1}(24) , a_{2}(12) , a_{3}(23) , a_{4}(13) , a_{5}(34)\} with

(9. 11) \{\lambda\}_{s}=\{--, +, +, +, -\} ,

and the three cases (23)-conjugate to the above three. \{\lambda\}_{s}’ s of these three
cases are given by (9.7), (9.9) and (9. 11) respectively. As a matter of course,
we must have for (9. 6), for example,

(9. 12) a_{1}+a_{2}+a_{4}\neq 2a_{1}+a_{3}=a_{2}+a_{3}+a_{5}=a_{1}+a_{4}+a_{5} ,

which is the condition that the V be of type V_{IIIc}
, \cdot

Just as in the case (C), we can almost determine u_{i}^{a}’ s and \lambda_{a} ’s from a_{\rho}’s,
1 3

u_{\rho|A}’s and u_{i} . If we consider (9.8), for example, we can determine u_{i} from
the six-dimensional eigenvectors corresponding to the simple eigenvalue giving

4

plus eigenvectors, u_{i} from minus eigenvectors corresponding to \dot{s}imple eigen-
2

value, and u_{i} from eigenvectors corresponding to the double eigenvalue. The
method of determining \lambda_{a} ’s from a_{\rho}’s is evident.

(E) The third case belongs to type (3) and is of very special type
given by

(9. 13) \{\lambda\}=\langle\varphi , \varphi , -2\varphi , -2\varphi , -5\varphi , 4\varphi\} ,

where \varphi is a non-vanishing scalar and is a function of x defined by \varphi=

-2m^{-2}\neq 0 , (m\equiv 3x+c, c being an arbitrary constant), in the standard coor-
dinate system for the c.s . The V_{IIIc} which gives (9. 13) is one of the fol-
lowing six kinds:

(.9. 14) \{\lambda\}=\{\varphi(12) , \varphi(24) , -2\varphi(13) , -2\varphi(23) , -5\varphi(14) , 4\varphi(34)\} ,

(9. 15) =\{\varphi(14) , \varphi(24) , -2\varphi(13) , -2\varphi(34) , -5\varphi(12) , 4\varphi(23)\} ,

(9. 16) =\{\varphi(12) , \varphi(23) , -2\varphi(14) , -2\varphi(24) , -5\varphi(13) , 4\varphi(34)\} ,

and the three cases (23)-conjugate to the above three. In all six cases, we
have

(9. 17) \{\nu\}=\{6\varphi, 0, 0, 0\} .
(\beta, \gamma, \delta) and (B, C, D), corresponding to (9. 14), (9. 15) and (9. 16) are respec-
tively
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(9. 18) \beta=2m^{-1} , \gamma=8m^{-1} , \delta=-4m^{-1} ; B=c_{2}m^{2} , C=c_{3}m^{8} , D=c_{4}m^{-4} ,

(9. 19) \beta=-4m^{-1} , \gamma=8m^{-1} , \delta=2m^{-1} ; B=c_{2}m^{-4} , C=c_{3}m^{8} , D=c_{4}m^{2} ,

(9. 20) \beta=2m^{-1} , \gamma =-4m^{-1} , \delta=8m^{-1} ; B — c_{2}m^{2} , C=c_{3}m^{-4} , D=c_{4}m^{8} ,

where c_{2} , C_{3} and c_{4} are arbitrary positive constants. As a matter of course,
those corresponding to the (23)-conjugate cases are given from the above
expressions by interchanging (\beta, B) with (\gamma, C) . \{\lambda\}_{s}’ s corresponding to (9. 14),
(9. 15) and (9. 16) are \{+-, ++,-, -\} , \{-- -, +-, +, +\} and \{++ ,
–, + , -} respectively. Therefore, if a V_{IIIc} of type (9. 13) with \{\lambda\}_{s}=

\{+-, ++,-, -\} , for example, is given, we can determine u_{i}’ sa from
(9. 14) by a method similar to those in the preceding cases, and \lambda_{a} ’s by (\lambda_{2}

=f, \lambda_{3}=4f, \lambda_{4}=-2f;f\equiv\sqrt\overline{-\varphi/2}) .
(F) The fourth case belongs to type (6) and is of very special type

given by

(9. 21) \{\lambda\}=\{0,0,0. \psi, \psi, -\psi\} ,

where \psi is a non-constant function of x given by \psi=(1/4)(1-2p)n^{-2}, (n\equiv

px+q, p and q being arbitrary constants satisfying p\neq 0,1/2,1 ), in the stand-
ard coordinate system for the c.s. The V_{IIIc} which gives (9. 21) is one of
the following three kinds:

(9. 22) \{\lambda\}=\{0(12) , 0(23), 0(24), \psi(13) , \psi(14) , -\psi(34)\} ,

(9. 23) \{\lambda\}=\{0(14) , 0(24), 0(34), \psi(12) , \psi(13) , -\psi(23)\} ,

and the case which is (23)-conjugate to (9. 22). (Note that (9. 23) is self-
(23)-conjugate.) \{\lambda\}_{s}’ s for (9. 22) and (9. 23) are \{++-,\cdot +-,\cdot -\} and
\{-- ---, ++, +\} respectively. Throughout the three cases, we have

(9. 24) \{\nu\}=\{-2\psi. 0, 0, 0\} .

In the standard coordinate system for the c.s. , we have for (9.22) and (9.23)

(9. 25) \beta=0 , \gamma =n^{-1} , \delta=(2p-1)n^{-1} ; B=c_{2} , C=c_{3}n^{1/p} , D=c_{4}n^{2-1/p} ,

(9. 26) \beta=n^{-1} , \gamma =(2p-1)n^{-1} , \delta=0 ; B=c_{2}n^{1/p} , C=c_{3}n^{2-1/p} , D=c_{4} ,

respectively. As before we have the result: Let a V_{IIIc} of type (9. 21) with
\{\lambda\}_{s}=\{++-, +-, -\} , for example, be_{1} given, where \psi is a non-constant

scalar whose gradient is proportional to u_{i} . Then we can determine u_{i}’ sa

and \lambda_{a} ’s to some extent by using (9.22) and \{\lambda_{2}=0 , \lambda_{3}\lambda_{4}=-\psi;(\lambda_{2}, \lambda_{3}, \lambda_{4}\neq)

respectively.
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\S 10. Discrimination of V_{IIIc} , 4.

If we examine the results of the preceding three sections, we can find
that V_{IIIc}’s of type (3) and those of type (6) appear in \S 8 and \S 9. First
we consider the case of (3). \{\lambda\} ’s of these V_{IIIc}’s are classified into the
following three groups:

(10. 1)

’ (8. 3) with (8. 5). \{\lambda\}_{s}=\{++ , —, -, +\} .
(8. 12) ,, ,, ,, =\{+-, \dagger -, +, -\} .

\backslash (8.15) ,, ,, ,, =\{+-, +-, +, -\} .

(10. 2)

’(9. 14) with (9. 18). \{\lambda\}_{s}=\{+-, ++,-, -\} .
(9. 15) ,, (9. 19). ,, =\{-- , +- , + , +\rangle .

\backslash (9.16) ,, (9. 20). ,, =\{++, ---, +, -\} .

( 10. 2’) \{

The three cases which are (23)-conjugate to those given in (10. 2).
\{\lambda\}_{s}’ s are identical with those in (10. 2) respectively.

The \lambda_{a} ’s for the V_{IIIc} ’s of the three lines in (10. 1) satisfy the conditions
(\lambda_{2}=\lambda_{3}\neq\lambda_{4}) , (\lambda_{2}=\lambda_{4}\neq\lambda_{3}) and (\lambda_{3}=\lambda_{4}\neq\lambda_{2}) respectively. On the other hand, those
of the V_{IIIc}’s in (10. 2) and ( 10. 2’) satisfy (\lambda_{2}, \lambda_{3}, \lambda_{4}\neq) . The V_{IIIc}’s in (10. 1)
belong to (B_{a})

’ s , and those in (10. 2) and (10. 2’) to (E).
On the other hand, it is shown in [7. 3] of [3] that any c.s. of a V_{IIIc}

is obtained from a c.s. by at lnost e-, i-, \omega- and generalized \omega-transforma-
tions. If we use this theorem, we can easily find that the V_{IIIc}’ s belonging
to (10. 2) or ( 10. 2’) (these space-times are really the same) cannot be included
in those belonging to (10. 1).

Now we shall show another method of arriving at the same conclusion
without using [7. 3] of [3]. It is evident from the considerations of \{\lambda\}_{s}’ s ,
which are intrinsic to the space-times, that the first and second V_{II1c}’s in
(10. 2) and (10. 2’) cannot be those in (10. 1). Now we consider the third
case in (10.2). From the considerations of \{\lambda\}_{s}’ s , we can conclude that if
this V_{IIIc} belongs to those in (10. 1), it must be the one given in the first
line. Then, if we compare (9. 16) with (8. 3), and consider that the double
eigenvalue corresponding to plus eigenvectors are \varphi and a_{1} respectively, we
have \varphi=a_{1} . Similarly we have

(10. 3) \varphi=a_{1} , -2\varphi=a_{2} , 4\varphi=a_{3} , -5\varphi=a_{4l}

But a_{\rho}’s given by (10. 3) cannot satisfy (8. 5). Therefore the V_{IIIc} of the
third line of (10. 2) cannot be the one in (10.1).

In the same way, we can arrive at the same conclusion with respect
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to (10. 2’) . Summarizing the above, we have
PROPOSITION 10. 1. The V_{IIIc}’ s in (10. 2) or ( 10. 2’) cannot be included

in those of (10. 1).

From this Proposition we find that when a V_{IIIc} having the property
written in any line of (10. 1) and (10. 2) (or (10. 2’)) is given, we can proceed
by assuming that the \lambda_{a} ’s of the V_{IIIc} satisfy the conditions stated after
(10. 2’) respectively.

Next we proceed to the case of type (6). The V_{IIIc}’s of this type are
given by

(10. 4)

-

(8. 6) with (8. 8). \{\lambda\}_{s}=\{+++ , —, - \} .
(8. 9) ,, ,‘ ,, =\{---, +\cdot+, +\} .

(8. 13) ,, ,, ,, =\{+--, +-, +\} .
\neg

(8.14) ,, ,, ,, =\{++-, +-, -\} .

(10. 5) \{

(9. 22) with (9. 25). \{\lambda\}_{s}=\{++-, +-, -\} .
(9. 23) ,, ,, ,, =\{--- , ++ , +\rangle .

The cases {(8. 16) with (8. 8)} and {(8. 17) with (8. 8)}, which are (23)-conjugate
to the third and fourth cases in (10. 4) respectively, and the case which is
(23)-conjugate to the first line of (10. 5) are omitted in the list for brevity’s
sake. \{\lambda\}_{s}’ s are the same only for (9.22) in (10.5) and (8.14) in (10.4),
and for (9. 23) in (10. 5) and (8. 9) in (10. 4).

Just as in the preceding case, we can find that the V_{IIIc} ’s in (10. 5)
cannot be included in those of (10.4) by using the theorem [7.3] of [3].
Again, however, we shall prove this by another method without using this
theorem. As a result, we will obtain some interesting kinds of V_{IIIc}’ s .

Our first problem is to determine whether or not the space-time of
(9. 22) with (9. 25) can be included as a special case in those belonging to
(8. 14) with (8.8). For convenience’ sake, we consider the problem by using
(8. 17) with (8.8) in place of (8. 14) with (8.8). (Note that both are (23)-
conjugate to each other and both space-times are the same.) In (9. 22), \beta,
\gamma and \delta are given by (9. 25), and this equation is obtained by solving

(10. 6) \beta=0,\cdot 2\gamma’+\gamma^{2}=-\gamma\delta=2\delta’+\delta_{:}^{2}

under the condition (0, \gamma, \delta\neq) . The process is as follows: If we eliminate
\delta from (10. 6), we have
(10. 7) \gamma\prime\prime=2\gamma^{\prime 2}/\gamma

If r’=. 0, we have \gamma_{=}-\delta=const ., and we cannot have \gamma=\delta . If \gamma’\neq 0, we
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have (9. 25), p and q in n being integration constants. In this solution, \mathcal{T}=\delta

is equivalent to p=1. (It should be noted here that the V_{IIIc} of type \mathcal{T}=

-\delta=const . belongs to V_{0} , which is excluded from the present discussions.)
On the other hand, from the condition that (9. 22) with (9. 25) be a

special case of (8. 17) with (8. 8), we have

(10. 8) 0=a_{1} , \psi=a_{2j} -\psi=a_{3} , (2a_{1}=a_{2}+a_{3}) ,

and (\beta, \gamma, \delta) satisfying (\mathcal{T}=\delta\neq\beta) must be obtained from

(10. 9) 2\beta’+\beta^{2}=\beta^{\gamma}=0 , 2\gamma’+\gamma^{2}=-\gamma^{2}=4\psi .
By solving this, we have |

(10.10) \beta=0 , \gamma=\delta=w^{-1} , (w\equiv x+c) ,

where c is an arbitrary constant. In this case, we have (8. 17) with (10. 8)
and \psi=-w^{-2}/4 , and we cannot have \mathcal{T}’=0 . This solution is identical with
the one obtained from (9. 25) by putting p=1.

Thus the line element of the V_{IIIc} which is defined by (8. 17) with (8. 8)
and satisfies (9. 21) is given by

(10. 11) ds^{2}=-dx^{2}-c_{2}dy^{2}-c_{3}wdz^{2}+c_{4}wdt^{2} , (w\equiv x+c) ,

where c_{a} ’s are arbitrary positive constants, while that of the V_{IIIc} defined
by (9. 22) with (9. 25) is given by

(10. 12) ds^{2}=-dx^{2}-c_{2}dy^{2}-c_{3}n^{1/p}dz^{2}+c_{4}n^{2-1/p}dt^{2} : (n=px+q;p\neq 0,1/2,1) .

Then we can easily show that (10. 11) cannot admit a c.s . [K’] satisfy-

ing (\lambda_{2}’4=0, \lambda_{2}’, \lambda_{3}’, \lambda_{4}’\neq) by using the fact that we have u_{i}’=u_{i}11 , u_{i}’=u_{i}22 and
(u_{i}’, u_{i}’)3 are obtained from (u_{i}, u_{i})34 by a relation similar to (5.2), which comes
from the consideration of the relation (8. 17). Similarly we can prove that
(10. 12) cannot admit a c.s. [K’] satisfying (\lambda_{2}’=0, \lambda_{3}’=\lambda_{4}’\neq 0) . As a result,
we find that the V_{IIIc} defined by (10. 11) and that by (10. 12) are intrinsically
different from each other. Thus we have solved the problem. The con-
clusion can also be obtained from (10. 14) below.

Now we add some formulas which are of use in discriminating the two
space-times studied in the above. We can easily find that \psi is -\gamma^{2}/4=-w^{-2}

for (10. 11) and -\gamma\delta/4=-(2p-1)n^{-2}/4 for (10. 12). Then if we define a
scalar M by

(10. 13) M=-(1/4)(-\psi)^{-3/2}u^{i}\nabla_{i}\psi 1 ,

we have
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(a) M=\in_{1} for (10. 11), and
(10. 14)

(b) M=\in_{1}h , (h\equiv p(2p-1)^{-1/2}.\neq 1) , for (10. 12) ,

which characterize both space-times respectively. The reason why\in_{1}(=\pm 1)

appears in (10. 14) comes from (10. 13) and the fact that any c.s. admits the
1

freedom of\in_{1}-transformation, by which we can change the sign of u_{i} , while
\psi is intrinsic to the space-time and is common to all c.s.

Summarizing the above, we find that when a V_{IIIc} of type (9.21), whose
\{\lambda\}_{s} is \{++-, +-, -\} , is given, it is the V_{IIIc} defined by (10. 11) or (10. 12)

according as (a) or (b) respectively.
We can make similar considerations on the V_{IIIc} defined by (9. 23) in

(10. 5) and that by (8. 9) in (10. 4). V_{IIIc} of type (9. 21) whose \{\lambda\}_{s} is {-- —,

++ , +\} is one of the following two space-times:

(10. 15) ds^{2}=-dx^{2}-c_{2}wdy^{2}-c_{3}wdz^{2}+c_{4}dt^{2} ,

(10. 16) ds^{2}=-dx^{2}-c_{2}n^{1/p}dy^{2}-c_{3}n^{2-1/p}dz^{2}+c_{4}dt^{2} .

The \psi’s of these two V_{IIIc}’ s satisfy (10. 14a) and (10. 14b) respectively just
as in the preceding case. Evidently these results are of use in the theory
of the discrimination of V_{IIIc} .

Lastly it should be remarked that the considerations concerning the c.s.
hitherto made are consistent, as a matter of course, with the theory of the
freedom of c.s . of V_{IIIc} developed in [3].

\S 11. Discrimination of V_{IIIc} , 5.

As the result of \S \S 7, 8, \cdots , 10, we find that all V_{IIIc}’ s , which are not
V_{0} , are classified into the following three classes:

1) V_{IIIc}’ s , each of which admits a c.s. satisfying (\lambda_{2}=\lambda_{3}=\lambda_{4}) . In this
case, \{\lambda\} is of type (8).

2) V_{IIIc}’ s , each of which admits a c.s. whose two \lambda_{a}’s are equal. In
this case, \{\lambda\} is of one of the following two subtypes: 2a) \cdots(3), and 2b)
... (6).

3) V_{IIIc}’ s , each of which admits a c.s. satisfying (\lambda_{2}, \lambda_{3}, \lambda_{4}\neq) . In this
case, { \lambda\rangle is of one of the following four subtypes: 3a) \cdots(1), 3b)\cdots(2) , 3c)
\ldots a special type of (3), i.e. (9. 13), and 3d) \cdots a special type of (6), i.e. (9. 21).

The properties of these classes of V_{IIIc}’s have been studied in detail.
a

Especially the types of \{\lambda\}_{s}’ s and the methods to determine u_{i}’s and \lambda_{a}’s
1

from u_{i} , a_{\rho}’s and u_{\rho|A}’s have been made clear, although they have been
omitted in some cases for brevity’s sake. From these considerations, we



20 H. Takeno

find that the type of \{\lambda\} of any V_{IIIc} , which is not V_{0} , is one of (1), (2),
(3), (6) and (8), and that we have the following converse theorems:

PROPOSITION 11. 1. When \{\lambda\} of a V_{IIIc} , which is not V_{0} , is of type
{(1) or (2)} or (8), it belongs to 3) or 1) of the above list respectively.

PROPOSITION 11. 2. Let \{\lambda\} of a V_{IIIc} , which is not V_{0} , be of type (6).
Especially when it is of type (9. 21) and satisfies (10. 14b), the V_{IIIc} belongs
to 3 d), otherwise to 2b).

PROPOSITION 11. 3. Let \{\lambda\} of a V_{IIIc} , which is not V_{0} , be of type
(3). Especially when it is of type (9. 13), it belongs to 3 c), otherwise to 2a).

If we use the above Propositions together with the results obtained in
the previous sections, the discriminations of all V_{IIIc}’ s are not difficult. The
first example is given by Proposition 7. 1, which is an application of PrO-
position 11. 1. It is evident that the combination of Propositions 8. 1 and
11. 2 gives the complete method of discriminating V_{IIIc} belonging to 2). In
general, we have

PROPOSITION 11. 4. Let a U_{IIIc} which is not U_{0} be given. Determine
to which class of 1), 2), 3) (or to which subclass, in the case of 2) or 3)) it
belongs, by calculating a_{\rho}’s and u_{\rho|A}

’s, by making \{\lambda\}_{s} clear, and by using
a

the above theorems. Further, determine u_{i}’s and \lambda_{a} ’s as far as possible by
using the methods stated in \S \S 7, 8, \cdots and the present section. Try c.v.
test by using these quantities. If the U_{IIIc} succeeds in the test, it is a V_{IIIc},
and if the procedure fails anywhere, it is not V.

\S 12. Appendix 1. Some properties of the six-dimensional space M.
We have introduced in \S 1 the six-dimensional symmetric tensor K_{A}^{B}

. .
This comes from the idea that any antisymmetric tensor in a Riemannian
space-time can be considered as a vector in a six-dimensional space Bf.
Generalizing such an idea, we have established theories of m-vectors in an
n-dimensional space. One of these is the one developed by the present author
[5], and is of use in the present discrimination theory as has been seen
frequently. The main results restricted to those which have an intimate
connection with the present theory are as follows:

The fundamental tensor in M is defined by

(12. 1) q_{AB}=2g_{\zeta i\zeta m}g_{f1n\overline{\lrcorner}j} J^{AB}r=2^{[i[mf]n]}gg , g_{AB}.r_{J^{BC}}=\delta_{A}^{C} ,

where A\equiv(ij), B\equiv(mn) , (A, B, C=1,2, \cdots, 6) . Here the correspondence be-
tween the index (e.g. A) of the six-dimensional expression of a quantity
and the pair of indices (e. g. (ij)) of the four-dimensional expression of the



Discrimination of the space-time V, I. 21

same quantity is arbitrary, with a proviso that the correspondence should
be kept unaltered during a research. Any antisymmetric tensor p_{:j} in the
four-dimensional space-time has a one to one correspondence with a vector

p_{A} in M^{\cdot} by the relation p_{if}(=-p_{ji})=p_{A} . The raising and lowering of
the indices in M are done by using g^{AB} and g_{AB} defined by (12. 1) respec-
tively. With such a consideration, we can put R_{A}’.B\equiv lT_{if}^{mn}.. . Then it is
evident that K_{AB} is a symmetric tensor in M.

Using these results in the present case we have,

PROPOSITION 12. 1. The six eigenvalues of K_{A}^{B}
. in \wedge M^{-} are \lambda_{1a} and \lambda_{ab}

(a, b=2,3,4, a\neq b;\lambda_{ab}=\lambda_{ba}) , and the unit eigenvectors corresponding to these
values are given by

(12. 2) u_{1a|A}=2u_{-i}-u_{j1}1a , u_{ab|A}=2u_{i}u_{f\rfloor^{-}}a_{L}b .

PROOF. From (2. 11) of [1] and the above (12. 2), we have

K_{AB}=\lambda_{12}u_{12|A}u_{12|B}+\lambda_{13}u_{13|A}u_{13|B}+\cdots

(12. 3)
-\lambda_{14}u_{14|A}u_{14|B}-\lambda_{24}u_{24|A}u_{24|B}-\cdots

On the other hand, from the orthonormality condition (F_{1}) , we can easily
see that the six vectors (u_{12|A}, u_{13|A}, u_{23|A}) and (u_{14|A}, u_{24|A}, u_{34|A}) are mutually
orthogonal plus and minus unit vectors respectively. In other words, they
form an orthonormal ennuple in M. From these, the proof is evident.

\S 13. Appendix 2. Relations between the types of the eigenvalues
of K_{A}^{\cdot B} and those of K_{i}^{\cdot j} .

As is seen in \S 3, we classify all V’s into five classes V_{I} , V_{II} , \cdots and
V_{v} from the standpoint of the eigenvalues of K_{i}^{j}

. . Now we denote the
types of these V’s by I, II, \cdots and V for brevity’s sake. On the other hand,
we can classify the types of the set of the six eigenvalues of K_{A}^{B}

\cdot into the
following eleven types:

(1) \{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\} . (2) \{a_{1}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\} ,
(3) \{a_{1}, a_{1}, a_{2}, a_{2}, a_{3}, a_{4}\} , (4) \{a_{1}, a_{1}, a_{1}, a_{2}, a_{3}, a_{4}\} ,
(5) \{a_{1}, a_{1}, a_{2}, a_{2}, a_{3}, a_{3}\} , (6) \{a_{1}, a_{1}, a_{1}, a_{2}, a_{2}, a_{3}\}

-

(7) \{a_{1}, a_{1}, a_{1}, a_{1}, a_{2}, a_{3}\},\cdot (8) \{a_{1}, a_{1}, a_{1}, a_{2}, a_{2}, a_{2}\} ,
(9) \{a_{1}, a_{1}, a_{1}, a_{1}, a_{2}, a_{2}\} , (10) \{a_{1}, a_{1}, a_{1}, a_{1}, a_{1}, a_{2}\}-

,

(11) \{a_{1}, a_{1}, a_{1}, a_{1}, a_{1}, a_{1}\}

Here a_{\rho}\neq a_{\sigma}(\rho_{ },\sigma=1,2, \cdots, 6) when \rho\neq\sigma . The numbes of different eigen-
values belonging to these eleven types are 6; 5; 4, 4; 3, 3, 3; 2, 2, 2; 1
respectively\cdot This classification has been used in \S \S 7,8, \cdots and 11.



22 H. Takeno

Now we consider the relation between these two classifications. Evi-
dently, any \nu_{\alpha} is obtained as a linear combination of a_{\rho} ’s. Our present
purpose is to make clear, by using this relation, what kinds of I, II,\cdots and
V can be obtained from any of (1), (2), \cdots and (11). Then, as will be seen
in the following, we can make clear at the same time, from what kinds of
(1), (2), \cdots and (11), a given type of I, II, \cdots and V can be obtained.

We deal with the problem only from algebraic point of view. We take
as an example, the V’s of type (8) and make clear what types of I, II, \cdots

and V are possible for these V’s. The \nu_{\alpha} ’s and \lambda_{\alpha\beta}’ s are connected by (2.6).

Since the V ’s under consideration are of type (8), we have the following
10 (=_{6}C_{3}/2 !) cases to consider:

(i) \lambda_{12}=\lambda_{13}=\lambda_{14}=a_{1:} \lambda_{34}=\lambda_{24}=\lambda_{23}=a_{2} .
(ii) \lambda_{12}=\lambda_{13}=\lambda_{23}=a_{1} ,\cdot

\lambda_{14}=\lambda_{24}=\lambda_{34}=a_{2}t (2, 3, 4)

(iii) \lambda_{12}=\lambda_{13}=\lambda_{24}=a_{1} , \lambda_{14}=\lambda_{34}=\lambda_{23}=a_{2} . (2, 3, 4)

(iii’) \lambda_{12}=\lambda_{13}=\lambda_{34}=a_{1} , \lambda_{14}=\lambda_{24}=\lambda_{23}=a_{2} . (2, 3, 4)

Here (2, 3, 4) means the two cases obtained from the left one by the cyclic
changes of the indices 2, 3 and 4 of \lambda_{\alpha\beta}’s, and it should be noted that, since
a_{1}\neq a_{2} , the cases obtained from the above by interchanging a_{1} with a_{2} are
classified into the same cathegory.

Since (2.6) is symmertic with respect to the three indices 2, 3 and 4,
and (iii) and (iii’) are (23)-cojugate to each other, it is evident that, in dealing
with the present problem, the three cases contained in (ii) or (iii) or (iii’)

give the same results and that (iii’) can be dealt with similarly to (iii). Thus
we have only to consider the three cases explicitly written in (i), (ii) and
(iii). In these cases, \nu_{a} ’s are given respectively by

(i) \nu_{1}=-3a_{1} , \nu_{2}=\nu_{3}=\nu_{4}=-(a_{1}+2a_{2})\neq\nu_{1} ,

(ii) \nu_{1}=\nu_{2}=\nu_{3}=-(2a_{1}+a_{2}) , \nu_{4}=-3a_{2}\neq\nu_{1}
,\cdot

(iii) \nu_{1}=\nu_{2}=-(2a_{1}+a_{2}),\cdot \nu_{3}=\nu_{4}=-(a_{1}+2a_{2})\neq\nu_{1}t

Thus we find that a V of type (8) is of type III or IV according as it is
of type {(i) or (ii)} or {(iii) or (iii’)} respectively.

We can make similar considerations concerning the remaining types of
V’s (1), (2), \cdots , (7), (9), \cdots . In some cases, however, the circumstances are
somewhat complicated. For example, in the case of type (3), we have 45
(=_{6}C_{24}.C_{2}/2 !) cases to consider. But we omit them for brevity’s sake and
only give the following rough results:
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PROPOSITION 13. 1. We have the following corresponding table, the
meaning of which will easily be understood:

(1) - I, III. (2)->I , II, III. (3) - I, II, III, IV.
(4)- I, II . (5)->I, II, V. (6) - I, II, III, IV.
(7)- I, II, IV. (8)arrow III, IV. (9)- II, V.

(10)\rightarrow 11. (11)\rightarrow V.
Reversing the order, we have

I arrow(1), (2), (3), (4), (5), (6), (7).
IIarrow(2), (3), (4), (5), (6), (7), (9), (10).

III arrow(1), (2), (3), (6), (8).
IVarrow(3), (6), (7), (8).
Varrow(5) (9) (11).,,

We obtained more detailed results for all subcases like those appearing
in the discussions concerning the type (8). But we omit them for brevity’s
sake. Further it should be noted again that the results obtained in the
above are those only from algebraic point of view. At any rate, the results
are compatible with those in the preceding sections.

(To be continued.)
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